AMODIO, P,y PAPRZYCKI, M.

Recent Advances in the Parallel Solution to Almost Block Diagonal Systems

;1 this paper we briefly summarize some of the most important algorithms for the peraliel solution of Almaost Block
Diagonal linear systems. Then, we consider o parallel algorithm, based on the cyclic reduction, which seems to be
quite competitive, especially when systems with additional boundary blocks sre considered. Numerical tests carried
out on q distributed memory parsile! computer are reported and enalysed.

1. Historical overview

Since the late 1970’s, a number of publications appeared studying solution methods for Almost Block Diagonal (ABD)
linear systems. ABD systems arise in various mathematical applications such as Chebyshev spectral decomposition
..n rectangular domains, orthogonal spline collacation for elliptic problems and, most importantly for the purpose
.{ this paper, various discretizations of boundary value ordinary differential equations (BVP ODE's). The initial,
single processor approaches can be traced first, to the SOLVEBLOCK package by de Boor and Weiss [6], and second,
to the alternate row and column elimination algorithm due te Varah [12], later studied by Diaz et.al. (7] and finally
implemented using level 3 BLAS primitives by Paprzycki and Gladwell [11].

Figure 1: Structure of an ABD malriz with edditionael corner blacks.

As far as parallel solution of ABD systems is concerned, a number of approaches have been developed. It was
observed that there are two basic parameters influencing the possible solution methods. When the size of each block
is large and the total number of blocks is relatively small or medium {as in the case of spectral discretizations) the
BLLAS based approach from {11] can be applied (where parallelism is introduced inside the BLAS kernels). [t will be
relatively successful on shared memory computers {8). When a number of blocks is large and their individual sizes are
small, tearing-type methods can be applied. Ascher and Chan [5] and Jackson and Pancer {9] have formed normal
equations and suggested applying methods for block tridiagonal systems. A different tearing-type algorithm has been
proposed by Paprzycki and Gladwell [L1], where the tearing process is applied to the whole ABD system; it has been
later improved by Amedio and Paprzyceki [3]. Yet another tearing approach was proposed by K, Wright [13] who
applies tearing to the block-bidiagonal system obtained by ignoring boundary conditions (BC's), and reintroduces
the BC related blocks only in the final step of the solution process. While the method used in [11, 3] can be applied
on the message passing as well as shared memory computers. the method used in [13] can be used only on shared
Memory computers.
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All these algorithms deal with the solution of the ABD system arising from the discretization of BVP ODE's wit
separated boundary conditions. In case of non — separated boundary conditions additional corner blocks appes
(see Fig. 1). 5. Wright introduced a methad similar to the approach of K. Wright that can also deal with thes
additional blocks [14,15] and can be used on shared memory as well as message passing parallel computers. Th
aim of this paper is to present a different, cyelic-reduction based approach to the solution of ABD systems wit
separated as well as non-separated boundary conditions. In Section 2, the proposed algorithm is summarized whil
in Section 3, the results of numerical experiments are presented and disenssed,

2. The cyclic reduction approach

The cyclic reduction algorithm is one of the wmost interesting algorithms for the solution of tridiagonal and bloc
tridiagonal linear systems on parallel computers (see, for example, {1]). Several implementations have been propose:
and have been used to optimize a parallel sclution on different computer architectures. To derive a generalization ¢
cyclic reduction algorithm for the factorization of ABD matrices let us express the ABD maitrix M in the followin:
form (see Fig. 1):
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where Llocks A, ; are square and any generie block 7 in Iig. 1 (apart the corner blocks) is decomposed in the
following fort:
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To emphasize a block tridiagonal structure, let us now consider the following decomposition of {1):
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We may now apply the odd-even cyelic reduciion (similar to that proposed in {2]) to the matrix {2). In order to
preserve the sparsity structure, we only tequire that the first and the last row of {2} must be treated as even rows
(the first row is considered as row 0). For example, assuming m is even, the first step of reduction reduces matrix
(2} to the following one which has half the number of blocks:
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~Note that during the factorization of blocks 4; row pivoting can be applied. Blocks B, and have_ some null rows,
anid thus By, A3, and Cp 45} | have zeroes in the same rows and therefore the blocks C; and B;; maintain the
snine sparsity structure as the corresponding Coy and B3;. Moreover, observe that in the matrix (3} the blocks B,,

and Co as well as rows corresponding to the first and the last row of (1) remain unchanged.

The same approach may be repeated and applied to (3) and after log, m steps a 2 x 2 block matrix (or a 4 x 4 block
matrix if expressed in terms of A;;, B, €, and Dy ;) is obtained and factorized using Gaussian Elimination with
partial pivoting.

3. WNumerica! tests

We have studied the efficiency of the parallel algorithm presented in the previous section {we will refer to it as
ABDCR) on ABD linear systems arising from the discretization of some known boundary value problems, and
compared to the single-processor performance of SOLVEBLOCK. Both algorithms have been coded in Fortran and
exccuted on a MicroWay Multiputer with 16 processors, each one with 1Mb of local memory.

We have considered the following three test problems:

- problem 10 system of two first order BVP’s — blocks of size 2 x 2 (example 1 from Ascher and Chan {5))
- problem 2: system of three first order BVP's — blocks of size 3 x 3 {problem 1A from Wright [15])

- problem 3: system of five first order BVP's — blocks of size 5 x 5 (problem 4A from Wright [15])

In all cases, we considered these problems with separated boundary conditions if"order to aliow the application of
SOLVEBLOCK which is tailored for ABD matrices without additional corner blocks. In a separate experiment we
have applied the new algorithm to problems 1-3 with non-separated boundary conditions and obtained the same
timings. It should be also mentioned that no numerical instabilities have been observed [see also [4] for more details).

Tables 1 and 2 contain the execution times for the considered solvers. Table 1 is devoted to single-processor
execution times for m = 32, 128,512 blocks. Table 2 contains parallel execution times for the ABDCR solver for
o= 32,128, 512 blocks and for p = 4, 16 processors.

Table I: scalor execution times

SOLVEBLOCK ABDCR

problem ! m =32 =128 m=512m=32 m=128 m=>512
1 397 1572 G282 801 3174 12656
2 71T 2838 11321 1311 2149 20504
b3 2949 3019 35604 | 2001 11388 45321

Toble 2: parallel exccution times of the ABDCR solver

4 processors 16 processors
problem | m =32 m=128 m=3512 | m=32 m=128 =512
1 318 013 J283 301 545 1132
3 102 1436 5310 330 i 1737
3 1031 3166 11671 943 1480 608

It can be observed that SOLVEBLOCK outperforms ABDCR in all cases. This can be explained by the fact that
the arithmetical complexity of the proposed algorithm is slightly higher (see [4]}. It should be also observed that
{as expected) the ratio of times remains relatively constant for the increasing value of m. For a given number of
processors the speed-up {calculated against the single processor performance of ABDCR) increases as the value of
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7 increases and reaches 3.58 on . processors and 12.56 on 16 processors. At the same time the speed-up calculat
against SOLVEBLOCK reaches 3.03 on 4 processors and 9.86 on 16 DIOCeSSOTS,

4. Conclusion

There exist a number of different parallel aproaches toward the solution of ABD linear systems. We have present
one of them that is relatively competitive in terms of its parallel performance as well as numerical properties. Wk
13 needed now is a comparative study of all existing approaches on a large number of problems and on a varietv
parallel architectures.
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