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PREAMBLE

� Almost all decisions are made in an 
environment of partial uncertainty, 
partial knowledge and partial truth. As 
we move further into the age of 
machine intelligence and mechanized 
decision-making, the need for a better 
understanding of how to deal with 
uncertainty is growing in urgency and 
importance. 
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KEY POINTS

� Uncertainty is an attribute of 
information

� Traditionally, it is assumed that 
information is statistical in nature 

� A logical consequence of this 
assumption is that uncertainty should 
be dealt with through the use of 
probability theory

� A key question which arises is: Is 
probability theory (PT) sufficient for 
dealing with uncertainty?
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CONTINUATION

� There are some who believe that it is. In the words  of 
Professor Dennis Lindley, an eminent Bayesian:

The only satisfactory description of uncertainty is  
probability. By this I mean that every uncertainty 
statement must be in the form of a probability; tha t 
several uncertainties must be combined using the 
rules of probability; and that the calculus of 
probabilities is adequate to handle all situations 
involving uncertainty…probability is the only 
sensible description of uncertainty and is adequate  
for all problems involving uncertainty. All other 
methods are inadequate…anything that can be done 
with fuzzy logic, belief functions, upper and lower  
probabilities, or any other alternative to probabil ity 
can better be done with probability.
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CONTINUATION

� There are many, including myself, who in one 
way or another, do not share this view. 
Indeed, in recent years a number of theories 
have been proposed which may be viewed as 
generalizations of probability theory or 
additions to it. Can these theories be 
unified? This is what the generalized theory 
of uncertainty, attempts to do. But first, a 
counterpoint and a challenge to those who 
share Professor Lindley’s view.
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A QUICK COUNTERPOINT

� To begin with, uncertainty need not be 
associated with randomness
Example: suppose that I am uncertain about 
the value of X, but know that it is between 10 
and 12. No randomness is involved

� Interval analysis deals with uncertainty but is 
not probabilistic. Interval analysis is 
possibilistic

� The real test of a theory of uncertainty is its 
ability to solve test problems. A few simple 
test problems are discussed in the following
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Version 1.  Measurement-based

A flat box contains a layer of black and white 
balls. You can see the balls and are allowed 
as much time as you need to count them

� q1: What is the number of white balls?
� q2: What is the probability that a ball drawn at 

random is white?
� q1 and q 2 remain the same in the next version

THE BALLS-IN-BOX PROBLEM
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CONTINUED

Version 2.  Perception-based

You are allowed n seconds to look at the 
box. n seconds is not enough to allow you 
to count the balls
You describe your perceptions in a natural 
language
p1: there are about 20 balls
p2: most are black
p3: there are several times as many black 

balls as white balls
PT’s solution?
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CONTINUED

Version 3.  Measurement-based

The balls have the same color but different sizes
You are allowed as much time as you need to 
count the balls

q1: How many balls are large?
q2: What is the probability that a ball drawn at 

random is large

PT’s solution?



LAZ  4/7/20051111/121/121

CONTINUED

Version 4.  Perception-based

You are allowed n seconds to look at the box. n 
seconds is not enough to allow you to count the 
balls

Your perceptions are:

p1: there are about 20 balls
p2: most are small
p3: there are several times as many small balls as 

large balls
q1: how many are large?
q2: what is the probability that a ball drawn at 

random is large?
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A SERIOUS LIMITATION OF PT

• Version 4 points to a serious short coming of PT  
• In PT there is no concept of cardinality of a fuzzy  set
• How many large balls are in the box?

0.5

• There is no underlying randomness

0.9

0.80.6

0.9

0.4
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MEASUREMENT-BASED

� a box contains 20 black 
and white balls

� over seventy percent 
are black

� there are three times as 
many black balls as 
white balls

� what is the number of 
white balls?

� what is the probability 
that a ball picked at 
random is white?

� a box contains about 20 
black and white balls 

� most are black
� there are several times 

as many black balls as 
white balls

� what is the number of 
white balls

� what is the probability 
that a ball drawn at 
random is white?

PERCEPTION-BASED 
version 2version 1
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COMPUTATION (version 2)

� measurement-based
X = number of black 
balls
Y2 number of white 
balls
X ≥≥≥≥ 0.7 • 20 = 14
X + Y = 20
X = 3Y
X = 15 ;  Y = 5
p =5/20 = .25

� perception-based
X = number of black 
balls
Y = number of white 
balls
X = most × 20*
X = several *Y
X + Y = 20*
P = Y/N
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FUZZY INTEGER PROGRAMMING

x

Y

1

X= several × y

X= most × 20*

X+Y= 20*
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PROBLEM

� X, a and b are real numbers, with a <<<< b

� Find an X or X’s such that X >>>>>>>> *a and X <<<<<<<< *b

� *a: approximately a; *b: approximately b

� Use probability theory?

� Fuzzy logic solution

µX(u) = µ>>*a (u)^ µ<< *b (u)
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CONTINUED

� In PT, there are no tools for dealing with 
semantics of natural languages

� What is the meaning of: There are several 
times as many small balls as large balls?

� PT is not equipped to operate on perception-
based information expressed in a natural 
language

� PT has a limited capability to deal with world 
knowledge, since much of world knowledge 
is perception-based
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KEY POINT

� A basic difference between GTU and bivalent-logic-
based theories of uncertainty relates to the role o f 
natural languages. In GTU, the semantics of natural  
languages plays a pivotal role. The underlying 
reason is that GTU’s capability to operate on 
perception-based information is directly dependent 
on GTU’s ability to understand natural language, 
since a natural language is basically a system for 
describing perceptions.

� To deal with information expressed in a natural 
language, GTU employs new tools drawn from fuzzy 
logic. The centerpiece of these tools is the concep t 
of a generalized constraint. A concept which 
underlies the concept of a generalized constraint i s 
the concept of precisiation
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PT

BL

FL

+

bivalent logic

probability theory
Theory of Generalized-
Constraint-Based 
Reasoning

CW 

PT: standard bivalent-logic-based probability theor y
CTPM : Computational Theory of Precisiation of Meani ng
PNL: Precisiated Natural Language
CW: Computing with Words
GTU: Generalized Theory of Uncertainty
GCR: Theory of Generalized-Constraint-Based Reasoni ng

CTPM GTU PNL 

GC

Tools in current use New Tools

GCR

Generalized Constraint

fuzzy logic

STRUCTURE OF GTU
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• The concepts of precision and imprecision 
have a position of centrality in science and, more 
generally, in human cognition. But what is not in 
existence is the concept of precisiation—a 
concept whose fundamental importance 
becomes apparent when we move from bivalent 
logic to fuzzy logic.
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precise value

• p: X is a Gaussian random variable with mean m and 
variance σσσσ2. m and σσσσ2 are precisely defined real 
numbers
• p is v-imprecise and m-precise 
• p: X is in the interval [a, b]. a and b are precise ly 
defined real numbers
•p is v-imprecise and m-precise

precise meaning

PRECISE

v-precise m-precise

WHAT IS PRECISE?

m-precise = mathematically well-defined
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PRECISIATION AND IMPRECISIATION

xa
0

1

x a
0

1

x 

1

0x 

1

0

m-precise m-precise

m-precise m-precise

v-imprecisiation

v-precisiation

v-imprecisiation

v-precisiation

defuzzification
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KEY POINTS

� a proposition, p, is p precisiated by representing i ts 
meaning as a generalized constraint

� precisiation of meaning does not imply precisiation
of value

� “Andrea is tall” is precisiated by defining “tall” a s a 
fuzzy set

� A desideratum of precisiation is cointension

� Informally, p and q are cointensive if the intension  
(meaning) of p is approximately the same as the 
intension (meaning) of q

precisiation = m-precisiation

In PNL 
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NEED FOR PRECISIATION

� fuzzy commands, instructions
� take a few steps
� slow down
� proceed with caution
� raise your glass
� use with adequate ventilation

� fuzzy commands and instructions cannot 
be understood by a machine

� to be understood by a machine, fuzzy 
commands and instructions must be 
precisiated
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VALIDITY OF DEFINITION
� If C is a concept and Def(C) is its definition, the n 

Def(C) is a valid definition if it is cointensive wi th C

IMPORTANT CONCLUSION
� In general, cointensive, i.e., valid, definitions o f fuzzy 
concepts cannot be formulated within the conceptual  
structure of bivalent logic and bivalen-logic-based  
probability theory
� This conclusion applies to such basic concepts as 

� Randomness 

� Causality
� Relevance
� Summary
� Independence 
� Mountain  
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PRECISIATION OF MEANING VS. UNDERSTANDING 
OF MEANING

� Precisiation of meaning ≠≠≠≠ Understanding of meaning
� I understand what you said, but can you be more 

precise
� Use with adequate ventilation
� Unemployment is high
� Most Swedes are tall
� Most Swedes are much taller than most Italians
� Overeating causes obesity
� Causality
� Relevance
� Bear market
� Mountain
� Edge
� Approximately 5

fuzzy concepts
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PRECISIATION OF MEANING

� The meaning of a proposition, p, may be precisiated in many 
different ways

� Conventional, bivalent-logic-based precisiation has a limited 
expressive power 

BASIC POINT

p precisiation Pre1(p)

Pre2(p)

Pren(p)

…
precisiands of p
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CHOICE OF PRECISIANDS

� The concept of a generalized constraint 
opens the door to an unlimited enlargement 
of the number of ways in which a proposition 
may be precisiated

� An optimal choice is one in which achieves a 
compromise between complexity and 
cointension

BASIC POINT
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EXAMPLE OF CONVENTIONAL DEFINITION OF 
FUZZY CONCEPTS

Robert Shuster (Ned Davis Research)

We classify a bear market as a 30 percent decline 
after 50 days, or a 13 percent decline after 145 da ys.

� A problem with this definition of bear market is th at 
it is not cointensive
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THE KEY IDEA

� In PNL, a proposition, p, is precisiated by expressi ng 
its meaning as a generalized constraint. In this 
sense, the concept of a generalized constraint 
serves as a bridge from natural languages to 
mathematics. 

p p* (GC(p))

NL Mathematics

generalized constraint

• The concept of a generalized constraint is the     
centerpiece of PNL
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PRECISIATION AND GRANULAR COMPUTING

example
most Swedes are tall

Count(tall.Swedes/Swedes) is most is most

h: height density function
h(u)du = fraction of Swedes whose height lies in the  
interval [u, u+du]

� In granular computing, the objects of computation a re not 
values of variables but constraints on values of va riables  

KEY IDEA

duuuh tall
b
a )()( µµµµ∫∫∫∫

))()(()( duuuhh tall
b
amost µµµµ∫∫∫∫µµµµ====ππππ

precisiation
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GENERALIZED CONSTRAINT (Zadeh 1986) 

• Bivalent constraint (hard, inelastic, categorical:)

X εεεε C
constraining bivalent relation

X isr R

constraining non-bivalent (fuzzy) relation
index of modality (defines semantics) 

constrained variable 

� Generalized constraint:

r: εεεε | = | ≤≤≤≤ | ≥≥≥≥ | ⊂⊂⊂⊂ | … | blank | p | v | u | rs | fg | ps |…

bivalent 
primary
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CONTINUED
• constrained variable

• X is an n-ary variable, X= (X 1, …, Xn)
• X is a proposition, e.g., Leslie is tall
• X is a function of another variable: X=f(Y)
• X is conditioned on another variable, X/Y
• X has a structure, e.g., X= Location 

(Residence(Carol))
• X is a generalized constraint, X: Y isr R
• X is a group variable. In this case, there is a 

group, G[A]: (Name 1, …, Namen), with each 
member of the group, Name i, i =1, …, n, 
associated with an attribute-value, A i. A i may be 
vector-valued. Symbolically

G[A]: (Name 1/A1+…+Namen/An)

Basically, X is a relation
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SIMPLE EXAMPLES

� “Check-out time is 1 pm,” is an instance of a 
generalized constraint on check-out time

� “Speed limit is 100km/h” is an instance of a 
generalized constraint on speed

� “Vera is a divorcee with two young children,” 
is an instance of a generalized constraint on 
Vera’s age
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GENERALIZED CONSTRAINT—MODALITY r

X isr R 

r: = equality constraint: X=R is abbreviation of X i s=R
r: ≤ inequality constraint: X ≤   R
r:⊂⊂⊂⊂ subsethood constraint: X  ⊂⊂⊂⊂ R
r: blank possibilistic constraint; X is R; R is the possibil ity

distribution of X
r: v veristic constraint; X isv R; R is the verity

distribution of X
r: p probabilistic constraint; X isp R; R is the 

probability distribution of X
Standard constraints: bivalent possibilistic, bival ent veristic and probabilistic
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CONTINUED

r: rs random set constraint; X isrs R; R is the set-
valued probability distribution of X

r: fg fuzzy graph constraint; X isfg R; X is a funct ion 
and R is its fuzzy graph

r: u usuality constraint; X isu R means usually (X i s R)

r: g group constraint; X isg R means that R constrain s 
the attribute-values of the group 
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PRIMARY GENERALIZED CONSTRAINTS

Possibilistic examples: 

� Monika is young Age (Monika) is young

� Monika is much younger than Maria
(Age (Monika), Age (Maria)) is much younger

� most Swedes are tall  
ΣΣΣΣCount (tall.Swedes/Swedes) is most

X R

X

X

R

R
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EXAMPLES: PROBABILISITIC

� X is a normally distributed random 
variable with mean m and variance σσσσ2

X isp N(m, σσσσ2)

� X is a random variable taking the values 
u1, u2, u3 with probabilities p 1, p2 and p 3, 
respectively

X isp (p 1\u1+p2\u2+p3\u3)
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EXAMPLES: VERISTIC

� Robert is half German, quarter French and 
quarter Italian

Ethnicity (Robert) isv (0.5|German + 
0.25|French + 0.25|Italian)

� Robert resided in London from 1985 to 
1990

Reside (Robert, London) isv [1985, 
1990]
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GENERALIZED CONSTRAINT—SEMANTICS

A generalized constraint, GC, is associated with a 
test-score function, ts(u), which associates with 
each object, u, to which the constraint is 
applicable, the degree to which u satisfies the 
constraint. Usually, ts(u) is a point in the unit 
interval. However, if necessary, it may be an 
element of a semi-ring, a lattice, or more generall y, 
a partially ordered set, or a bimodal distribution.

example: possibilistic constraint, X is R

X is R Poss(X=u) = µ R(u)

ts(u) = µ R(u)
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TEST-SCORE FUNCTION

� GC(X): generalized constraint on X
� X takes values in U= {u}
� test-score function ts(u): degree to which u satisf ies 

GC
� ts(u) may be defined (a) directly (extensionally) a s a 

function of u; or indirectly (intensionally) as a 
function of attributes of u

intensional definition=attribute-based definition

� example (a) Andrea is tall 0.9
(b) Andrea’s height is 175cm; µ tall (175)=0.9; 
Andrea is 0.9 tall
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CONSTRAINT QUALIFICATION

� p isr R means r-value of p is R

in particular
p isp R Prob(p) is R (probability qualification)
p isv R Tr(p) is R (truth (verity) qualification)
p is R Poss(p) is R (possibility qualification)

examples
(X is small) isp likely       Prob{X is small} is lik ely
(X is small) isv very true       Ver{X is small} is v ery true
(X isu R)       Prob{X is R} is usually
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GENERALIZED CONSTRAINT LANGUAGE (GCL)

� GCL is an abstract language
� GCL is generated by combination, qualification and 

propagation of generalized constraints
� examples of elements of GCL

� (X isp R) and (X,Y) is S)
� (X isr R) is unlikely) and (X iss S) is likely
� If X is A then Y is B

� the language of fuzzy if-then rules is a sublanguag e 
of GCL

� deduction= generalized constraint propagation
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PRECISIATION = TRANSLATION INTO GCL
BASIC STRUCTURE

annotation
p X/A isr R/B GC-form of p

example
p: Carol lives in a small city near San Francisco
X/Location(Residence(Carol)) is R/NEAR[City] ∧∧∧∧ SMALL[City]

p p*

NL GCL

precisiation
translation

precisiand
of p
GC(p)

generalized constraint



LAZ  4/7/20054646/121/121

STAGES OF PRECISIATION

per• • •
p p*

perceptions GCLNL

description

v-imprecise

precisiation

v-imprecise
m-imprecise

v-imprecise
m-precise
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COINTENSIVE PRECISIATION

� In general, precisiand of p is not unique. If GC 1(p), …, 
GCn(p) are possible precisiands of p, then a basic 
question which arises is: which of the possible 
precisiands should be chosen to represent the 
meaning of p? There are two principal criteria whic h 
govern the choice: (a) Simplicity and (b) 
Cointension. Informally, the cointension of GC i(p), 
I=1, …, n, is the degree to which the meaning of 
GCi(p) approximates to the intended meaning of p. 
More specifically, GC i(p) is coextensive with p, or 
simply coextensive, if the degree to which the 
intension of GC i(p), with intension interpreted in its 
usual logical sense, approximates to the intended 
intension of p.  
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DIGRESSION: COINTENSION

C

human perception of C
p(C)

definition of C
d(C)

intension of p(C) intension of d(C)

CONCEPT

cointension: coincidence of the intended intensions  of 
the definiendum, c, and the intension of the defini ens d(C)
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EXAMPLE

• p: Speed limit is 100 km/h

100 110 speed

poss

p
cg-precisiation
r = blank (possibilistic)

100 110

poss

p
g-precisiation
r = blank (possibilistic)

100 110 speed

prob

p
g-precisiation
r = p (probabilistic)
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CONTINUED

prob

100 110 120 speed

p
g-precisiation
r = bm (bimodal)

If Speed is less than *110, Prob(Ticket) is low

If Speed is between *110 and *120, Prob(Ticket) is medium

If Speed is greater than *120, Prob(Ticket) is high
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conventional 
(degranulation)

* a a

approximately a

GCL-based 
(granulation)

PRECISIATION

s-precisiation g-precisiation

precisiation
precisiation X isr R

p

GC-formproposition

common practice in probability theory

*a

• cg-precisiation: crisp granular precisiation
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PRECISIATION OF  “approximately a,” *a

x

x 

x 

a

a

20 250

1

0

0

1

p

µµµµ

fuzzy graph

probability distribution

interval

x 
0

a

possibility distribution

∏∏∏∏

xa0

1
µµµµ

µµµµ

s-precisiation singleton

g-precisiation

cg-precisiation
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CONTINUED

x 

p

0

bimodal distribution

GCL-based (maximal generality)

g-precisiation X isr R

GC-form

*a

g-precisiation
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THEORIES OF UNCERTAINTY

� Standard, bivalent-logic-based probability theory, PT
Modality

X isp P
PT is unimodal

� D-S theory
X isp P
(X,Y) is Q

D-S theory is unimodal if Q is crisp (bivalent)
D-S theory is bimodal if Q is fuzzy
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CONTINUED

� Perception-based probability theory, PTp

X isp P
X isv Q
X is R

PTp is trimodal

Unimodality of PT has the effect of limiting its 
problem-solving capability



LAZ  4/7/20055656/121/121



LAZ  4/7/20055757/121/121

THE BASICS OF PNL

� The point of departure in PNL is the key idea:
� A proposition, p, drawn from a natural language, 

NL, is precisiated by expressing its meaning as a 
generalized constraint

� In general, X, R, r are implicit in p
� precisiation of p explicitation of X, R, r 

p X isr R

constraining relation

Identifier of modality (type of constraint)

constrained (focal) variable
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SIMPLE EXAMPLE

� Monika is young Age(Monika) is young

� Annotated representation
X/Age(Monika)      is     R/young

X

R
r (blank)
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KEY POINTS

� A proposition is an answer to a question

example:
p: Monika is young

is an answer to the question
q: How old is Monika?

� The concept of a generalized constraint 
serves as a basis for generalized-constraint-
based semantics of natural languages
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THE CONCEPT OF A PROTOFORM AND ITS BASIC 
ROLE IN KNOWLEDGE REPRESENTATION, 

DEDUCTION AND SEARCH

� Informally, a protoform—abbreviation of 
prototypical form—is an abstracted summary. 
More specifically, a protoform is a symbolic 
expression which defines the deep semantic 
structure of a construct such as a concept, 
proposition, command, question, scenario, 
case or a system of such constructs

� Example:
Monika is young A(B) is C

instantiation

abstraction

young C
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CONTINUED

object

p

object space

summarization abstraction
protoform

protoform space
summary of p

S(p) A(S(p))

PF(p)

PF(p): abstracted summary of p
deep structure of p

• protoform equivalence
• protoform similarity
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EXAMPLES

� Monika is young Age(Monika) is young A(B) is C

� Monika is much younger than Robert
(Age(Monika), Age(Robert) is much.younger
D(A(B), A(C)) is E

� Usually Robert returns from work at about 6:15pm
Prob{Time(Return(Robert)} is 6:15*} is usually
Prob{A(B) is C} is D

usually
6:15*

Return(Robert)
Time

abstraction

instantiation
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PROTOFORMS

� at a given level of abstraction and summarization, 
objects p and q are PF-equivalent if PF(p)=PF(q)

example
p: Most Swedes are tall Count (A/B) is Q
q: Few professors are rich Count (A/B) is Q

PF-equivalence
class

object space protoform space
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EXAMPLES

Alan has severe back pain. He goes to 
see a doctor. The doctor tells him that 
there are two options: (1) do nothing; 
and (2) do surgery. In the case of 
surgery, there are two possibilities: (a) 
surgery is successful, in which case 
Alan will be pain free; and (b) surgery is 
not successful, in which case Alan will 
be paralyzed from the neck down. 
Question: Should Alan elect surgery?

Y

X0

object

Y

X0

i-protoform

option 1

option 2

0
1 2

gain
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BASIC STRUCTURE OF PNL

p• • •
p* p**

NL PFLGCL

GC(p) PF(p)

precisiation

precisiation
(a)

abstraction        
(b)

world 
knowledge 
database

DDB

•In PNL, deduction=generalized constraint propagatio n
DDB: deduction database=collection of protoformal ru les 
governing   generalized constraint propagation
WKDB: PNL-based 

deduction 
database

WKDB



LAZ  4/7/20056666/121/121

MODULAR DEDUCTION DATABASE

POSSIBILITY
MODULE

PROBABILITY 
MODULE

SEARCH  
MODULE

FUZZY LOGIC 
MODULE

agent

FUZZY ARITHMETIC 
MODULE

EXTENSION 
PRINCIPLE MODULE
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PROTOFORM-BASED DEDUCTION

p

q
p*

q*

NL GCL

precisiation p**

q**

PFL

summarization

precisiation abstraction

answer
a

r**       World 
Knowledge
Module

WKM DM

deduction module
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protoformal rule

symbolic part computational part 

FORMAT OF PROTOFORMAL DEDUCTION RULES
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PROTOFORM DEDUCTION RULE: GENERALIZED 
MODUS PONENS

X is A
If X is B then Y is C
Y is D

D = A°(B×C)

D = A°(B⇒⇒⇒⇒C)

computational 1

computational 2

symbolic

(fuzzy graph; 
Mamdani)

(implication; 
conditional 
relation)

classical

A
A B

B

fuzzy logic
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X is A
(X, Y) is B
Y is A °°°°B

))v,u()u((max)v( BAuBA µµµµµµµµµµµµ ∧=o

symbolic 
part

computational 
part

))du)u(g)u(((max)u( A
U

BqD µµµµµµµµµµµµ ∫=

du)u(g)u(v
U

C∫µµµµ=subject to:

1du)u(g
U

=∫∫∫∫

Prob (X is A) is B
Prob (X is C) is D

PROTOFORMAL RULES OF DEDUCTION

examples
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MODULAR DEDUCTION DATABASE

POSSIBILITY
MODULE

PROBABILITY 
MODULE

SEARCH  
MODULE

FUZZY LOGIC 
MODULE

agent

FUZZY ARITHMETIC 
MODULE

EXTENSION 
PRINCIPLE MODULE
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PERCEPTION  OF  A  FUNCTION

if X is small then Y is small
if X is medium then Y is large
if X is large then Y is small0 X

0

Y

f f* :
perception

Y

f* (fuzzy graph)

medium x large

f

0

S M L

L

M

S

granule
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BIMODAL DISTRIBUTION 
(PERCEPTION-BASED  PROBABILITY  

DISTRIBUTION)

A1 A2 A3

P1

P2

P3

probability

P(X) = Pi(1)\A1  + Pi(2)\A2 +  Pi(3)\A3

Prob {X is A i }  is P j(i)

0
X

P(X)= low\small + high\medium + low\large
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CONTINUED

� function: if X is small then Y is large +…
(X is small, Y is large)

� probability distribution: low \ small + low \ medium + 
high \ large +…

� Count \ attribute value distribution: 5* \ small + 8*  \
large +…

PRINCIPAL RATIONALES FOR F-GRANULATION

� detail not known
� detail not needed
� detail not wanted
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BIMODAL PROBABILITY 
DISTRIBUTIONS (LAZ 1981)

1A

2A

3A

X

P U 

nn11 APAPP \\* ++++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++++====
nn11 APAPP \\\\ ++++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅++++====

(a) possibility\probability (b) probability\\possibi lity

gP33

P22

P11

A33A22A11
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BIMODAL PROBABILITY DISTRIBUTION

X: a random variable taking values in U

g: probability density function of X

X

g 

iii APP \* ΣΣΣΣ====

g

X

iA

iP

ii AP \
*P

{ } ii P is A is   Prob X

{ } duuguAob
iAUi )()( is X Pr µ∫=

f-granulation

P33

P22

P11

A33A22A11
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CONTINUED

P* defines a possibility distribution of g

problems

a) what is the probability of a perception-based ev ent A  
in U

b) what is the perception-based expected value of X  

))()(())()(()( duuguduugug
nuii AUPAUP µµµµµµµµµµµµµµµµππππ ∫∫∫∫∧∧∧∧⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∧∧∧∧∫∫∫∫====
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PROBABILITY OF A PERCEPTION-BASED EVENT

problem: Prob {X is A} is ?B knowing ππππ(g)

)( )()(A} is {X Prob gfduuguAU =∫= µ

Extension Principle

))g(f(
)g(

2

1

ππππ
ππππ

)g(sup)v( g 12 ππππ====ππππ

subject to: )g(fv ====
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CONTINUED

)))()((

))()(((sup)(
11

duugu

duuguv

nn AUP

AUPgA

µµ

µµµ

∫∧

⋅⋅⋅∧∫=

subject to 

duuguv AU )()(µ∫=
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EXPECTED VALUE OF A BIMODAL PD

)( )(*)( gfduuugPE U =∫=

Extension Principle

))du)u(g)u((

)du)u(g)u(((sup)v(

nn AUP

AUp
g

*)P(E

µµµµ∫∫∫∫µµµµ∧∧∧∧

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∧∧∧∧µµµµ∫∫∫∫µµµµ====µµµµ
11

subject to: duuugv U )(∫∫∫∫====
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PERCEPTION-BASED DECISION ANALYSIS

ranking of f-granular probability distributions 

0 X

0 X

maximization of expected utility ranking of fuzzy nu mbers

PAA

PBB
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USUALITY CONSTRAINT PROPAGATION RULE

X: random variable taking values in U
g: probability density of X

X isu A

Prob {X is B} is C

X isu A Prob {X is A} is usually

)du)u(g)u(()g( AUusually µµµµ∫∫∫∫µµµµ====ππππ

))du)u(g)u(((sup)v( AUusuallygC µµµµ∫∫∫∫µµµµ====µµµµ

subject to: duuguv BU )()(µ∫=
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PROBABILITY MODULE

X: real-valued random variable 

g: probability density function of X

A1, …, An, A: perception-based events in U

P1, …, Pn, P: perception-based probabilities in U

Prob {X is A 1} is P j(1)
.  .  .                           

Prob {X is A n} is P j(n)

Prob {X is A} is P   
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CONTINUED

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∧∧∧∧µµµµ∫∫∫∫µµµµ====µµµµ )du)u()u(g((sup)v( A
U

Pgp 11

)du)u()u(g(
nn AUP µµµµ∫∫∫∫µµµµ∧∧∧∧

subject to: 

du)u()u(gv AU µµµµ∫∫∫∫====
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PROBABILITY MODULE (CONTINUED)

X isp P 
Y = f(X)

Y isp f(P)

X isp P 
(X,Y) is R 
Y isrs S 

Prob {X is A} is P 

Prob {f(X) is B} is Q

X isu A 
Y = f(X)

Y isu f(A) 
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INTERPOLATION OF BIMODAL DISTRIBUTIONS

p1
p2 p

pn

P

0

A1 A2 A An

X

g(u): probability density of X

p i is P i : granular value of p i , i=1, …, n
(Pi , A i) , i=1, …, n      are given
A is given
(?P, A)
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INTERPOLATION MODULE AND PROBABILITY 
MODULE

Prob {X is A i} is P i , i = 1, …, n

Prob {X is A} is Q

∧∧∧∧⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∧∧∧∧µµµµ∫∫∫∫µµµµ====µµµµ )du)u(g)u(((sup)v( A
U

PgQ 11

))du)u(g)u((
nnn A

U
P

U
P µµµµ∫∫∫∫µµµµ∫∫∫∫µµµµ

subject to

du)u(g)u(U A
U

µµµµ∫∫∫∫====



9090



LAZ  4/7/20059191/121/121

CONJUNCTION

•determination of r involves interpolation of a bimo dal 
distribution

X is A
X is B

X is A   BI

X isu A
X isu B

X isr A   BI
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USUALITY CONSTRAINT

X is A
X is B
X is A    BI

X isu A
X isu B
X isp P   
(A    B) ispv QI

g: probability density function of X
ππππ(g): possibility distribution function of g

)))()(())()(((sup)( duuugduuugg B
U

usuallyA
U

usuallyg µµµµ∫∫∫∫µµµµ∧∧∧∧µµµµ∫∫∫∫µµµµ====ππππ

subject to: 1duug
U

====∫∫∫∫ )(

))((sup)( gv gQ ππππ====µµµµ

subject to: duuuugv BA
U

))()()(( µµµµ∧∧∧∧µµµµ∫∫∫∫====
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USUALITY — QUALIFIED RULES

X isu A
X isun (not A)

X isu A

Y=f(X)

Y isu f(A)

))((sup)( )(|)( uv AufvuAf µµµµµµµµ ========
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USUALITY — QUALIFIED RULES

X isu A
Y isu B

Z = f(X,Y)

Z isu f(A, B)

)()((sup)( ),(|, vuw BAvufwvuZ µµµµµµµµµµµµ ∧∧∧∧==== ====
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PRINCIPAL COMPUTATIONAL RULE IS 
THE EXTENSION PRINCIPLE (EP)

point of departure:  function evaluation

X=a
Y=f(X)
Y=f(a)

Y

0 Xa

f(a)
f
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EXTENSION PRINCIPLE HIERARCHY

Extension Principle 

argumentfunction
EP(0,0)

EP(0,1) EP(0,1b)

EP(0,2)

EP(1,0)

EP(1,1)EP(1,1b)EP(2,0)

Dempster-Shafer 

Mamdani (fuzzy graph)
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VERSION EP(0,1) (1965; 1975)

Y

0 X

A

f(A) f

X is A
Y=f(X)
Y=f(A)

subject to
))((sup)( uv Auf(A) µµµµµµµµ ====

)(ufv ====
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VERSION EP(1,1) (COMPOSITIONAL RULE OF 
INFERENCE) (1965)

Y

0 X

A

f(A) R 

X is A
(X,Y) is R

Y is A   Ro

),(∧∧∧∧)((sup)( vuuv RAuY µµµµµµµµµµµµ ====
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Y

0 Xa

fuzzy graph (f*)

EXTENSION PRINCIPLE EP(2,0) (Mamdani)

ii BA ××××

iii BaA=Y ∧))))((((µµµµΣΣΣΣ

iii BAf ××××==== ΣΣΣΣ****

aX ====
(if X is A I then Y is B I)
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VERSION EP(2,1)
Y

0 X

A

f* (granulated f)

X is A
(X, Y) is R

Y is ΣΣΣΣi m i ∧∧∧∧ B i

f*(A)

R = ΣΣΣΣi A i×B i

m i = sup u (µA(u) ∧∧∧∧ µAi (u)): matching coefficient 
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VERSION EP(1,1b)  (DEMPSTER-SHAFER)

X isp (p 1\u1 + … + pu\un)

(X,Y) is R 

Y isp (p 1\R(u1) + … + pn\R(un)) 

Y is a fuzzy-set-valued random variable 

µR(ui) (v) = µR (u i, v)
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VERSION GEP(0,0)

f(X) is A

g(X) is g(f -1(A))

)))(((sup)(
))(1(

ufv AuAfg
µµµµµµµµ ====-

)(ugv ====
subject to
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GENERALIZED EXTENSION PRINCIPLE

f(X) is A 
g(Y) is B 
Z=h(X,Y)

Z is h (f -1(A), g -1 (B))

(g(u)))µ(f(u))(µsup(w)µ
BBBBAAAAvvvvu,u,u,u,ZZZZ

∧∧∧∧====

subject to

h(u,v)w ====
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U-QUALIFIED EXTENSION PRINCIPLE
Y

0 X

If X is A i then Y isu B i, i=1,…, n

X isu A

Y isu ΣΣΣΣI m i∧∧∧∧B i

m = sup u (µA(u)∧∧∧∧µAi(u)): matching coefficient 

B i

A i
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PNL-BASED DEFINITION OF STATISTICAL 
INDEPENDENCE

0

S M L

L

M

S ΣΣΣΣC(S/S)

ΣΣΣΣC(M/L) L/S L/M L/L

M/M

S/S

M/S

S/M

M/L

S/L1

2

3

1 2 3

X

Y

ΣΣΣΣ (M/L)= ΣΣΣΣC (M x L) 
ΣΣΣΣC (L) 

• degree of independence of Y from X=
degree to which columns 1, 2, 3 are identical 

PNL-based definition

contingency table
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WHAT IS A RANDOM SAMPLE?

� In most cases, a sample is drawn from a 
population which is a fuzzy set, e.g., middle class , 
young women, adults 

� In the case of polls, fuzziness of the population 
which is polled may reflect the degree 
applicability of the question to the person who is 
polled 

� example (Atlanta Constitution 5-29-95)
Is O.J. Simpson guilty?

Random sample of 1004 adults polled by phone.
61% said “yes.” Margin of error is 3%

� to what degree is this question applicable to a 
person who is n years old?
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EXAMPLE OF DEDUCTION

p: Most Swedes are much taller than most Italians
q: What is the difference in the average height of Swedes 

and Italians?

PNL-based solution

Step 1. precisiation: translation of p into GCL

S = {S1, …, Sn}: population of Swedes
I = {I1, …, In}:population of Italians
g i = height of S i , g = (g1, …, gn)
h j = height of I j , h = (h1, …, hn)

µij = µmuch.taller (g i, h j)= degree to which S i is much taller than I j
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CONTINUED

= Relative ΣΣΣΣCount of Italians in relation to whom 
Si is much taller

t i = µmost (r i) = degree to which S i is much taller than 
most Italians

v = = Relative ΣΣΣΣCount of Swedes who are 
much taller than most Italians 

ts(g, h) = µ most (v)

p generalized constraint on S and I

q: d = 

ijji n
1

r µµµµΣΣΣΣ====

it
m
1 ΣΣΣΣ

jjii h
n
1

g
m
1 ΣΣΣΣ−−−−ΣΣΣΣ
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CONTINUED

Step 2. Deduction via extension principle

)h,g(tssup)d( h,gq ====µµµµ

subject to

jjii h
n
1

g
m
1

d ΣΣΣΣ−−−−ΣΣΣΣ====
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DEDUCTION PRINCIPLE

� Point of departure: question, q
� Data: D = (X 1/u1, …, Xn/un)

u i is a generic value of X i

� Ans(q): answer to q
� If we knew the values of the X i, u1, …, un, we could express 

Ans(q) as a function of the u i

Ans(q)=g(u 1, …,un) u=(u1, …, un)

� Our information about the u i, I(u1, …, un) is a generalized 
constraint on the u i. The constraint is defined by its test-score 
function

f(u)=f(u 1, …, un)
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CONTINUED

� Use the extension principle

))u(ts(sup)v( u)q(Ans ====µµµµ

subject to

)u(gv ====
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SUMMATION

� A basic difference between GTU and bivalent-logic-
based theories of uncertainty relates to the role o f 
natural languages. In GTU, the semantics of natural  
languages plays a pivotal role. The underlying 
reason is that GTU’s capability to operate on 
perception-based information is directly dependent 
on GTU’s ability to understand natural language, 
since a natural language is basically a system for 
describing perceptions.

� Another basic difference relates to the conceptual 
framework of GTU. In GTU, the basic concepts, e.g.,  
the concepts of independence are defined, for the 
most part, through the use of PNL. As a 
consequence, most of the basic concepts in GTU are 
context-dependent. All existing theories of 
uncertainty may be viewed as specializations of 
GTU. 
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January 26, 2005

Factual Information About the Impact of Fuzzy 
Logic

PATENTS 

� Number of fuzzy-logic-related patents applied for i n 
Japan: 17,740 

� Number of fuzzy-logic-related patents issued in 
Japan: 4,801 

� Number of fuzzy-logic-related patents issued in the  
US: around 1,700 
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PUBLICATIONS

Count of papers containing the word “fuzzy” in title , as cited in INSPEC 
and MATH.SCI.NET databases. 

Compiled by Camille Wanat, Head, Engineering Librar y, UC Berkeley, 
December 22, 2004

Number of papers in INSPEC and MathSciNet which have "fuzzy" in their 
titles:

INSPEC - "fuzzy" in the title
1970-1979:   569
1980-1989:   2,404
1990-1999:   23,207
2000-present: 14,172
Total:   40,352

MathSciNet - "fuzzy" in the title
1970-1979:   443
1980-1989:   2,465
1990-1999:   5,483
2000-present: 3,960
Total:   12,351
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JOURNALS    (“fuzzy” or “soft computing” in title)

1. Fuzzy Sets and Systems 
2. IEEE Transactions on Fuzzy Systems 
3. Fuzzy Optimization and Decision Making 
4. Journal of Intelligent & Fuzzy Systems 
5. Fuzzy Economic Review 
6. International Journal of Uncertainty, Fuzziness and  

Knowledge-Based Systems
7. Journal of Japan Society for Fuzzy Theory and Syste ms 
8. International Journal of Fuzzy Systems 
9. Soft Computing 
10. International Journal of Approximate Reasoning--Sof t 

Computing in Recognition and Search 
11. Intelligent Automation and Soft Computing 
12. Journal of Multiple-Valued Logic and Soft Computing  
13. Mathware and Soft Computing 
14. Biomedical Soft Computing and Human Sciences 
15. Applied Soft Computing 
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APPLICATIONS

The range of application-areas of fuzzy logic is to o wide for exhaustive 
listing. Following is a partial list of existing ap plication-areas in which there 
is a record of substantial activity.

1. Industrial control
2. Quality control
3. Elevator control and scheduling
4. Train control
5. Traffic control
6. Loading crane control
7. Reactor control
8. Automobile transmissions
9. Automobile climate control
10. Automobile body painting control
11. Automobile engine control
12. Paper manufacturing
13. Steel manufacturing
14. Power distribution control
15. Software engineerinf
16. Expert systems
17. Operation research
18. Decision analysis

19. Financial engineering
20. Assessment of credit-worthiness
21. Fraud detection
22. Mine detection
23. Pattern classification
24. Oil exploration
25. Geology
26. Civil Engineering
27. Chemistry
28. Mathematics
29. Medicine
30. Biomedical instrumentation
31. Health-care products
32. Economics
33. Social Sciences
34. Internet
35. Library and Information Science
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Product Information Addendum 1

This addendum relates to information about products  which employ fuzzy logic singly or 
in combination. The information which is presented came from SIEMENS and 
OMRON. It is fragmentary and far from complete. Suc h addenda will be sent to the 
Group from time to time.

SIEMENS:

* washing machines, 2 million units sold
* fuzzy guidance for navigation systems (Opel, Pors che)
* OCS: Occupant Classification System (to determine , if a place in a car is 

occupied by     
a person or something else; to control the airbag a s well as the intensity of the  
airbag). Here FL is used in the product as well as in the design process  
(optimization of parameters).

* fuzzy automobile transmission (Porsche, Peugeot, Hyundai)

OMRON:

* fuzzy logic blood pressure meter, 7.4 million uni ts sold, approximate retail value 
$740 million dollars

Note: If you have any information about products an d or manufacturing which may be of 
relevance please communicate it to Dr. Vesa Niskanen vesa.a.niskanen@helsinki.fi
and Masoud Nikravesh Nikravesh@cs.berkeley.edu .
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Product Information Addendum 2

This addendum relates to information about products  which employ fuzzy logic singly or 
in combination. The information which is presented came from Professor Hideyuki Takagi, 
Kyushu University, Fukuoka, Japan. Professor Takagi  is the co-inventor of neurofuzzy
systems. Such addenda will be sent to the Group fro m time to time.

Facts on FL-based systems in Japan (as of 2/06/2004 )

1. Sony's FL camcorders

Total amount of camcorder production of all compani es in 1995-1998 times Sony's market 
share is the following. Fuzzy logic is used in all Sony's camcorders at least in these four 
years, i.e. total production of Sony's FL-based cam corders is 2.4 millions products in 
these four years.

1,228K units X 49% in 1995
1,315K units X 52% in 1996
1,381K units X 50% in 1997
1,416K units X 51% in 1998

2. FL control at Idemitsu oil factories

Fuzzy logic control is running at more than 10 plac es at 4 oil factories of Idemitsu Kosan 
Co. Ltd including not only pure FL control but also  the combination of FL and conventional 
control.

They estimate that the effect of their FL control i s more than 200 million YEN per year and 
it saves more than 4,000 hours per year.
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3. Canon

Canon used (uses) FL in their cameras, camcorders, copy machine, and 
stepper alignment equipment for semiconductor produ ction. But, they have 
a rule not to announce their production and sales d ata to public.

Canon holds 31 and 31 established FL patents in Jap an and US, 
respectively.

4. Minolta cameras

Minolta has a rule not to announce their production and sales data to 
public, too.

whose name in US market was Maxxum 7xi. It used six F L systems in a
camera and was put on the market in 1991 with 98,00 0 YEN (body price
without lenses). It was produced 30,000 per month i n 1991. Its sister
cameras, alpha-9xi, alpha-5xi, and their successors  used FL systems, too.
But, total number of production is confidential. 
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5. FL plant controllers of Yamatake Corporation

Yamatake-Honeywell (Yamatake's former name) put FUZ ZICS, fuzzy 
software package for plant operation, on the market  in 1992. It has 
been used at the plants of oil, oil chemical, chemi cal, pulp, and other 
industries where it is hard for conventional PID co ntrollers to 
describe the plan process for these more than 10 ye ars.

They planed to sell the FUZZICS 20 - 30 per year and  total 200 million 
YEN.

As this software runs on Yamatake's own control sys tems, the 
software package itself is not expensive comparativ e to the hardware 
control systems.

6. Others

Names of 225 FL systems and products picked up from  news articles 
in 1987 - 1996 are listed at 
http://www.adwin.com/elec/fuzzy/note_10.html in Japanese.)

Note: If you have any information about products an d or manufacturing 
which may be of relevance please communicate it to Dr. Vesa
Niskanen vesa.a.niskanen@helsinki.fi and Masoud Nikravesh
Nikravesh@cs.berkeley.edu , with cc to me. 


