
Performance Analysis of Parallel Alternating

Directions Algorithm for Time Dependent

Problems

Ivan Lirkov1, Marcin Paprzycki2, and Maria Ganzha2

1 Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences, Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria,

ivan@parallel.bas.bg

http://parallel.bas.bg/˜ivan/
2 Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland,
paprzyck@ibspan.waw.pl maria.ganzha@ibspan.waw.pl

http://www.ibspan.waw.pl/˜paprzyck/ http://www.ganzha.euh-e.edu.pl

Abstract. We consider the time dependent Stokes equation on a finite
time interval and on a uniform rectangular mesh, written in terms of
velocity and pressure.
A parallel algorithm based on a new direction splitting approach is de-
veloped. Here, the pressure equation is derived from a perturbed form
of the continuity equation in which the incompressibility constraint is
penalized in a negative norm induced by direction splitting. The scheme
used in the algorithm is composed by: pressure prediction, velocity up-
date, penalty step, and pressure correction. In order to achieve a good
parallel performance the solution of the Poison problem for the pressure
correction is replaced by solving a sequence of one-dimensional second
order elliptic boundary value problems in each spatial direction.
The parallel code is developed using the standard MPI functions and
tested on modern parallel computer systems. The performed numerical
tests demonstrate the level of parallel efficiency and scalability of the
direction-splitting based algorithm.

1 Introduction

The objective of this paper is to analyze the parallel performance of a novel
fractional time stepping technique for solving the incompressible Navier-Stokes
equations based on a direction splitting strategy.

Projection schemes were introduced in [2, 11] and they have been used in
Computational Fluid Dynamics (CFD) for about forty years. These techniques
went through some evolution during the years, but the main paradigm con-
sisting of decomposing vector fields into a divergence-free part and a gradient
has been preserved; see [5] for a review. In terms of computational efficiency,
projection algorithms are far superior to the methods that solve the coupled
velocity-pressure system. This feature makes them the most popular techniques

2 Ivan Lirkov, Marcin Paprzycki, and Maria Ganzha

in the CFD community for solving the unsteady Navier-Stokes equations. The
computational complexity at each time step of projection methods is that of solv-
ing one vector-valued advection-diffusion equation plus one scalar-valued Poisson
equation with Neumann boundary conditions. For large size problems and large
Reynolds numbers, the cost of solving the Poisson equation becomes dominant.

The alternating directions algorithm proposed in [4] reduce the computa-
tional complexity of the enforcement of the incompressibility constraint. The
key idea consists of abandoning the projection paradigm in which vector fields
are decomposed into a divergence-free part plus a gradient part. Departure from
the projection paradigm has been proved to be very efficient for solving vari-
able density flows [6, 7]. In the new method the pressure equation is derived
from a perturbed form of the continuity equation in which the incompressibility
constraint is penalized in a negative norm induced by direction splitting. The
standard Poisson problem for the pressure correction is replaced by series of one-
dimensional second-order boundary value problems. This technique is proved to
be stable and convergent, for details see [4].

2 Stokes Equation

We consider the time-dependent Navier-Stokes equations on a finite time interval
[0, T] and in a rectangular domain Ω. Since the nonlinear term in the Navier-
Stokes equations does not interfere with the incompressibility constraint, we
henceforth mainly focus our attention on the time-dependent Stokes equations
written in terms of velocity with components (u, v) and pressure p:

ut − ν (uxx + uyy) + px = f
vt − ν (vxx + vyy) + py = g in Ω × (0, T)
ux + vy = 0
u|∂Ω = v|∂Ω = 0 in (0, T)
u|t=0 = u0, v|t=0 = v0, p|t=0 = p0 in Ω

(1)

where a smooth source term has components (f, g), (u0, v0) is a solenoidal initial
velocity field with zero normal trace, and ν is the kinematic viscosity.

We discretized the time interval [0, T] using uniform mesh. Let τ be the time
step in the algorithm. Then we will denote by tn = nτ .

3 Parallel Alternating Directions Algorithm

Guermond and Minev introduced in [4] a novel fractional time stepping tech-
nique for solving the incompressible Navier-Stokes equations based on a direction
splitting strategy. They used a singular perturbation of Stokes equation with per-
turbation parameter τ . The standard Poisson problem for the pressure correction
is replaced by series of one-dimensional second-order boundary value problems.

Performance Analysis of Parallel Alternating Directions Algorithm... 3

3.1 Formulation of the Scheme

The scheme used in the algorithm is composed by the following parts: pres-
sure prediction, velocity update, penalty step, and pressure correction. We now
describe an algorithm that uses the direction splitting operator

A :=

(

1 −
∂2

∂x2

)(

1 −
∂2

∂y2

)

.

– Pressure predictor

Denoting p0 the pressure field at t = 0, the algorithm is initialized by setting
p−

1

2 = p−
3

2 = p0. Then for all n > 0 a pressure predictor is computed as
follows

p∗,n+ 1

2 = 2pn− 1

2 − pn− 3

2 . (2)

– Velocity update

The velocity field is initialized by setting u0 =

(

u0

v0

)

, and for all n >

0 the velocity update is computed by solving the following series of one-
dimensional problems

ξn+1 − un

τ
− ν∆un + ∇p∗,n+ 1

2 = fn+ 1

2 , ξn+1|∂Ω = 0, (3)

ηn+1 − ξn+1

τ
−
ν

2

∂2(ηn+1 − un)

∂x2
= 0, ηn+1|∂Ω = 0, (4)

un+1 − ηn+1

τ
−
ν

2

∂2(un+1 − un)

∂y2
= 0, un+1|∂Ω = 0, (5)

where fn+ 1

2 =

(

f |
t=(n+

1

2)τ

g|
t=(n+

1

2)τ

)

.

– Penalty step

The intermediate parameter φ is approximated by solving Aφ = − 1

τ
∇·un+1.

Owing to the definition of the direction splitting operator A this is done by
solving the following series of one-dimensional problems:

ψ − ψxx = − 1

τ
∇ · un+1, ψx|∂Ω = 0,

φ− φyy = ψ, φy |∂Ω = 0,
(6)

– Pressure update

The last sub-step of the algorithm consists of updating the pressure as fol-
lows:

pn+ 1

2 = pn− 1

2 + φ− χν∇ ·
un+1 + un

2
(7)

The algorithm is in standard incremental form when the parameter χ = 0
and the algorithm is in rotational incremental form when χ ∈ (0, 1

2
].

4 Ivan Lirkov, Marcin Paprzycki, and Maria Ganzha

3.2 Parallel Algorithm

We use a rectangular uniform mesh combined with a central difference scheme for
the second derivatives for solving of (4–5) and (6). Thus the algorithm requires
only the solution of tridiagonal linear systems.

The parallelization is based on a decomposition of the domain on rectangular
sub-domains. Let us associate with each such sub-domain a set of integer coordi-
nates (ix, iy) and identify it with a given processor. The linear systems generated
by the one-dimensional problems that need to be solved in each direction are
divided into systems for each set of unknowns corresponding to internal nodes
for each block, that can be solved independently by a direct method, and the
corresponding Schur complement for the interface unknowns between the blocks
that have an equal coordinate ix or iy. The Schur complement is also tridiagonal
and can therefore easily be inverted directly. The overall algorithm requires only
exchange of the interface data which allows for a very efficient parallelization
with an efficiency comparable to that of an explicit schemes.

4 Experimental Results

The problem (1) is solved in Ω = (0, 1)2, for t ∈ [0, 2] with Dirichlet boundary
conditions. The discretization in time is done with time step 10−2, the parameter
χ = 1

2
, the kinematic viscosity ν = 10−3. The discretization in space uses mesh

sizes hx = 1

nx−1
and hy = 1

ny−1
. Thus, (4) leads to linear systems with size nx

and (5) leads to linear systems with size ny. The total number of unknowns in
the discrete problem is 600nx ny.

To solve the problem, a portable parallel code was designed and implemented
in C, while the parallelization has been facilitated using the MPI library [10, 12].
We use the LAPACK subroutines DPTTRF and DPTTS2 (see [1]) for solv-
ing tridiagonal systems in (4), (5), and (6) for the unknowns corresponding to
internal nodes for each sub-domain. The same subroutines are used to solve
tridiagonal systems with the Schur complement.

The parallel code has been tested on cluster computer system located in
the Oklahoma Supercomputing Center (OSCER) and the IBM Blue Gene/P
machine at the Bulgarian Supercomputing Center. In our experiments, times
have been collected using the MPI provided timer and we report the best results
from multiple runs. We report the elapsed time Tc in seconds using c cores, the
parallel speed-up Sc = T1/Tc, and the parallel efficiency Ec = Sc/c.

Table 1 shows the results collected on Sooner. It is a Dell Pentium4 Xeon
E5405 (“Harpertown”) quad core Linux cluster located in the Oklahoma Su-
percomputing Center (see http://www.oscer.ou.edu/resources.php). It has 486
Dell PowerEdge 1950 III nodes and two quad core processors per node. Each
processor runs at 2 GHz. Processors within each node share 16 GB of mem-
ory, while nodes are interconnected with a high-speed InfiniBand network. We
have used Intel compiler and compiled the code with the following options: “-O3
-march=core2 -mtune=core2”.

Performance Analysis of Parallel Alternating Directions Algorithm... 5

Table 1. Execution time on Sooner.

c nx ny Time nx ny Time nx ny Time nx ny Time

1 100 100 0.58 100 200 1.38 200 200 2.78 200 400 5.72
2 100 200 0.59 200 200 1.37 200 400 2.76 400 400 5.83
4 200 200 0.60 200 400 1.38 400 400 2.77 400 800 5.88
8 200 400 0.61 400 400 1.42 400 800 3.32 800 800 9.02

16 400 400 0.63 400 800 1.44 800 800 3.35 800 1600 9.02
32 400 800 0.67 800 800 1.51 800 1600 3.45 1600 1600 9.21
64 800 800 0.74 800 1600 1.58 1600 1600 3.61 1600 3200 9.34

128 800 1600 0.86 1600 1600 1.88 1600 3200 4.03 3200 3200 10.45
256 1600 1600 1.04 1600 3200 1.91 3200 3200 4.29 3200 6400 10.70

1 400 400 12.52 400 800 27.56 800 800 59.60 800 1600 120.33
2 400 800 12.55 800 800 28.73 800 1600 61.20 1600 1600 126.34
4 800 800 13.57 800 1600 32.42 1600 1600 72.43 1600 3200 147.28
8 800 1600 23.02 1600 1600 53.37 1600 3200 109.13 3200 3200 220.54

16 1600 1600 23.01 1600 3200 52.26 3200 3200 109.56 3200 6400 219.52
32 1600 3200 23.46 3200 3200 54.57 3200 6400 110.22 6400 6400 222.13
64 3200 3200 23.55 3200 6400 53.43 6400 6400 111.74 6400 12800 223.31

128 3200 6400 25.25 6400 6400 57.57 6400 12800 116.16 12800 12800 238.16
256 6400 6400 26.47 6400 12800 57.41 12800 12800 120.03 12800 25600 234.56

The results in one box of Table 1 are obtained for equal number of unknowns
per core. For large discrete problems the execution time is much larger on two
processors (8 cores) than on one processor, but on more processors the time is
approximately constant. The obtained execution times show that the communi-
cation time between processors is larger than the communication time between
cores of one processor. Also, the execution time for solving one and the same
discrete problem decrease with increasing number of cores which shows that the
communications in our parallel algorithm are mainly local.

The somehow slower performance on Sooner using 8 cores is clearly visible.
The same effect was observed during our previous work, see [9]. There are some
factors which could play role for the slower performance using all processors
of one node. Generally they are a consequence of the limitations of memory
subsystems and their hierarchical organization in modern computers. One such
factor might be the limited bandwidth of the main memory bus. This causes the
processors literally to “starve” for data, thus, decreasing the overall performance.
The L2 cache memory is shared among each pair of cores within the processors
of Sooner. This boost the performance of programs utilizing only single core
within such pair. Conversely, this leads for somehow decreased speedups when
all cores are used. For memory intensive programs, these factors play a crucial
role for the performance.

The speed-up obtained on Sooner is reported in Table 2 and the parallel
efficiency is shown in Table 3. Increasing the number of cores, the parallel
efficiency decreases on 8 cores and after that it increases to 100%. Moreover, a
super-linear speed-up is observed. The main reasons for this fact can be related to
splitting the entire problem into subproblems which helps memory management,

6 Ivan Lirkov, Marcin Paprzycki, and Maria Ganzha

Table 2. Speed-up on Sooner.

nx ny c

2 4 8 16 32 64 128 256

800 800 2.07 4.39 6.61 17.79 39.57 80.71 93.72 122.91
800 1600 1.97 3.71 5.23 13.34 34.93 75.96 139.80 173.48

1600 1600 1.97 3.43 4.66 10.81 27.00 68.89 132.45 238.39
1600 3200 2.00 3.47 4.69 9.79 22.04 54.74 126.88 267.99
3200 3200 2.20 3.97 5.42 10.92 21.92 50.79 114.43 278.95
3200 6400 2.15 4.35 6.00 12.45 24.80 51.17 108.28 255.55
6400 6400 1.98 4.01 5.35 14.38 29.55 58.75 114.04 248.00

Table 3. Parallel efficiency on Sooner.

nx ny c

2 4 8 16 32 64 128 256

800 800 1.037 1.098 0.826 1.112 1.237 1.261 0.732 0.480
800 1600 0.983 0.928 0.653 0.834 1.091 1.187 1.092 0.678

1600 1600 0.984 0.858 0.583 0.676 0.844 1.076 1.035 0.931
1600 3200 1.001 0.868 0.586 0.612 0.689 0.855 0.991 1.047
3200 3200 1.101 0.993 0.678 0.682 0.685 0.794 0.894 1.090
3200 6400 1.077 1.087 0.750 0.778 0.775 0.799 0.846 0.998
6400 6400 0.988 1.003 0.669 0.899 0.924 0.918 0.891 0.969

in particular allows for better usage of cache memories of individual parallel
processors.

Table 4 presents execution time on IBM Blue Gene/P machine at the Bulgar-
ian Supercomputing Center (see http://www.scc.acad.bg/). It consists of 2048
compute nodes with quad core PowerPC 450 processors (running at 850 MHz).
Each node has 2 GB of RAM. For the point-to-point communications a 3.4
Gb 3D mesh network is used. Reduction operations are performed on a 6.8 Gb
tree network. We have used IBM XL compiler and compiled the code with the
following options: “-O5 -qstrict -qarch=450d -qtune=450”.

We observed that using 2 or 4 cores per processor leads to slower execution,
e.g. the execution time for nx = ny = 6400, c = 512 is 58.08 seconds using 512
nodes, 58.83 seconds using 256 nodes, and 60.34 seconds using 128 nodes. This
fact shows that the communication between processors is faster than the commu-
nication between cores of one processor using MPI communication functions. In
order to get better parallel performance we plan to develop mixed MPI/OpenMP
code and to use the nodes of the supercomputer in SMP mode with 4 OpenMP
processes per node.

Table 5 shows the speed-up on IBM Blue Gene/P and the parallel efficiency
is shown in Table 6. As expected, the parallel efficiency improves with the size
of the discrete problems. The efficiency on 1024 cores increases from 57% for the
smallest problems to 94% for the largest problems in this set of experiments.

Execution time on Blue Gene/P is substantially larger than that on Sooner,
but in some cases the parallel efficiency obtained on the supercomputer is better.

Performance Analysis of Parallel Alternating Directions Algorithm... 7

Table 4. Execution time on IBM Blue Gene/P.

c nx ny Time nx ny Time nx ny Time nx ny Time

1 100 100 5.79 100 200 12.33 200 200 24.51 200 400 49.02
2 100 200 5.96 200 200 11.84 200 400 24.93 400 400 49.89
4 200 200 6.17 200 400 13.02 400 400 25.68 400 800 51.34
8 200 400 6.34 400 400 12.48 400 800 26.21 800 800 52.59

16 400 400 6.63 400 800 13.83 800 800 27.33 800 1600 54.43
32 400 800 6.71 800 800 13.27 800 1600 27.53 1600 1600 54.94
64 800 800 6.85 800 1600 14.19 1600 1600 27.71 1600 3200 55.15

128 800 1600 7.04 1600 1600 13.72 1600 3200 28.15 3200 3200 56.20
256 1600 1600 7.18 1600 3200 14.69 3200 3200 28.34 3200 6400 56.44
512 1600 3200 7.56 3200 3200 14.59 3200 6400 29.13 6400 6400 58.08

1024 3200 3200 7.92 3200 6400 15.70 6400 6400 29.84 6400 12800 58.68
2048 3200 6400 8.81 6400 6400 16.74 6400 12800 31.38 12800 12800 62.83
4096 6400 6400 9.89 6400 12800 18.31 12800 12800 33.81 12800 25600 65.28

1 400 400 103.58 400 800 210.81 800 800 431.43 800 1600 877.0
2 400 800 105.23 800 800 214.55 800 1600 437.71 1600 1600 880.1
4 800 800 108.00 800 1600 219.95 1600 1600 450.15 1600 3200 913.4
8 800 1600 109.85 1600 1600 223.77 1600 3200 455.95 3200 3200 917.3

16 1600 1600 113.93 1600 3200 230.91 3200 3200 471.25 3200 6400 959.3
32 1600 3200 114.64 3200 3200 232.71 3200 6400 474.14 6400 6400 954.4
64 3200 3200 115.56 3200 6400 233.56 6400 6400 476.84 6400 12800 964.1

128 3200 6400 116.68 6400 6400 236.13 6400 12800 478.39 12800 12800 962.8
256 6400 6400 117.87 6400 12800 237.57 12800 12800 482.76 12800 25600 978.8
512 6400 12800 119.14 12800 12800 241.38 12800 25600 486.01 25600 25600 973.8

1024 12800 12800 120.69 12800 25600 242.71 25600 25600 489.00 25600 51200 987.2
2048 12800 25600 124.67 25600 25600 251.24 25600 51200 501.47 51200 51200 1027.3
4096 25600 25600 130.91 25600 51200 268.93 51200 51200 560.06 51200 102400 1163.2

Table 5. Speed-up on IBM Blue Gene/P.

nx ny c

2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 2.01 3.99 8.20 15.79 32.52 62.94 114.61 215.88 330.37 585.6 631.5 780.8
800 1600 2.00 3.99 7.98 16.11 31.85 61.80 124.52 226.34 401.66 655.0 944.8 1177.6

1600 1600 2.00 3.92 7.89 15.49 32.12 63.68 128.66 245.91 422.72 745.0 999.9 1541.7
1600 3200 2.00 3.93 7.87 15.53 31.28 65.02 127.38 244.20 474.66 811.9 1290.0 1898.9
3200 3200 2.06 4.03 8.08 15.74 31.87 64.17 131.95 261.66 508.43 936.8 1411.7 2272.1

Table 6. Parallel efficiency on IBM Blue Gene/P.

nx ny c

2 4 8 16 32 64 128 256 512 1024 2048 4096

800 800 1.005 0.999 1.025 0.987 1.016 0.983 0.895 0.843 0.645 0.572 0.308 0.191
800 1600 1.002 0.997 0.998 1.007 0.995 0.966 0.973 0.884 0.784 0.640 0.461 0.287

1600 1600 1.002 0.980 0.986 0.968 1.004 0.995 1.005 0.961 0.826 0.728 0.488 0.376
1600 3200 1.000 0.982 0.983 0.971 0.978 1.016 0.995 0.954 0.927 0.793 0.630 0.464
3200 3200 1.029 1.008 1.011 0.984 0.996 1.003 1.031 1.022 0.993 0.915 0.689 0.555

8 Ivan Lirkov, Marcin Paprzycki, and Maria Ganzha

For instance, the execution time on single core on Sooner is seven times faster
than on the Blue Gene/P, in comparison with four times faster performance on
256 cores.

The decomposition of the computational domain in sub-domains is impor-
tant for the parallel performance of the studied algorithm. Table 7 shows the
execution time for the problem with nx = ny = 3200 on 128 cores using different
number of sub-domains in each space direction.

Table 7. Execution time on 128 cores.

machine sub-domains
8 × 16 4 × 32 2 × 64 1 × 128

Sooner 10.30 13.14 16.80 84.90
IBM Blue Gene/P 56.20 60.17 74.12 170.46

Finally, computing time on both parallel systems is shown in Fig. 1 and the
obtained speed-up is shown in Fig. 2.

5 Conclusions and Future Work

We have studied the parallel performance of the recently developed parallel
algorithm based on a new direction splitting approach for solving of the time
dependent Stokes equation on a finite time interval and on a uniform rectangular
mesh. The performance was evaluated on two different parallel architectures.
Satisfying parallel efficiency is obtained on both parallel systems on up to 1024
processors. The faster CPUs on Sooner lead to shorter runtime, on the same
number of processors.

In order to get better parallel performance using four cores per processor on
the IBM Blue Gene/P we plan to develop mixed MPI/OpenMP code. We will
continue our research developing a parallel algorithm for solving of 3D Stokes
equation.

Acknowledgments

Computer time grants from the Oklahoma Supercomputing Center (OSCER)
and the Bulgarian Supercomputing Center (BGSC) are kindly acknowledged.
This research was partially supported by grants DCVP 02/1 and DO02-147
from the Bulgarian NSF. Work presented here is a part of the Poland-Bulgaria
collaborative grant “Parallel and distributed computing practices”.

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, Third Edition, SIAM, 1999.

Performance Analysis of Parallel Alternating Directions Algorithm... 9

10-1

100

100

101

101

102

103

103

104

1 4 16 64 256 1024 4096

T
im

e

number of processors

Execution time

Blue Gene nx=ny=800
Blue Gene nx=ny=3200

Sooner nx=ny=800
Sooner nx=ny=3200

Fig. 1. Execution time for nx = ny = 800, 3200

1

4

16

64

256

1024

1 4 16 64 256 1024 4096

sp
ee

d-
up

number of processors

Speed-up

Blue Gene nx=ny=800
Blue Gene nx=ny=3200

Sooner nx=ny=800
Sooner nx=ny=3200

Fig. 2. Speed-up for nx = ny = 800, 3200

10 Ivan Lirkov, Marcin Paprzycki, and Maria Ganzha

2. A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22,
1968, 745–762.

3. G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins Univ. Press,
Baltimore, 2nd edition, 1989.

4. J.-L. Guermond, P. Minev, A new class of fractional step techniques for the in-
compressible Navier-Stokes equations using direction splitting, Comptes Rendus

Mathematique, 348 (9–10), 2010, 581–585.
5. J.-L. Guermond, P. Minev, J. Shen, An overview of projection methods for incom-

pressible flows, Comput. Methods Appl. Mech. Engrg., 195, 2006, 6011–6054.
6. J.-L. Guermond, A. Salgado, A splitting method for incompressible flows with

variable density based on a pressure Poisson equation, Journal of Computational

Physics, 228 (8), 2009, 2834–2846.
7. J.-L. Guermond, A. Salgado, A fractional step method based on a pressure Poisson

equation for incompressible flows with variable density, Comptes Rendus Mathe-

matique, 346 (15–16), 2008, 913–918.
8. J.-L. Guermond, J. Shen, On the error estimates for the rotational pressure-

correction projection methods, Math. Comp., 73 (248), 2004, 1719–1737.
9. I. Lirkov, Y. Vutov, M. Paprzycki, M. Ganzha, Parallel Performance Evaluation of

MIC(0) Preconditioning Algorithm for Voxel µFE Simulation, Parallel processing

and applied mathematics, Part II, R. Wyrzykowski, J. Dongarra, K. Karczewski, J.
Waśniewski ed., Lecture notes in computer science, 6068, Springer, 2010, 135–144.

10. M. Snir, St. Otto, St. Huss-Lederman, D. Walker, and J. Dongarra, MPI: the

complete reference, Scientific and engineering computation series. The MIT Press,
Cambridge, Massachusetts, 1997, Second printing.

11. R. Temam, Sur l’approximation de la solution des équations de Navier-Stokes par
la méthode des pas fractionnaires, Arch. Rat. Mech. Anal., 33, 1969, 377–385.

12. D. Walker and J. Dongarra, MPI: a standard Message Passing Interface, Super-

computer, 63, 1996, 56–68.

