
High Performance Solver for 3D Elasticity

Problems

Ivan Lirkov1, Yavor Vutov1, Marcin Paprzycki2, and Maria Ganzha3

1 Institute for Parallel Processing, Bulgarian Academy of Sciences,
Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria,
ivan@parallel.bas.bg yavor@parallel.bas.bg

http://parallel.bas.bg/˜ivan/ http://parallel.bas.bg/˜yavor/
2 Institute of Computer Science, Warsaw School of Social Psychology, ul.

Chodakowska 19/31, 03–815 Warszawa, Poland,
marcin.paprzycki@swps.edu.pl http://mpaprzycki.swps.edu.pl

3 Systems Research Institute, Polish Academy of Science,
ul. Newelska 6, 01-447 Warszawa, Poland

maria.ganzha@ibspan.waw.pl http://ganzha.euh-e.edu.pl

Abstract. In this paper we consider numerical solution of 3D linear
elasticity equations described by a coupled system of second order ellip-
tic partial differential equations. This system is discretized by trilinear
parallelepipedal finite elements. Preconditioned Conjugate Gradient it-
erative method is used for solving large-scale linear algebraic systems
arising after the Finite Element Method (FEM) discretization of the
problem. The displacement decomposition technique is applied at the
first step to construct a preconditioner using the decoupled block di-
agonal part of the original matrix. Then circulant block factorization is
used to precondition thus obtained block diagonal matrix. Since both pre-
conditioning techniques, displacement decomposition and circulant block
factorization, are highly parallelizable, a portable parallel FEM code uti-
lizing MPI for communication is implemented. Results of numerical tests
performed on a number of modern parallel computers using real life en-
gineering problems from the geosciences (geomechanics in particular) are
reported and discussed.

1 Introduction

Our work concerns development and implementation of efficient parallel algo-
rithms for solving elasticity problems arising in geosciences. Typical application
problems include simulations of foundations of engineering constructions (which
transfer and distribute the total loading into the bed of soil) and multilayer media
with strongly varying material characteristics. Here, the spatial framework of the
construction produces a complex stressed-strained state in the active interaction
zones. The modern design of cost-efficient construction with a sufficient guaran-
teed reliability requires determining parameters of this stressed-strained state.

These engineering problems are described mathematically by a system of
three-dimensional nonlinear partial differential equations. A finite element (or

2 Ivan Lirkov, Yavor Vutov, Marcin Paprzycki, and Maria Ganzha

finite difference) discretization reduces the partial differential equation problem
to a system of linear/nonlinear equations Kx = f , where the stiffness matrix K
is large, sparse and symmetric positive definite. The Conjugate Gradient (CG)
type methods are recognized as the most cost-effective way to solve problems
of this type [1]. To accelerate the iteration convergence a preconditioner M is
combined with the CG algorithm. To make a reliable prediction of the construc-
tion safety, which is sensitive to soil deformations, a very accurate model and a
large system of sparse linear equations is required. In the real-life applications,
such system can be very large, containing up to several millions of unknowns.
Hence, these problems have to be solved by robust and efficient parallel iterative
methods on powerful multiprocessor computers.

Note that the numerical solution of linear systems is a fundamental opera-
tion in solving elasticity problems. Specifically, solving these linear systems is
usually very time-consuming (requiring up to 90% of the total solution time).
Hence, developing fast algorithms for solving linear equations is essential. Fur-
thermore, such algorithms can significantly speed up the simulation processes
of real application problems. Due to the size of the system, an efficient itera-
tive solver should not only have a fast convergence rate but also high parallel
efficiency. Moreover, the resulting program has to be efficiently implementable
on modern shared-memory, distributed memory, and shared-distributed memory
parallel computers.

2 Elasticity Problems

For simplicity, in this work we focus our attention on 3D linear elasticity prob-
lems following two basic assumptions: (1) displacements are small, and (2) ma-
terial properties are isotropic. A precise mathematical formulation of the consid-
ered problem is described in [5]; the 3D elasticity problem in the stressed-strained
state can be described by a coupled system of three differential equations. Ap-
plying linearization, the nonlinear equations can be transformed into a system of
three linear differential equations, which is often referred to as Lamé equations.

We restrict our considerations to the case when the computational domain
Ω is a rectangular parallelogram Ω = [0, xmax

1
]× [0, xmax

2
]× [0, xmax

3
], where the

boundary conditions on each wall of Ω are of fixed type.
Benchmark problems from [4] are used in numerical tests reported here.

The engineering problems are as follows: a) single pile in a homogeneous sandy
clay soil (see Fig. 1(a)) and b) two piles in an inhomogeneous sandy clay soil
(Fig. 1(b)). In the solution process, uniform grid is used with n1, n2 and n3 grid
points along the coordinate directions.

3 Displacement Decomposition Circulant Block

Factorization Preconditioner

There exists a substantial body of work dealing with preconditioning of itera-
tive solution methods for elasticity systems discretized using the Finite Element

High Performance Solver for 3D Elasticity Problems 3

?-

Lp

Hact

D

V
H

(a) Problem 1; Cross section of
the computational domain Ω.
Esoil = 10MPa, νsoil = 0.3,
Epile = 31500MPa, νpile = 0.2

?- ?-

L1

L2

L3

L4

Lp

Hact

D D

V1

H1

V2

H2

(b) Problem 2; Cross section of
the computational domain Ω.
EL1

= 5.2MPa, νL1
= 0.4,

EL2
= 9.4MPa, νL2

= 0.35,
EL3

= 14.0MPa, νL3
= 0.25,

EL4
= 21.4MPa, νL4

= 0.2.

Fig. 1. Benchmark problems

Method. For instance, in [2] Axelsson and Gustafson construct their precondi-
tioners based on the point-ILU (Incomplete LU) factorization of the displacement
decoupled block-diagonal part of the original matrix. This approach is known as
displacement decomposition (see, e.g., [3]). In [6] circulant block-factorization is
used for preconditioning of the obtained block-diagonal matrix and a displace-
ment decomposition circulant block factorization preconditioner is constructed.
The estimate of the condition number of the proposed preconditioner shows that
DD CBF solver is asymptotically as fast as preconditioners based on the point-
ILU factorization [5, 6]. Moreover DD CBF solver has a good parallel efficiency
(see, e.g., [5, 6]).

4 Benchmarking Performance

To solve the above described problems, a portable parallel FEM code was de-
signed and implemented in C, while the parallelization has been facilitated using
the MPI library [7, 8]. The parallel code has been tested on cluster computers
located in the National Energy Research Scientific Computing Center (NERSC),
Oklahoma Supercomputing Center (OSCER), and in Bologna, Italy (CINECA).
In our experiments, times have been collected using the MPI provided timer
and report the best results from multiple runs. We report the elapsed time Tp

in seconds on p processors, the speed-up Sp = T1/Tp, and the parallel efficiency
Ep = Sp/p. For the benchmark problems described in Section 2, we used dis-
cretization with n1 = n2 = n3 = n where n = 32, 48, 64, and 96, while sizes of
discrete problems were 3n3.

4 Ivan Lirkov, Yavor Vutov, Marcin Paprzycki, and Maria Ganzha

Table 1. Experimental results on Jacquard.

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 12.5 50.4 64 812.9 1277.8
2 6.6 1.90 0.950 25.7 1.96 0.981 416.8 1.95 0.975 675.2 1.89 0.946
4 3.5 3.55 0.886 14.3 3.53 0.883 217.2 3.74 0.936 351.3 3.64 0.909
8 1.8 6.81 0.852 7.4 6.78 0.848 111.7 7.28 0.910 185.1 6.90 0.863
16 1.2 10.64 0.665 4.7 10.82 0.676 56.4 14.42 0.901 92.7 13.79 0.862
32 0.8 15.93 0.498 3.1 16.28 0.509 35.2 23.11 0.722 57.7 22.16 0.692
64 25.4 32.01 0.500 43.1 29.68 0.464

1 48 326.5 608.7 96 5259.8 8702.3
2 165.9 1.97 0.984 303.1 2.01 1.004 2704.7 1.94 0.972 4503.9 1.93 0.966
3 115.1 2.84 0.946 212.2 2.87 0.956 1833.1 2.87 0.956 3083.6 2.82 0.941
4 87.0 3.75 0.939 158.3 3.85 0.961 1388.3 3.79 0.947 2331.9 3.73 0.933
6 59.3 5.51 0.918 107.9 5.64 0.940 952.7 5.52 0.920 1588.3 5.48 0.913
8 44.2 7.39 0.924 80.5 7.56 0.945 714.8 7.36 0.920 1188.9 7.32 0.915
12 30.1 10.85 0.904 54.9 11.09 0.924 480.3 10.95 0.913 796.3 10.93 0.911
16 25.9 12.62 0.789 47.0 12.96 0.810 358.1 14.69 0.918 590.5 14.74 0.921
24 17.7 18.47 0.769 32.1 18.94 0.789 240.1 21.91 0.913 399.9 21.76 0.907
32 182.8 28.77 0.899 299.8 29.03 0.907
48 12.5 26.21 0.546 23.6 25.80 0.537 177.2 29.69 0.618 293.0 29.70 0.619
96 140.0 37.58 0.391 231.5 37.58 0.392

In Table 1 we present results of experiments performed on Jacquard (see
http://www.nersc.gov/nusers/resources/jacquard/). It is a 712-CPU (356 dual-
processor nodes) Opteron Linux cluster. Each processor runs at 2.2 GHz, and has
a theoretical peak performance of 4.4 GFlop/s. Processors on each node share
6 GB of memory. The nodes are interconnected with a high-speed InfiniBand
network. Shared file storage is provided by a GPFS file system. We have used
the ACML Optimized Math Library and compiled the code using “mpicc -Ofast
$ACML” command. The “-Ofast” option is a generic option leading to vendor
suggested aggressive optimization.

As expected, parallel efficiency improves with the size of the discrete prob-
lems. For the largest problems in this set of experiments (n = 96), parallel
efficiency is above 90% on up to 32 processors which confirms our general ex-
pectations that the proposed approach parallelizes very well.

Table 2 shows execution time on Topdawg. It is Dell Pentium4 Xeon64 Linux
cluster (see http://www.oscer.ou.edu/resources.php). It has 512 dual-processor
nodes. Each processor runs at 3.2 GHz and has a theoretical peak performance
of 6,4 GFlop/s. Processors within each node share 4 GB of memory, while nodes
are interconnected with a high-speed InfiniBand network. We have used Intel C
compiler and compiled the code with the following options: “-O3 -parallel -ipo
-tpp7 -xP” (collection of options for aggressive optimization suggested by Henry
Neeman of OSCER).

The execution time on Topdawg is substantially smaller than that on Jac-
quard (in computations that are primarily floating point arithmetic, Xeon64

High Performance Solver for 3D Elasticity Problems 5

Table 2. Experimental results on Topdawg.

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 10.0 38.0 64 536.0 852.0
2 6.0 1.67 0.83 22.0 1.73 0.86 359.0 1.49 0.75 592.0 1.44 0.72
4 3.1 3.23 0.81 11.0 3.45 0.86 180.0 2.98 0.74 293.0 2.91 0.73
8 1.8 5.56 0.69 6.3 6.03 0.75 82.0 6.54 0.82 236.0 3.61 0.45
16 1.2 8.47 0.53 3.9 9.84 0.62 44.0 12.18 0.76 71.0 12.00 0.75
32 1.1 9.09 0.28 3.5 10.86 0.34 24.0 22.33 0.70 39.0 21.85 0.68
64 18.0 29.78 0.47 29.0 29.38 0.46

1 48 244.0 444.0 96 4074.0 6766.0
2 146.0 1.67 0.84 267.0 1.66 0.83 2353.0 1.73 0.87 3817.0 1.77 0.89
3 96.0 2.54 0.85 177.0 2.51 0.84 1538.0 2.65 0.88 2557.0 2.65 0.88
4 71.0 3.44 0.86 131.0 3.39 0.85 1207.0 3.38 0.84 1996.0 3.39 0.85
6 46.0 5.30 0.88 84.0 5.29 0.88 805.0 5.06 0.84 1344.0 5.03 0.84
8 34.0 7.18 0.90 62.0 7.16 0.90 602.0 6.77 0.85 999.0 6.77 0.85
12 24.0 10.17 0.85 41.0 10.83 0.90 406.0 10.03 0.84 675.0 10.02 0.84
16 19.0 12.84 0.80 34.0 13.06 0.82 307.0 13.27 0.83 509.0 13.29 0.83
24 13.0 18.77 0.78 24.0 18.50 0.77 207.0 19.68 0.82 343.0 19.73 0.82
32 158.0 25.78 0.81 262.0 25.82 0.81
48 9.7 25.15 0.52 18.0 24.67 0.51 115.0 35.43 0.74 190.0 35.61 0.74
96 70.0 58.20 0.61 115.0 58.83 0.61

processors running at 3.2 GHz are more efficient than Opteron processors at 2.2
GHz; which can be also seen comparing their theoretical peak performance). The
communication time on both clusters is approximately the same (they both use
InfiniBan network) and this is one of the reasons for higher parallel efficiency of
Jacquard (slower processors combined with equally fast network). Again, parallel
efficiency increases with the size of the discrete problems and for the largest
problems reaches 60% on 96 processors.

Table 3 contains execution times collected on an IBM Linux Cluster 1350
made of 512 2-way IBM X335 nodes. Each computing node contains 2 Xeon
Pentium IV processors running at 3 GHz and 2 GB of RAM. Nodes are inter-
connected via a Myrinet network with a maximum bandwidth of 256 Mb/s. We
have used IBM Visual Age compiler and a “-O3” option.

The execution time on one processor is larger than the results from earlier
mentioned computer systems. While the run-time on IBM Linux cluster is much
longer than on Jacquard and Topdawg, its parallel efficiency is higher — it is
higher than 50% for full set of experiments reported here. This indicates that
the decrease in processor speed offsets the slower interconnection network.

Finally, Table 4 reports execution times collected on an IBM SP Cluster 1600
made of 64 nodes p5-575 (see http://www.ibm.com/servers/eserver/pseries/li-
brary/sp books/). A p5-575 node contains 8 IBM Power5 processors running at
1.9 GHz and has 16 GB of RAM. Nodes are interconnected with a pair of connec-
tions to the Federation High Performance Switch (HPS). The HPS interconnect
is capable of a unidirectional bandwidth of up to 2 Gb/s. We have used the

6 Ivan Lirkov, Yavor Vutov, Marcin Paprzycki, and Maria Ganzha

Table 3. Experimental results for the IBM Linux Cluster.

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 22.7 90.3 64 1384.1 2232.3
2 12.5 1.81 0.906 49.5 1.82 0.911 730.2 1.90 0.948 1195.9 1.87 0.933
4 6.5 3.50 0.876 25.7 3.51 0.877 393.3 3.52 0.880 633.5 3.52 0.881
8 3.4 6.75 0.843 13.2 6.84 0.855 208.8 6.63 0.829 339.6 6.57 0.822
16 1.9 12.03 0.752 7.3 12.33 0.771 99.0 13.99 0.874 164.9 13.54 0.846
32 1.4 16.02 0.501 5.6 16.21 0.507 54.1 25.59 0.800 86.5 25.80 0.806
64 33.6 41.20 0.644 54.5 40.96 0.640

1 48 600.6 1104.2 96 10080.4 17648.8
2 323.6 1.86 0.928 594.3 1.86 0.929 5401.3 1.87 0.933 8953.1 1.97 0.986
3 220.2 2.73 0.909 399.0 2.77 0.922 3654.3 2.76 0.919 6061.5 2.91 0.971
4 168.4 3.57 0.892 311.0 3.55 0.888 2794.2 3.61 0.902 4633.8 3.81 0.952
6 115.8 5.19 0.864 214.2 5.15 0.859 1900.2 5.30 0.884 3158.8 5.59 0.931
8 84.7 7.09 0.887 155.6 7.10 0.887 1454.9 6.93 0.866 2415.8 7.31 0.913
12 57.5 10.44 0.870 105.1 10.50 0.875 972.7 10.36 0.864 1604.4 11.00 0.917
16 43.7 13.75 0.860 80.2 13.78 0.861 754.2 13.37 0.835 1249.0 14.13 0.883
24 30.2 19.86 0.827 55.5 19.91 0.830 477.2 21.13 0.880 793.5 22.24 0.927
32 355.7 28.34 0.886 589.3 29.95 0.936
48 18.9 31.72 0.661 35.1 31.46 0.655 248.0 40.65 0.847 411.8 42.86 0.893
96 151.3 66.64 0.694 251.8 70.08 0.730

IBM Visual Age compiler and compiled the code using “-O4 -qipa=inline” op-
tions. One can see that for relatively large problems the speed-up is close to the
theoretical limit — the number of processors. This result was expected because
communications between processors is not only very fast, but also its start-up
time is faster than in the case of other machines. Interestingly, a super-linear
speed-up is observed in some cases. The main reasons for this fact can be related
to splitting the entire problem into subproblems which helps memory manage-
ment in the case of 8 processor nodes; in particular allows for better usage of
cache memories of individual parallel processors. Interestingly, this machine is
only slightly faster that the IBM Linux Cluster, bu remains slower than the first
two clusters. This seems also to show the age of this machine, which is the oldest
of the four.

A comparison of parallel performance of the developed C+MPI code obtained
on all four above mentioned computer systems can be seen in Figures 2 and 3.
In Figure 2 we depict the execution time of a single PCG iteration of our code
(computer as an average of the total time divided by the number of iterations),
while in Figure 3 we represent parallel speed-up of a single iteration. What is
particularly revealing is the fact that all four systems have very similar speed-up.

However, the fact that the largest speed-up was obtained on the IBS SP ma-
chine indicates that as far as large clusters are concerned it is till the processing
power that is winning the race with the network throughput. It is much easier
to solve problems fast on a single processor than build a well-balanced parallel
computer.

High Performance Solver for 3D Elasticity Problems 7

Table 4. Experimental results for the IBM SP cluster.

Benchmark 1 Benchmark 2 Benchmark 1 Benchmark 2

p n Tp Sp Ep Tp Sp Ep n Tp Sp Ep Tp Sp Ep

1 32 21.8 86.8 64 1257.8 2056.8
2 10.7 2.03 1.015 43.1 2.01 1.007 670.2 1.88 0.938 989.9 2.08 1.039
4 5.4 4.03 1.006 21.1 4.11 1.027 313.0 4.02 1.005 527.4 3.90 0.975
8 2.7 8.04 1.005 10.6 8.22 1.027 152.1 8.27 1.034 252.4 8.15 1.019
16 1.5 15.01 0.938 5.9 14.70 0.919 76.6 16.43 1.027 126.2 16.29 1.018
32 1.0 21.68 0.677 3.1 28.18 0.881 39.3 31.98 0.999 65.1 31.58 0.987
64 21.0 60.01 0.938 34.2 60.19 0.940

1 48 541.7 993.6 96 9100.5 12338.7
2 278.2 1.95 0.974 500.7 1.98 0.992 4501.5 2.02 1.011 6771.2 1.82 0.911
3 182.4 2.97 0.990 337.5 2.94 0.981 3001.4 3.03 1.011 3988.2 3.09 1.031
4 137.9 3.93 0.982 252.7 3.93 0.983 2313.5 3.93 0.983 2982.7 4.14 1.034
6 90.1 6.01 1.002 159.3 6.24 1.039 1477.4 6.16 1.027 1961.8 6.29 1.048
8 67.3 8.05 1.006 122.9 8.08 1.010 1095.2 8.31 1.039 1473.9 8.37 1.046
12 45.1 12.00 1.000 82.4 12.06 1.005 740.3 12.29 1.024 1016.5 12.14 1.012
16 34.2 15.84 0.990 58.6 16.96 1.060 560.5 16.24 1.015 774.3 15.94 0.996
24 24.2 22.35 0.931 43.8 22.67 0.945 382.2 23.81 0.992 512.6 24.07 1.003
32 283.6 32.09 1.003 383.5 32.17 1.005
48 12.4 43.78 0.912 21.2 46.79 0.975 193.8 46.96 0.978 258.0 47.82 0.996
96 100.9 90.20 0.940 146.5 84.21 0.877

0.
01

0.
1

1
4

1 2 4 8 16 32 64

T
im

e

number of processors

Time for one iteration

Jacquard n=32
Jacquard n=96
Topdawg n=32
Topdawg n=96

IBM Linux n=32
IBM Linux n=96

IBM SP n=32
IBM SP n=96

Fig. 2. Time for one iteration on the parallel computer systems

8 Ivan Lirkov, Yavor Vutov, Marcin Paprzycki, and Maria Ganzha

1

2

4

8

16

32

64

1 2 4 8 16 32 64

sp
ee

d-
up

number of processors

Speed-up for one iteration

Jacquard n=32
Jacquard n=96
Topdawg n=32
Topdawg n=96

IBM Linux n=32
IBM Linux n=96

IBM SP n=32
IBM SP n=96

Fig. 3. Speed-up for one iteration on the parallel computer systems

Acknowledgments

Computer time grants from the National Energy Research Scientific Computing
Center and the Oklahoma Supercomputing Center are kindly acknowledged.
The parallel numerical tests on two clusters in Bologna were supported via the
EC Project HPC-EUROPA RII3-CT-2003-506079. This research was partially
supported by grant I-1402/2004 from the Bulgarian NSF and by the project BIS-
21++ funded by FP6 INCO grant 016639/2005. Work presented here is a part
of the Poland-Bulgaria collaborative grant: “Parallel and distributed computing
practices”.

References

1. O. Axelsson, Iterative solution methods, Cambridge Univ. Press, Cambridge, 1994.
2. O. Axelsson and I. Gustafsson, Iterative methods for the solution of the Navier

equations of elasticity, Comp.Meth.Appl.Mech.Eng. 15, 1978, 241–258.
3. R. Blaheta, Displacement decomposition-incomplete factorization preconditioning

techniques for linear elasticity problems, Num. Lin. Alg. Appl. 1, 1994, 107–128.
4. A. Georgiev, A. Baltov, and S. Margenov, Hipergeos benchmark problems related

to bridge engineering applications, REPORT HG CP 94–0820–MOST–4.
5. I. Lirkov, MPI solver for 3D elasticity problems, Math. and computers in simula-

tion, 61 3–6, 2003, 509–516.
6. I. Lirkov, S. Margenov, MPI parallel implementation of CBF preconditioning for

3D elasticity problems, Math. and computers in simulation, 50 1–4, 1999, 247–254.
7. M. Snir, St. Otto, St. Huss-Lederman, D. Walker and J. Dongara, MPI: The Com-

plete Reference, Scientific and engineering computation series, The MIT Press,
Cambridge, Massachusetts, 1997, Second printing.

8. D. Walker and J. Dongara, MPI: a standard Message Passing Interface, Supercom-

puter 63, 1996, 56–68.

