Solutions for Assignment #8

Assignment Information

Maximum grade 20

Due date	November 11, 2004
Instructions	Textbook, pages 129, 130, 145, 146, 164 Problems: 4.1.1 d), e) and f) 4.1.2 b), c) and d) 4.2.1 b) and d) 4.2.5 d) 4.4.2
	1.1.2

4.1.1 d)

We assume that L is regular language. $\exists w \in L$, let t be the constant stated in pumping lemma. Consider $w = 0^t 1^s 2^t \in L$, |w| = 2t + s >= t

By the pumping lemma, we can break w = xyz, such that $y != \epsilon$, |xy| <= t and |y| >= 1. Since |xy| <=t, y consists of only 0's, we have

$$\begin{split} x &= 0^{|x|} \\ y &= 0^{|y|} \\ z &= 0^{t\text{-}|xy|} 1^s 2^t \end{split}$$

Let k = 0

 $xy^{k}z = xy^{0}z = xz = 0^{|x|}0^{t-|xy|}1^{s}2^{t} = 0^{t-|y|}1^{s}2^{t}$

Since $|y| \ge 1$, t-|y| < t and t-|y| != t, xz is not in L. Therefore, L is not regular language.

4.1.1 e)

We assume that L is regular language. $\exists w \in L$, let t be the constant stated in pumping lemma. Consider $w=0^t1^s \in L$, |w| = t + s >= t

By the pumping lemma, we can break w = xyz, such that $y != \epsilon$, $|xy| \ll t$ and |y| >= 1. Since $|xy| \ll t$, y consists of only 0's, we have

$$x = 0^{|x|}$$
$$y = 0^{|y|}$$

$$z = 0^{t - |xy|} 1^s$$

Let
$$k = s + 1$$

 $xy^{k}z = xy^{(s+1)}z = xz = 0^{|x|}0^{(s+1)|y|}0^{t-|xy|}1^{s} = 0^{(t+s)}1^{s}$

Since t>=1 and t+s>s, $xy^{(s+1)}z$ is not in L. Therefore, L is not regular language.

4.1.1 f)

We assume that L is regular language. $\exists w \in L$, let t be the constant stated in pumping lemma. Consider $w=0^t 1^{2t} \in L$, |w| = 3t >= t

By the pumping lemma, we can break w = xyz, such that $y != \epsilon$, |xy| <= t and |y| >= 1. Since |xy| <=t, y consists of only 0's, we have

$$\begin{split} x &= 0^{|x|} \\ y &= 0^{|y|} \\ z &= 0^{t \cdot |xy|} 1^{2t} \end{split}$$

Let k=0 $xy^{k}z=xy^{0}z=xz=0^{|x|}0^{t-|xy|}1^{2t} \ =0^{t-|y|}1^{2t}$

Since $|y| \ge 1$, t-|y| < t and 2(t-|y|) < 2t, xz is not in L. Therefore, L is not regular language.

4.1.2 b)

We assume that L is regular language. Let $w=0^n^3$ is in L. $\exists w \in L$, let n be the constant stated in pumping lemma. By the pumping lemma, we can break w = xyz, such that $y != \epsilon$, $|xy| \le n$ and $|y| \ge 1$.

Since $|xy| \ll n$, y consists of between 1 and n 0's.

Let k=2, w=xyyz has length between n^3+1 and n^3+n . Since the next perfect square after n^3 is $(n+1)^3$. Thus, the length of xyyz cannot be a perfect square.

$$(n^3) < (n^3+1) <= |xyyz| <= (n^3+n) < n^3+3n^2+3n+1 = (n+1)^3$$

But if the language were regular, then xyyz would be in the language, which contradicts the assumption that the language of strings of 0's whose length is a perfect cube is a regular language. Therefore, L is not regular language.

4.1.2 c)

We assume that L is regular language. Let $w=0^2^k$ is in L. $\exists w \in L$, let n be the constant stated in pumping lemma. By the pumping lemma, we can break w = xyz, such that $y != \epsilon$, $|xy| \le n$ and $|y| \ge 1$. Since $|xy| \le n$, y consists of between 1 and n 0's.

Let $k = \lceil lg(n+1) \rceil$ and $w = 0^2 k$, then $n = 2^k - 1 < 2^k$

Consider xyyz whose length is

$$\begin{split} |xyyz| &= |xyz| + |y| = 2^{k} + |y| \\ 2^{k} + 1 < &= |xyyz| < = 2^{k} + n < 2^{k} + 2^{k} \\ 2^{k} < &= |xyyz| < = 2^{k+1} \end{split}$$

The length of xyyz is not a power of two, which contradicts the assumption that the language of strings of 0's whose length is a power of 2 is a regular language. Therefore, L is not regular language.

4.1.2 d)

We assume that L is regular language. Let $w=(0+1)^{n}$ is in L. $\exists w \in L$, let n be the constant stated in pumping lemma. By the pumping lemma, we can break w = xyz such that $y!=\epsilon$, $|xy| \le n$, and $|y| \ge 1$. Since $|xy| \le n$, |y| is between 1 and n. Consider k=2,

$$|xy^{k}z| = |xy^{2}z| = |xyz| + |y| = |w| + |y| = n^{2} + |y|$$

so we have

$$n^{2} < n^{2} + 1 <= |xy^{k}z| <= n^{2} + n < n^{2} + 2n + 1 = (n+1)^{2}$$

Thus,

The length of $|xy^k z|$ is not a perfect square because n^2 and $(n+1)^2$ are consecutive perfect squares, so there is no perfect square number between them. Therefore, $xy^k z$ is not in this language L. L is not regular language.

4.2.1 b)

→ baababbaa

4.2.1 d)

 \rightarrow a + abba

From (a),
$$\frac{d(R+S)}{da} = \frac{dR}{da} + \frac{dS}{da}$$

From (b), if $\varepsilon \notin L(R)$, $\frac{d(RS)}{da} = \left(\frac{dR}{da}\right)S$,
if $\varepsilon \in L(R)$, $\frac{d(RS)}{da} = \left(\frac{dR}{da}\right)S + \frac{dS}{da}$
From (c), $\frac{dR^*}{da} = \frac{d(\{\varepsilon\})}{da} + \frac{dR}{da} + \frac{d(RR)}{da} + \frac{d(RR^2)}{da} + \frac{d(RR^3)}{da} + \dots$

$$da \quad da \quad da \quad da \quad da \quad da \quad da$$
$$= \{ \} + \frac{dR}{da} + \frac{dR}{da}R + \frac{dR}{da}R^2 + \frac{dR}{da}R^3 + \dots$$
$$= \frac{dR}{da}(\{ \} + R + R^2 + R^3 + \dots)$$
$$= \frac{dR}{da} \cdot R^*$$

Consider T=(0+1)*011=R*S, where R=0+1, S=011. Using rules from (a) to (c), we can obtain,

$$\frac{dT}{da} = \frac{d(R*S)}{da} = \frac{dS}{da} + \frac{d(R*)}{da}S = \frac{dS}{da} + \frac{dR}{da}R*S$$

There are two cases: a=0 and a=1.

If a=0,

$$\frac{dS}{da} = \{11\}, \frac{dR}{da} = \{\varepsilon\}. \text{ So, } \frac{dT}{da} = 11 + \varepsilon(0+1) * 011 = 11 + (0+1) * 011$$

If a=1, $\frac{dS}{da} = \{\}, \frac{dR}{da} = \{\varepsilon\}$. So, $\frac{dT}{da} = \{\} + \varepsilon(0+1) * 011 = (0+1) * 011$

4.2.5 d)

Therefore,
$$\frac{d[(0+1)*011]}{da} = \frac{dT}{da} = \begin{cases} 11+(0+1)*011, & \text{if a}=0\\ (0+1)*011, & \text{if a}=1 \end{cases}$$

4.4.2 a)

р	Х	l I						
B	Λ		1					
С	Х	Х		_				
D		Х	Х		_			
E	Х		Х	Х				
F	Х	Х		Χ	Χ			
G		Х	Х		Χ	Х		
Η	Х		X	Χ		Х	Х	
Ι	Х	Х		X	X		Х	Χ
	Α	B	С	D	Ε	F	G	Η

* X indicates pairs of distinguishable states, and the blank squares indicate those pairs that have been found equivalent.

b) the minimum-state equivalent DFA.

	0	1		
→{A,D,G}	$\{B,E,H\}$	$\{B,E,H\}$		
{B,E,H}	{C,F,I}	{C,F,I}		
*{C,F,I}	{A,D,G}	{B,E,H}		