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PREAMBLE

e Almost all decisions are made In an
environment of partial uncertainty,
partial knowledge and partial truth. As
we move further into the age of

machine intelligence and mechanized
decision-making, the need for a better
understanding of how to deal with
uncertainty Is growing in urgency and
Importance.

LAZ 4/7/2005




KEY POINTS

e Uncertainty Is an attribute of
iInformation

e Traditionally, it iIs assumed that
Information Is statistical in nature

e A logical consequence of this

assumption Is that uncertainty should
be dealt with through the use of
probability theory

e A key question which arises Is: Is
probability theory (PT) sufficient for
dealing with uncertainty?
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CONTINUATION

e There are some who believe that it is. In the words
Professor Dennis Lindley, an eminent Bayesian:

The only satisfactory description of uncertainty is
probability. By this | mean that every uncertainty
statement must be in the form of a probability; tha
several uncertainties must be combined using the
rules of probability; and that the calculus of
probabilities is adequate to handle all situations
Involving uncertainty...probabillity is the only
sensible description of uncertainty and is adequate
for all problems involving uncertainty. All other
methods are inadequate...anything that can be done
with fuzzy logic, belief functions, upper and lower
probabllities, or any other alternative to probabill WY
can better be done with probability.
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CONTINUATION

e There are many, including myself, who in one
way or another, do not share this view.
Indeed, in recent years a number of theories
have been proposed which may be viewed as

generalizations of probability theory or
additions to it. Can these theories be
unified? This Is what the generalized theory
of uncertainty, attempts to do. But first, a
counterpoint and a challenge to those who
share Professor Lindley’s view.
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A QUICK COUNTERPOINT

e To begin with, uncertainty need not be
assoclated with randomness

Example: suppose that | am uncertain about
the value of X, but know that it Is between 10
and 12. No randomness is involved

e Interval analysis deals with uncertainty but is
not probabilistic. Interval analysis Is
possibilistic

e The real test of a theory of uncertainty is its

ability to solve test problems. A few simple
test problems are discussed Iin the following
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THE BALLS-IN-BOX PROBLEM

Version 1. Measurement-based QO

O
®

O
O@
@O
A flat box contains a layer of black and white
balls. You can see the balls and are allowed

as much time as you need to count them

e (,: What Is the number of white balls?

¢ (,: What Is the probability that a ball drawn at
random is white?

e (, and g, remain the same In the next version
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CONTINUED

Version 2. Perception-based

You are allowed n seconds to look at the
box. n seconds is not enough to allow you
to count the balls

You describe your perceptions in a natural

anguage
0,: there are about 20 balls
0,: most are black

N4t there are several times as many black
balls as white balls

PT’s solution?
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CONTINUED

Version 3. Measurement-based

The balls have the same color but different sizes

You are allowed as much time as you need to
count the balls

d,: How many balls are large?

J,. What is the probability that a ball drawn at
random is large

PT’s solution?
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CONTINUED

Version 4. Perception-based

11/121

You are allowed n seconds to look at the box. n
seconds is not enough to allow you to count the
balls

Your perceptions are:

p,: there are about 20 balls
P,: most are small

P,: there are several times as many small balls as
large balls

g,: how many are large?

J,: whatis the probability that a ball drawn at
random iIs large?
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A SERIOUS LIMITATION OF PT

Version 4 points to a serious short coming of PT

In PT there is no concept of cardinality of a fuzzy
How many large balls are in the box?

0N oo )3
@®

There is no underlying randomness
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MEASUREMENT-BASED

13/121

version 1

a box contains 20 black
and white balls

over seventy percent
are black

there are three times as

many black balls as
white balls

what Is the number of
white balls?

what is the probability
that a ball picked at
random is white?

PERCEPTION-BASED
version 2

e a box contains about 20
black and white balls

most are black

there are several times
as many black balls as
white balls

what is the number of
white balls

what is the probability
that a ball drawn at
random iIs white?
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COMPUTATION (version 2)

e measurement-based e perception-based

X = number of black X = number of black
balls balls

Y, number of white Y = number of white
balls balls

X=20720=14 X = most x 20*
X+Y=20 X = several *Y
X=3Y X+Y =20*

X =15 ., Y=5 P=Y/N

p =5/20 = .25
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FUZZY INTEGER PROGRAMMING

X= most x 20*

X+Y=20*

X=several x y
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PROBLEM

X, a and b are real numbers, witha <b

Find an X or X'ssuchthat X >>*aand X <<*b

*a. approximately a; *b: approximately b

Use probability theory?

Fuzzy logic solution

b (U) = Hsseg (U)r Hec wp (U)
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CONTINUED

e In PT, there are no tools for dealing with
semantics of natural languages

e \What is the meaning of: There are several
times as many small balls as large balls?

e PT Is not equipped to operate on perception-
pased information expressed in a natural

anguage

e PT has a limited capabillity to deal with world
knowledge, since much of world knowledge
IS perception-based
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KEY POINT

e A basic difference between GTU and bivalent-logic-
based theories of uncertainty relates totheroleo  f
natural languages. In GTU, the semantics of natural
languages plays a pivotal role. The underlying
reason is that GTU’s capability to operate on
perception-based information is directly dependent
on GTU’s ability to understand natural language,
since a natural language Is basically a system for
describing perceptions.

To deal with information expressed in a natural
language, GTU employs new tools drawn from fuzzy
logic. The centerpiece of these tools is the concep
of a generalized constraint. A concept which

underlies the concept of a generalized constraint i S
the concept of precisiation
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STRUCTURE OF GTU

Tools In current use New Tools

Theory of Generalized-
“ GCR Constraint-Based
Reasoning

probability theory

| PT

BL CTPM lcw | |cTUj

bivalent logic >

Generalized Constraint GC

fuzzy logic FL

PT: standard bivalent-logic-based probability theor y
CTPM : Computational Theory of Precisiation of Meani  ng
PNL: Precisiated Natural Language
CW: Computing with Words
GTU: Generalized Theory of Uncertainty
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THE CONCERY
OF PRECISIAT\QON

« The concepts of precision and imprecision
have a position of centrality in science and, more
generally, in human cognition. But what is not in
existence Is the concept of precisiation—a
concept whose fundamental importance
becomes apparent when we move from bivalent
logic to fuzzy.logic.
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WHAT IS PRECISE?

PRECISE

V-precise m-precise

precise value precise meaning

* p: X Is a Gaussian random variable with mean m and
variance ¢®. m and @ are precisely defined real
numbers

* p IS v-imprecise and m-precise

e p: XIis in the interval [a, b]. a and b are precise ly
defined real numbers

*p IS v-Imprecise and m-precise

m-precise = mathematically well-defined
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PRECISIATION AND IMPRECISIATION

v-imprecisiation

P
<

»

a X v-precisiation

m-precise

v-imprecisiation

»

<
<

> v-precisiation
: t

m-precise defuzzification

m-precise
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KEY POINTS
In PNL

precisiation = m-precisiation

a proposition, p, is p precisiated by representing | ts
meaning as a generalized constraint

precisiation of meaning does not imply precisiation
of value

“Andrea is tall” is precisiated by defining “tall” a
fuzzy set

A desideratum of precisiation is cointension

Informally, p and g are cointensive if the intension
(meaning) of p Is approximately the same as the
Intension (meaning) of g
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NEED FOR PRECISIATION

e fuzzy commands, instructions
e take a few steps
e slow down
e proceed with caution
e raise your glass

e use with adequate ventilation

e fuzzy commands and instructions cannot
be understood by a machine

e to be understood by a machine, fuzzy
commands and instructions must be
precisiated
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VALIDITY OF DEFINITION

e If Cis a concept and Def(C) is its definition, the n
Def(C) is a valid definition if it is cointensive wi th C

IMPORTANT CONCLUSION

e In general, cointensive, i.e., valid, definitions o f fuzzy
concepts cannot be formulated within the conceptual
structure of bivalent logic and bivalen-logic-based

probability theory
e This conclusion applies to such basic concepts as

® Randomness
e Causality

e Relevance

e Summary

e Independence

e Mountain
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PRECISIATION OF MEANING VS. UNDERSTANDING
OF MEANING

e Precisiation of meaning #ZUnderstanding of meaning

e | understand what you said, but can you be more
precise

Use with adequate ventilation
Unemployment is high
Most Swedes are tall
Most Swedes are much taller than most Italians
Overeating causes obesity
Causality 3
Relevance
Bear market - fuzzy concepts
Mountain
Edge

e Approximately5 -~
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PRECISIATION OF MEANING
BASIC POINT

e The meaning of a proposition, p, may be precisiated In many
different ways

\

precisiation

> Pre(p)

Pre,(p)

> precisiands of p

Pre,(p)

e Conventional; bivalent-logic-based precisiation has a limited
expressive power
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CHOICE OF PRECISIANDS
BASIC POINT

e The concept of a generalized constraint
opens the door to an unlimited enlargement
of the number of ways In which a proposition
may be precisiated

e An optimal choice is one in which achieves a
compromise between complexity and
cointension

28/121 LAZ 4/7/2005




EXAMPLE OF CONVENTIONAL DEFINITION OF
FUZZY CONCEPTS

Robert Shuster (Ned Davis Research)

We classify a bear market as a 30 percent decline
after 50 days, or a 13 percent decline after 145 da ys.

e A problem with this definition of bear market is th at
It IS not cointensive
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THE KEY IDEA

e In PNL, a proposition, p, Is precisiated by expressi
Its meaning as a generalized constraint. In this
sense, the concept of a generalized constraint
serves as a bridge from natural languages to

mathematics.
NL Mathematics

p* *p* (GC(p))

|
generalized constraint

® The concept of a generalized constraint is the
centerpiece of PNL
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PRECISIATION AND GRANULAR COMPUTING
KEY IDEA

example

precisiation
most Swedes are tall .

Count(tall. Swedes/Swedes) is most [P h(u)p,, (U)du Jgles:

n(h) =y, (2 h(u)u,, (u)du)

h: height density function

h(u)du = fraction of Swedes whose height lies in the
Interval [u, u+du]

e In granular computing, the objects of computation a re not
values of variables but constraints on values of va riables
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GENERALIZED CONSTRAINT (Zadeh 1986)

® Bivalent constraint (hard, inelastic, categorical:)

X €
& constraining bivalent relation

e Generalized constraint:

XisrR

— constraining non-bivalent (fuzzy) relation
— Iindex of modality (defines semantics)
constrained variable

<[2|0]...|blank |p|[v|u[rs]|fg|ps]|...

Went N\

primary
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CONTINUED

® constrained variable

¢ Xis an n-ary variable, X= (X ,, ..., X,)

® X'Is a proposition, e.g., Leslie is tall

® Xis a function of another variable: X=f(Y)

® X is conditioned on another variable, X/Y

® X has a structure, e.g., X= Location
(Residence(Carol))

® Xis a generalized constraint, X:YIsrR

® Xis a group variable. In this case, there is a
group, G[A]: (Name ., ..., Name,), with each
member of the group, Name ;,1=1, ..., n,
assoclated with an attribute-value, A ;. A, may be
vector-valued. Symbolically

G[A]: (Name ,/A;+...+Name /A,)

Basically, X IS a relation
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SIMPLE EXAMPLES

“Check-out time i1s 1 pm,” Is an instance of a
generalized constraint on check-out time

“Speed limit is 100km/h” Is an instance of a
generalized constraint on speed

“Vera Is a divorcee with two young children,”
IS an instance of a generalized constraint on
Vera's age

35/121 LAZ 4/7/2005




GENERALIZED CONSTRAINT—MODALITY r

equality constraint: X=R is abbreviation of X | S=R
Inequality constraint: X < R
subsethood constraint: X [0 R

possibilistic constraint; X is R; R is the possibill ity
distribution of X

veristic constraint; X isv R; R is the verity
distribution of X

rp probabilistic constraint; X isp R; R Is the
probability distribution of X

Standard constraints: bivalent possibilistic, bival ent veristic and probabilistic
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CONTINUED

r:rs random set constraint; X isrs R: R iIs the set-
valued probability distribution of X

- fg fuzzy graph constraint; X isfg R; X is a funct [o]g
and R is its fuzzy graph

r-u usuality constraint; X isu R means usually (X | S R)

g group constraint; X isg R means that R constrain S
the attribute-values of the group
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PRIMARY GENERALIZED CONSTRAINTS

Possibilistic examples:

e Monika is young —Age (Monika) is youngt
R

L

e Monika is much younger than Maria ——
(Age (Monika), Age (Maria)) is much younier
L x
e most Swedes are tall
—  2Count (tall. Swedes/Swedes) is most

L t R
X LAZ 4/7/2005

R
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EXAMPLES: PROBABILISITIC

e X Is a normally distributed random
variable with mean m and variance @& —

Xisp N(m, &)

e X Is a random variable taking the values
u,, U,, Uz with probabilities p 4, p, and p 5,
respectively ——

X isp (p 1\u;+p\u,tpsiug)
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EXAMPLES: VERISTIC

e Robert is half German, quarter French and
guarter Italian

Ethnicity (Robert) isv (0.5|German +
0.25|French + 0.25|Italian)

e Robert resided in London from 1985 to
1990

Reside (Robert, London) isv [1985,
1990]
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GENERALIZED CONSTRAINT—SEMANTICS

A generalized constraint, GC, Is associated with a
test-score function, ts(u), which associates with

each object, u, to which the constraint is

applicable, the degree to which u satisfies the
constraint. Usually, ts(u) is a point in the unit

Interval. However, if necessary, it may be an

element of a semi-ring, a lattice, or more generall v,
a partially ordered set, or a bimodal distribution.

example: possibilistic constraint, X is R
Xis R —— Poss(X=u) = U g(u)
ts(u) S HR(U)
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TEST-SCORE FUNCTION

GC(X): generalized constraint on X
X takes values in U= {u}

test-score function ts(u): degree to which u satisf les
GC

ts(u) may be defined (a) directly (extensionally)a sa
function of u; or indirectly (intensionally) as a
function of attributes of u

Intensional definition=attribute-based definition

example (a) Andrea is tall 0.9

(b) Andrea’s heightis 175cm; g ,;(175)=0.9;
Andrea is 0.9 tall

42/121 LAZ 4/7/2005




CONSTRAINT QUALIFICATION

e pisr Rmeans r-value of pisR

In particular

0 ISp R ——Prob(p) is R (probability qualification)
D Isv R —Tr(p) is R (truth (verity) qualification)
0 ISR ——Poss(p) is R (possibility qualification)

examples
(X i1s small) isp likely —Prob{X issmall}islik ely
(X is small) isv very true —Yer{Xissmall}isv erytrue
(X isu R) —Prob{X is R} is usually
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GENERALIZED CONSTRAINT LANGUAGE (GCL)

GCL Is an abstract language

GCL Is generated by combination, qualification and
propagation of generalized constraints

examples of elements of GCL

e (XIspR) and (X,Y) is S)

e (X isr R) is unlikely) and (X iss S) is likely
o If XisAthenYisB

the language of fuzzy if-then rules is a sublanguag e
of GCL

deduction= generalized constraint propagation

44/121
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PRECISIATION = TRANSLATION INTO GCL

BASIC STRUCTURE
NL GCL

precisiation

7 precisiand
of p
GC(p)

translation p*

generalized constraint

annotation
p——X/Aisr RIB +—GC-form of p

example

p: Carol lives in a small city near San Francisco
X/Location(Residence(Carol)) is RINEAR[City] [0OSMALLJ[City]
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STAGES OF PRECISIATION

perceptions

description precisiation

pere

|
|

v-imprecise v-imprecise v-imprecise
m-imprecise m-precise
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COINTENSIVE PRECISIATION

In general, precisiand of p is not unique. If GC  ,(p), ...,
GC, (p) are possible precisiands of p, then a basic
guestion which arises is: which of the possible
precisiands should be chosen to represent the
meaning of p? There are two principal criteria whic
govern the choice: (a) Simplicity and (b)

Cointension. Informally, the cointension of GC  .(p),
=1, ..., n, Is the degree to which the meaning of
GC.(p) approximates to the intended meaning of p.
More specifically, GC (p) Iis coextensive with p, or
simply coextensive, if the degree to which the
intension of GC .(p), with intension interpreted in its
usual logical sense, approximates to the intended
Intension of p.
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DIGRESSION: COINTENSION
CONCEPT

human perception of C definition of C
(C) d(C)

Intension of p(C) iIntension of d(C)

cointension: coincidence of the intended intensions of
the definiendum, ¢, and the intension of the defini ens d(C)
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EXAMPLE

e p: Speed limitis 100 km/h

POSS

r = blank (possibilistic)

l Cg-precisiation

O >

100 110  Sbeed

g-precisiation
r = blank (possibilistic)

g-precisiation
r = p (probabilistic)

speed
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CONTINUED

g-precisiation
r = bm (bimodal)

speed'

If Speed is less than *110, Prob(Ticket) is low
If Speed is between *110 and *120, Prob(Ticket) is medium
If Speed is greater than *120, Prob(Ticket) is high
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PRECISIATION

S-precisiation g-precisiation

conventional GCL-based
(degranulation) (granulation)
precisiation

]
——
t

approximately a

a recisiation :
> P ., XisrR

-V

E proposition GC_tform

Lcommon practice in probability theory

e cg-precisiation: crisp granular precisiation
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PRECISIATION OF “approximately a,” *a

S-precisiation

Cg-precisiation

g-precisiation <

52/121

A

singleton

a X

X

. possibility distribution

a X
8
_|'|—

T } -I_!_-,_ fuzzy graph
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CONTINUED

bimodal distribution
g-precisiation

GCL-based (maximal generality)

*g g-precisiation X isr R
Lw J

t
GC-form
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THEORIES OF UNCERTAINTY

e Standard, bivalent-logic-based probability theory, PT
Modality

XispP
PT is unimodal

e D-S theory
XispP
(X,Y)is Q
D-S theory Is unimodal if Q is crisp (bivalent)
D-S theory is bimodal if Q Is fuzzy
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CONTINUED

e Perception-based probability theory, PTp

XispP
Xisv Q
XIsR

PTp is trimodal

Unimodality of PT has the effect of limiting its
problem-solving capability
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THE BASICS OF PNL

e The point of departure in PNL is the key idea:
e A proposition, p, drawn from a natural language,
NL, Is precisiated by expressing its meaning as a
generalized constraint

P > 2(isrR

Lt— constraining relation

Identifier of modality (type of constraint)

__constrained (focal) variable

e In general, X, R, rare implicitin p
e precisiation of p - explicitation of X, R, r
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SIMPLE EXAMPLE

e Monika is young ——Age(Monika) Is young

L |— r (blank)

e Annotated representation
X/Age(Monika) Is R/young
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KEY POINTS

e A proposition is an answer to a question

example:
p: Monika Is young

IS an answer to the question
g: How old is Monika?

e The concept of a generalized constraint
serves as a basis for generalized-constraint-
based semantics of natural languages
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THE CONCEPT OF A PROTOFORM AND ITS BASIC
ROLE IN KNOWLEDGE REPRESENTATION,
DEDUCTION AND SEARCH

e Informally, a protoform—abbreviation of
prototypical form—is an abstracted summary.
More specifically, a protoform is a symbolic
expression which defines the deep semantic

structure of a construct such as a concept,
proposition, command, question, scenario,
case or a system of such constructs

e Example:
Monika is young ——A(B)IsC
abstraction
young C
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CONTINUED

object space

protoform space

— summary of p

object . | protoform
. summarization —s— abstraction o

P

~ S(p) A(S(p))

I

PF(p)

PF(p): abstracted summary of p
deep structure of p

« protoform equivalence

e protoform similarity
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EXAMPLES

Instantiation

' |
e Monika is young ——-Age(Monika) is young A(Bz s C
|

|

abstraction

e Monika is much younger than Robert
(Age(Monika), Age(Robert) is much.younger ——
D(A(B), A(C)) is E

e Usually Robert returns from work at about 6:15pm —
Prob{Time(Return(Robert)} is 6:15*} is usually @~ ——

Prob{A(B) is C} is D
L usually
6:15*

Return(Robert)

Time
62/121 LAZ 4/7/2005




PROTOFORMS

object space protoform space
e

-

L
PF-equivalence { \>~

class

e at a given level of abstraction and summarization,
objects p and g are PF-equivalent if PF(p)=PF(q)

example
p: Most Swedes are tall Count (A/B) i1s Q
g: Few professors are rich Count (A/B) is Q
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EXAMPLES

Alan has severe back pain. He goes to
see a doctor. The doctor tells him that
there are two options: (1) do nothing;
and (2) do surgery. In the case of
surgery, there are two possibilities: (a)
surgery is successful, in which case
Alan will be pain free; and (b) surgery is
not successful, in which case Alan will option 2
be paralyzed from the neck down. °

Question: Should Alan elect surgery? option 1

0
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BASIC STRUCTURE OF PNL
GCL

* **
precisiation P P

‘ 1 GC(p) ‘ 1 PF(p)
precisiation abstraction

(@) WKDB (b) DDB

world
knowledge
database

deduction
database

In PNL, deduction=generalized constraint propagatio n
DDB: deduction database=collection of protoformal ru les
governing generalized constraint propagation

WikbB: PNL-based LAZ 4/7/2005




MODULAR DEDUCTION DATABASE

POSSIBILITY PROBABILITY FUZZY ARITHMETIC

MODULE
MODULE agent MODULE

[

SEARCH FUZZY LOGIC EXTENSION
MODULE MODULE PRINCIPLE MODULE
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PROTOFORM-BASED DEDUCTION
NL GCL

P . precisiation summarization

op*
oq*

g . precisiation abstraction

World -
Knowledge
Module

| a

deduction module / answer
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FORMAT OF PROTOFORMAL DEDUCTION RULES

protoformal rule
symbolic part computational part
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PROTOFORM DEDUCTION RULE: GENERALIZED
MODUS PONENS
fuzzy logic
classical
XIs A

A fXisBthenYisC |- symbolic
A—B .
YisD

B

fuzzy graph:;
computational 1 D = A-(BxC) I(\/Iami;agni)p

_ Implication;
computational 2 D = A-(B=C) f:onpditional

relation)
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PROTOFORMAL RULES OF DEDUCTION

examples

Hpos (V) =max, (Ua(U)A tg(u,Vv))y

symbolic computational

part o
)= o)) A
Prob (Xis C) is D subjectto: v = fue(u)g(u)du
U

Jo(u)du =1
U
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PROTOFORM-BASED

DEDUCTION




MODULAR DEDUCTION DATABASE

POSSIBILITY PROBABILITY FUZZY ARITHMETIC

MODULE
MODULE agent MODULE

[

SEARCH FUZZY LOGIC EXTENSION
MODULE MODULE PRINCIPLE MODULE
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PRUBABILIT I MOUULE




PERCEPTION OF A FUNCTION

granule

perception

f f* -
If X is small then Y is small
] ‘ If X'is medium then Y is large
0 . if X is large then Y is small
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BIMODAL DISTRIBUTION
(PERCEPTION-BASED PROBABILITY
DISTRIBUTION)

a4

P(X) = Pi)\A1 + Pip)\A, + Pig)\A,
Prob {Xis A ;} IsP;

P(X)=low\small + high\medium + low\large
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CONTINUED

e function: if X Is small then Y is large +...
(X 'Is small, Y is large)

e probability distribution: low \ small + low \ medium
high \ large +...

e Count)\ attribute value distribution: 5* \ small + 8*

large +...

PRINCIPAL RATIONALES FOR F-GRANULATION

detail not known
detail not needed
detail not wanted
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BIMODAL PROBABILITY
~ DISTRIBUTIONS (LAZ 1981)

possibility\probability obability\\possibi lity

L [20

As P=P\\A +I[[[+P \\A

P =P VA +I[+P A LAZ 4/7/2005




BIMODAL PROBABILITY DISTRIBUTION

X: a random variable taking values in U

g: probability density function of X

| g -7

Prob{X isA. }isP

Prob{XisA}=/, u, (u)g(u)du
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CONTINUED

P* defines a possibility distribution of g

71(9) = 14, (I 14, (U)g(u)du) CIILT 2, ([, 4, (u)g(u)du)

problems
a) what is the probabillity of a perception-based ev  ent A
inu
b) what'is the perception-based expected value of X
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PROBABILITY OF A PERCEPTION-BASED EVENT

problem: roning 7T

Prob{X isA} =], u,(u)g(u)du= f(g)

Extension Principle

m,(v)=sup,n,(g)

subject to: v="f(g)
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CONTINUED

£u(V) =sup, (14 (J, 4, (U)g(u)dU)
1 (I 14, (U)g(u)du))

subject to

v =1, t,(u)g(u)du
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EXPECTED VALUE OF A BIMODAL PD

E(P*) =], ug(u)du = f(g)

Extension Principle

Mo (V) =sUp (1, (J, Ky, (U)g(u)du) CII

Ode (Jy M, (u)g(u)du))

WSSy = | ug (u)du
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PERCEPTION-BASED DECISION ANALYSIS

ranking of f-granular probability distributions

Pa

oL - x

maximization of expected utility ——anking of fuzzy nu mbers
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USUALITY CONSTRAINT PROPAGATION RULE

X: random variable taking values in U
g: probability density of X

Xisu A
Prob {XisB}is C

> Prob {X is A} is usually
TI( g ) = uusually(-[u HA( u )g( u )du )

M (V) = SUP, (Kygua, (Jy M (U)g(u)dU))
subject to:

v =], t(u)g(u)du
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PROBABILITY MODULE

X: real-valued random variable
g: probability density function of X
A, ..., A,, Al perception-based events in U

P, ..., P,, P: perception-based probabilities in U

Prob {Xis A 1} is P,

Prob {X'is A }Is Py,
Prob {Xi1s A} iIs P
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CONTINUED

M, (V)= sup, (K () g(u)u, (u)du) CLIE

Cp, (Jy o(u)u, (u)du)

subject to:

v=[, g(u)u,(u)d
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PROBABILITY MODULE (CONTINUED)

Prob {Xis A}isP
Prob {f(X) is B} is Q

87/121 LAZ 4/7/2005




INTERPOLATION OF BIMODAL DISTRIBUTIONS
P4

/- g(u): probability density of X

P

A, A, A
p;1s P, : granular value ofp ;,1=1, ..., n
(P,,A),i=1, ...,n are given
A Is given
(7P, A)
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INTERPOLATION MODULE AND PROBABILITY
MODULE

Prob {Xis A ;}Is P,
Prob {Xi1s A} is Q

Mo (V) = sup, (M, (J 1, (u)g(u)du) DI

He, TR, (Ju, (u)g(u)du))

subject to

U =, (u)g(u)du
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USUALILY SUBMUDULE




CONJUNCTION

edetermination of r involves interpolation of a bimo
distribution
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USUALITY CONSTRAINT

X is A XIsu A

Xis A @B X1iSp P_
(ARIB) ispv Q

g: probability density function of X
74g): possibility distribution function of g

N(@) = SUP , (Hysay (| 9K, (W)AU) T, (9 (UM, (U)dU))

subject to: !g (u)du =1

Ko (V) =sup  (T(9))
subject to: = LIJQ(U)(HA(U) C g (u))du
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USUALITY — QUALIFIED RULES

Xisu A
X isun (not A)

Xisu A
Y =f(X)
Y isu f(A)

H (A) (V) = Supu|v=f (u)(:uA(u))
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USUALITY — QUALIFIED RULES

XIsu A
Y isuB
Z = 1(X,Y)

Z isu (A, B)

Hz (W) = SUPy =t (uv) (Ha(U) T H (V)
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EAIENSION PRINGIPLE MULULE




PRINCIPAL COMPUTATIONAL RULE IS
THE EXTENSION PRINCIPLE (EP)

point of departure: function evaluation

HE)
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EXTENSION PRINCIPLE HIERARCHY

EP(0,0)

function > argument
EP(L,0) \ EP(0.1) EP(0,1b)
/ / Extension Principle

EP(2,0) EP(1,1b) EP(1,1) EP(0,2)

Dempster-Shafer

Mamdani (fuzzy graph)
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VERSION EP(0,1)  (1965; 1975)

M

f(a)

My (V) =sup (4, (u))
SUbjeCt {0
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VERSION EP(1,1) (COMPOSITIONAL RULE OF
INFERENCE) (1965)

o F

1, (V) = Sup , (4, (U)A 4 (U,V)
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EXTENSION PRINCIPLE EP(2,0) (Mamdani)

Y
t fuzzy graph (f*)

-
{ (. * 5.
i

i |

i |

a %
(if XisA, thenYisB )

Y=3"A(a)AB
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VERSION EP(2,1)

f* (granulated f)

v

ﬂ
s

(X, Y)IsR
YIs 2 m, [/B,

m, = sup, (Ma(u) LU, (u)): matching coefficient
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VERSION EP(1,1b) (DEMPSTER-SHAFER)

Xisp (p,\u; +... +p,\u,)

(X,Y) is R

Y isp (p ,\R(u,) + ... + p,\R(u,))

Y'is a fuzzy-set-valued random variable

“R(ui) (V) - HR (ui’ V)
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VERSION GEP(0,0)

f(X) is A
g(X) is g(f *(A))

Moo, (V)= sup, (4,(FU)))

g(f ~(A))

subject to
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GENERALIZED EXTENSION PRINCIPLE

f(X) Is A
g(Y)is B
Z=h(X,Y)

Zis h (f*(A), g (B))

Ho(W) =sup,,, (Ma(f(u)) T pg(g(u)))

subject to

w =h(u,v)
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U-QUALIFIED EXTENSION PRINCIPLE

8|

If XIS A,
X isu A
Yisu 2, m,;/B,

m = sup , (Ma(u) L1, (u)). matching coefficient
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PNL-BASED DEFINITION OF STATISTICAL
INDEPENDENCE

contingency table

e e—— — —]

X(SIS),| |

T (MIL)= Sy

* degree of iIndependence of Y from X=
degree to which columns 1, 2, 3 are identical

|—’ PNL-based definition
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WHAT IS A RANDOM SAMPLE?

In most cases, a sample is drawn from a
population which is a fuzzy set, e.g., middle class
young women, adults

In the case of polls, fuzziness of the population
which is polled may reflect the degree
applicablility of the question to the person who is

polled
e example (Atlanta Constitution 5-29-95)
Is O.J. Simpson guilty?
Random sample of 1004 adults polled by phone.
61% said “yes.” Margin of error is 3%
e to what degree is this question applicable to a
person who is n years old?
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EXAMPLE OF DEDUCTION

P: Most Swedes are much taller than most Italians

g: What is the difference in the average height of Swedes
and ltalians?

PNL-based solution

Step 1. precisiation: translation of p into GCL

S={S,, ..., S} population of Swedes
| ={l,, ..., |.}:population of Italians
g; = height of S | ,9=(91, -, 9y)
h, = height of | ; ,h=(h, ..., h)
Hi = Hmuch.tatier (@i.15)= degree to which S ; is much taller than |

j
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CONTINUED

# = Relative 2Count of Italians in relation to whom
S; Is much taller

. = Hmost () = degree to which S ; is much taller than

most Italians
1

a8 = Relative 2Count of Swedes who are
i much taller than most Italians

t5(g, h) = 1 oot (V)

P ——generalized constraint on S and |

109/121 LAZ 4/7/2005




CONTINUED

Step 2. Deduction via extension principle

i (d)=sup,,ts(g,h)

subject to
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DEDUCTION PRINCIPLE

Point of departure: question, g
Data: D = (X,/uy, ..., X,/u,)

u; Is a generic value of X .

Ans(q): answer to g

If we knew the values of the X ,, u,, ..., u,, we could express
Ans(q) as a function of the u

Ans(g)=g(u 4, ...,u,) u=(u, ..., u,)

Ourinformation about theu , I(u,, ..., U,) is a generalized
constraint on the u ;. The constraint is defined by its test-score
function

flu)=f(u ., ..., u,)
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CONTINUED

e Use the extension principle

s () (V) = SUP, (tS(U))

subject to
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SUMMATION

e A basic difference between GTU and bivalent-logic-
based theories of uncertainty relates totheroleo  f
natural languages. In GTU, the semantics of natural
languages plays a pivotal role. The underlying
reason is that GTU’s capability to operate on
perception-based information is directly dependent
on GTU’s ability to understand natural language,
since a natural language Is basically a system for
describing perceptions.

Another basic difference relates to the conceptual
framework of GTU. In GTU, the basic concepts, e.g.,
the concepts of independence are defined, for the
most part, through the use of PNL. As a
consequence, most of the basic concepts in GTU are
context-dependent. All existing theories of
uncertainty. may be viewed as specializations of
GTU.
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January 26, 2005

Factual Information About the Impact of Fuzzy
Logic

PATENTS

® Number of fuzzy-logic-related patents applied for i
Japan: 17,740

® Number of fuzzy-logic-related patents issued in
Japan: 4,801

® Number of fuzzy-logic-related patents issued in the
US: around 1,700
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PUBLICATIONS

Count of papers containing the word “fuzzy” in title , as cited in INSPEC
and MATH.SCI.NET databases.

Compiled by Camille Wanat, Head, Engineering Librar y, UC Berkeley,
December 22, 2004

Number of papers in INSPEC and MathSciNet which have  "fuzzy" in their
titles:

INSPEC - "fuzzy" in the title
1970-1979: 569
1980-1989: 2,404
1990-1999: 23,207
2000-present: 14,172
Total: 40,352

MathSciNet - "fuzzy" in the title
1970-1979: 443

1980-1989: 2,465
1990-1999: 5,483
2000-present: 3,960
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JOURNALS (“fuzzy” or “soft computing” in title)

Fuzzy Sets and Systems

IEEE Transactions on Fuzzy Systems
Fuzzy Optimization and Decision Making
Journal of Intelligent & Fuzzy Systems
Fuzzy Economic Review

International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems

Journal of Japan Society for Fuzzy Theory and Syste  ms
International Journal of Fuzzy Systems
Soft Computing

International Journal of Approximate Reasoning--Sof
Computing in Recognition and Search

Intelligent Automation and Soft Computing
12.  Journal of Multiple-Valued Logic and Soft Computing
13. Mathware and Soft Computing
14. Biomedical Soft Computing and Human Sciences
15.  Applied Softi:Computing
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APPLICATIONS

The range of application-areas of fuzzy logicisto o wide for exhaustive
listing. Following is a partial list of existing ap plication-areas in which there

IS a record of substantial activity.

Industrial control 19. Financial engineering
Quality control 20. Assessment of credit-worthiness
Elevator control and scheduling 21. Fraud detection
Train control 22. Mine detection
Traffic control 23. Pattern classification
Loading crane control 24. Qil exploration
Reactor control 25. Geology
Automobile transmissions 26. Civil Engineering
Automobile climate control 27. Chemistry
. Automobile body painting control 28. Mathematics
. Automobile engine control 29. Medicine
. Paper manufacturing 30. Biomedical instrumentation
. Steel manufacturing 31. Health-care products
. Power-distribution control 32. Economics
. Software engineerinf 33. Social Sciences
. Expert systems 34. Internet
. Operation research 35. Library and Information Science

18. Decision analysis
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Product Information Addendum 1

This addendum relates to information about products which employ fuzzy logic singly or
In combination. The information which is presented came from SIEMENS and
OMRON. It is fragmentary and far from complete. Suc  h addenda will be sent to the
Group from time to time.

SIEMENS:

* washing machines, 2 million units sold

* fuzzy guidance for navigation systems (Opel, Pors  che)

* OCS: Occupant Classification System (to determine  , if a place in a car is
occupied by

a person or something else; to control the airbag a s well as the intensity of the
airbag). Here FL is used in the product as well as  in the design process
(optimization of parameters).
* fuzzy automobile transmission (Porsche, Peugeot, Hyundai)

OMRON:

* fuzzy logic blood pressure meter, 7.4 million uni  ts sold, approximate retail value
$740 million dollars

Note: If you have any information about products an d or manufacturing which may be of
relevance please.cammunicate it to Dr. Vesa Niskanen vesa.a.niskanen@helsinki.fi
and Masoud Nikravesh Nikravesh@cs.berkeley.edu
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Product Information Addendum 2

This addendum relates to information about products which employ fuzzy logic singly or
in combination. The information which is presented came from Professor Hideyuki Takagi,
Kyushu University, Fukuoka, Japan. Professor Takagi Is the co-inventor of neurofuzzy
systems. Such addenda will be sent to the Group fro m time to time.

Facts on FL-based systems in Japan (as of 2/06/2004 )
1. Sony's FL camcorders

Total amount of camcorder production of all compani es in 1995-1998 times Sony's market
share is the following. Fuzzy logic is used in all Sony's camcorders at least in these four

years, i.e. total production of Sony's FL-based cam  corders is 2.4 millions products in
these four years.

1,228K units X 49% in 1995
1,315K units X 52% in 1996
1,381K units X 50% in 1997
1,416K units X 51% in 1998

2. FL control at Idemitsu oil factories

Fuzzy logic control is running at more than 10 plac es at 4 oil factories of Idemitsu Kosan

Co. Ltd including not only pure FL control but also the combination of FL and conventional
ole]plifo]}

They estimate that the effect of their FL controli s more than 200 million YEN per year and
it saves more than 4,000 hours per year.
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3. Canon

Canon used (uses) FL in their cameras, camcorders, copy machine, and
stepper alignment equipment for semiconductor produ ction. But, they have
a rule not to announce their production and sales d ata to public.

Canon holds 31 and 31 established FL patentsinJap an and US,
respectively.

4. Minolta cameras

Minolta has a rule not to announce their production and sales data to
public, too.

whose name in US market was Maxxum 7xi. It used six F L systemsin a
camera and was put on the market in 1991 with 98,00 0 YEN (body price
without lenses). It was produced 30,000 per monthi  n 1991. Its sister
cameras, alpha-9xi, alpha-5xi, and their successors used FL systems, too.
But, total number of production is confidential.
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5. FL plant controllers of Yamatake Corporation

Yamatake-Honeywell (Yamatake's former name) put FUZ  ZICS, fuzzy
software package for plant operation, on the market in 1992. It has
been used at the plants of oil, oil chemical, chemi  cal, pulp, and other
industries where it is hard for conventional PID co ntrollers to
describe the plan process for these more than 10 ye  ars.

They planed to sell the FUZZICS 20 - 30 per year and total 200 million
YEN.

As this software runs on Yamatake's own control sys tems, the
software package itself is not expensive comparativ e to the hardware
control systems.

6. Others

Names of 225 FL systems and products picked up from news articles
in 1987 - 1996 are listed at
http://www.adwin.com/elec/fuzzy/note 10.html in Japanese.)

Note: If you have any information about products an d or manufacturing
which may be of relevance please communicate it to Dr. Vesa
Niskanen vesa.a.niskanen@helsinki.fi _ and Masoud Nikravesh
Nikravesh@cs.berkeley.edu , with cc to me.
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