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Abstract. We describe the use of BLAS kernels as a key to efficient
vectorization of m-th order linear recurrence systems with constant co-
efficients. Applying the Hockney-Jesshope model of vector computation,
we present the performance analysis of the algorithm which considers
also the influence of memory bank conflicts. The theoretical analysis is
supported by experimental data collected on two Cray vector computers.
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1 Introduction

The critical part of several numerical algorithms reduces to the solution of a
linear recurrence system of order m for n equations with constant coeflicients
[13, 16]:
0 for k<O
m
Tk = fk + Z AjTE—j for 1 S k S n. (1)
j=1
The efficient solution to this problem is of particular interest in case of vector
computers as optimizing compilers are not able to generate machine code that
would fully utilize the underlying hardware. As our experiments show, even
Cray’s Fortran compiler, usually recognized as the best vectorizing compiler on
the market, is in this category (see Section 5). In addition, numerical libraries
(like LAPACK [1], implemented in the Cray’s scilib library) instead of problem
(1) provide a solution to a more general problem:

0 for k<0
— k—1
Tk = fe+ Z Ok;T; for1<k<n. (2)
j=k—-m

Solution to this problem requires more memory and, in the case of LAPACK
routines, the computational efficiency is obtained primarily by solving it for



multiple right hand sides. In case when the original problem (1) is solved, a
simple application of a LAPACK routine does not result in achieving maximum
performance (see Section 5). The aim of our work is thus to find the performance-
optimal solver for the original problem (1). Based on our earlier work [9, 10,
11, 14] we have decided to approach the problem by augmenting the divide-
and-conquer approach proposed there by application of BLAS kernels. We then
proceeded to establish the optimal parameters to obtain maximum efficiency and
to eliminate memory bank conflicts.

We proceed as follows. In the next section we introduce the algorithmic frame-
work used in our work. We follow with the description of implementation details
of the proposed algorithm. We then sketch the theoretical analysis of computa-
tional complexity. We complete our report by describing and analyzing results
of our experiments performed on Crays C-90 and SV-1.

2 Algorithm description

In our considerations we will assume that n > m, i.e. the order of a recurrence
system is rather small. The idea of the algorithm is to rewrite (1) as the following
block system of linear equations

L X1 f;

U L X2 fg
=1 3)

UL Xp f,

where for ¢ = n/p > m we have

1
—0 —Gpy =01
L = : B B s U = : ERqu. (4)
—a,, o —0,
0

_am..._al]_

Note that L is a Toeplitz matrix, what means that entries are constant along
each diagonal. The system (3) corresponds to the following recurrence system

X1 :Lilfl (5)
X; = Lilfj — LilUXjfl forj=2,...,p.

To solve this system let us consider the structure of the matrix

m

U=-— Z Z afm—&-kflekeglm-&-lv (6)

k=1 l=k



where ey, denotes k-th unit vector of R4. Obviously, equation (5) reduces to the

form
X1 = L71f1

X :Lilfj—}-kz_:la‘];yk fOI‘j:2,...,p (7)

where Ly, = e and oz;? = Zlk Omak—1T(j—1)q—m+1- Note that to compute
vectors y, we need to find only the solution of the system Ly; = e;, namely

v1=(1,y2,...,y,)T. We can now form vectors yy, as follows
Y = (07---707173/27---7yq7k+1)T- (8)
——
k-1

This yields that the number of subsystems we must solve does not depend on
the order of the system. To find vectors z; and y; we must solve p+ 1 recurrence
systems of order m for g equations.

3 Implementation details

Now let us consider the possible implementations of the proposed algorithm. We
can omit the assumption that n = pg because after we choose integers p and ¢
we can apply (7) to find 2y,..., 2,4 and (1) to find zpg.1, ..., 2,. First we have
to find vectors z; and y;. We can do it efliciently by using a sequence of _AXPY
operations y «+ y +ax. Note that _AXPY consists of 2NV floating point operations
and it can be computed in a simple loop of length V. So let us define matrices

Z = (2z1,...,2p,¥1), F=(1,....5,,e1) € RZ* (P+1)

and denote Zy, , as a k-th row of Z. Now we can find the solution of the system
LZ = F using the formula

0 for k<O
Zk*

= 3 (9)
T Fk7*+ ZajZk,N forlﬁkﬁq
j=1
Initially columns of the matrix F' can be stored in a one-dimensional array x, so
Z can be computed using the following code

do k=1,q
do j=1,min(m,k-1)
call saxpy(p+1,a(j),x(k-j),q,x(k),q)
end do
end do

It can be easily calculated that the number of _AXPY operations is equal to
m(q — %‘i) and thus the total number of operations needed to find vectors z;
and y can be expressed as

m+1



As soon as the matrix Z is calculated its last column ought to be copied to a
new array y such that y(-m:0)=0.0.

call scopy(q,x(pxgq+1),1,y(1),1)
do j=-m,0

y(3)=0.0
end do

Now vectors x;, j = 2,...,p, can be computed. For each vector we should
compute coeflicients ozgjc using the following code

do k=1,m
call saxpy(m+l-k,a(m+1-k),x(g*(j-1)-m+k),1,alpha,l)
end do

and then find x; using a sequence of _AXPY calls

do k=1,m
call saxpy(q,alpha(k),y(2-k),1,x(g*(j-1)+1),1)
end do

The total number of floating-point operations in this part of the algorithm is

Cy=2(p—-1) (i(m—l—l—k)-ﬁ-mq). (11)

k=1

Now let us consider possible modifications of the proposed algorithm. First,
observe that the last step of the algorithm can be implemented in terms of level
2 BLAS using one call of _.GEMV. More precisely, when we form

W= (y1,...,¥m) € RZ*™ (12)
then instead of the last loop above, we can use
call sgemv(’N’,q,m,1,w,1ldw,alpha,1,1,x(q*(j-1)+1),1)

Note that the use of _GEMV requires additional space for gm entries of W.

Let us now observe that for finding Z we can consider the use of the routine
_TBTRS from the LAPACK library [1] which solves a system AX = B where A
is a triangular banded matrix. Thus instead of the sequence of _AXPY calls based
on (9) we would have the following LAPACK call

call stbtrs(’L’,’N’,’U’,q,m,p+1,ab,1ldab,x,q,info)

We have to recall that this routine does not take into account the Toeplitz
structure of the matrix L and requires additional space for m + 1 diagonals of
L, i.e. for (m+ 1)q additional values.

In the table below we summarize algorithms that can be used to solve the
original problem (1):



Algorithm [Description

Scalar Scalar code based on a direct implementation of (1)
Algorithm 1A|The main algorithm based on calls to the _AXPY routine
Algorithm 1B|As Algorithm 1A but the last step is calculated by one
call of the level 2 BLAS routine .GEMV
Algorithm 2 |The system LZ = F' solved by a call to the LAPACK routine
_TBTRS and the last step calculated by the call to . GEMV
Algorithm 3 [LAPACK _TBTRS routine called for one RHS

4 Performance analysis

To study the performance of the algorithm let us consider the theoretical model
of vector computations introduced by Hockney and Jesshope [6, 2].

The performance ry of a loop of length IV can be expressed in terms of
two parameters 7, and 14/ which are specific for a kind of loop and vector
computer. The first parameter represents the performance in Mflops for a very
long loop, while the second the loop length for which a performance of about
T'so/2 is achieved. Then

r
ry = —————— Mflops. 13
N TL1/2/N+1 P ( )

This yields that the execution time of _AXPY is

2N  2-10°°

Taxpy(N) = 55— = —

(n1/2 + N) seconds. (14)

From (10), (11) and (14) we get that the total execution time of our algorithm
can be estimated as follows
2-1079
T(p,q) = T—m (2pq + 21y /2P + N1 /2q — 2.511 j9 — 0.511 j9m — M — 1) ,

oo

where n = pq. It can be easily verified that T'(p, ¢) reaches its minimum at the

point
(p,4) = (v/n/2,v/2n). (15)

Thus the optimal choice of p and ¢ depends only on the problem size n and
because these numbers should be integers we choose ¢ = |v/2n| and p = |n/q|.
Here, the last n — pg elements of the solution x can be computed by a scalar
algorithm based on (1).

Sometimes these chosen parameters have to be adjusted to avoid memory
bank conflicts. Vector computers usually store data so that contiguous words
(e.g. elements of arrays) are in separate memory banks. Usually the number of
banks in the memory system is a power of two. Memory bank conflicts may
occur when an array’s stride (the difference in the index between two successive
iterations) is a multiple of a power of two. Then the memory cannot be efficiently



used because CPU must wait until a former memory request to the same bank
is completed. Thus to avoid memory bank conflicts the parameter ¢ should be

chosen as follows
_ L\@J —1if L\/Q_HJ even,
1= { L\/%J otherwise. (16)

Finally let us calculate the number of floating point operations performed by
the algorithm. Adding C; and Cy defined by (10) and (11), and the number of
flops required for finding the last n — pq entries of the solution we get

1 5
Cnm(p,q) = C1 + Cy +m(n — pg — %) = 3mpq — 5m(m+ 1) +mn. (17)

5 Results of experiments

The method has been implemented in FORTRAN and tested on a single proces-
sor of the Cray C-90 and SV-1 vector computers. We have used the optimized
versions of BLAS and LAPACK available in the scilib library. Each algorithm
was tested varying the problem sizes n and m and values of parameter ¢. CPU
time was measured using the second function and the presented results represent
the best values from multiple runs.

Figures 1 and 2 illustrate the dependency between the performance of Algo-
rithm 1A and the value of parameter ¢ for m = 1 and n = 64000 and n = 1024000
respectively. Results for both Cray’s are reported in M flops.

Algorithm 1A for n=64000, m =1

MFlops

277 327 377 427
parameter q

Cray 8V-1 - - - - Cray C-90

Fig. 1. Performance of Algorithm 1A for various values of q



Algorithm 1A for n=1024000, m =1
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parameter q
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Fig. 2. Performance of Algorithm 1A for various values of q

It was shown above (see Section 4) that the optimal value of the parameter ¢
depends only on the size of the problem n. Our experiments support this claim
and show that this result holds for both machines (the optimal value is the
same on both Crays) even though they have different characteristic parameters
Teo and mj/9. The experimental optimal value of ¢ has been found to be in
close proximity of the theoretically predicted one (excluding values which are
powers of 2 for which the memory bank conflicts affect performance). Thus, in
computational practice, the theoretically predicted optimal value of ¢ can be
used to implement the code.

Figures 3 and 4 depict the relationship between the performance (in Mflops)
and the size of the problem n and the order of the recurrence m (for these
experiments the theoretically predicted optimal value of ¢ was used). In Figure
3 we report the results for n = 64000 and m = 1,2,...,6 for both Crays and all
five algorithms. In Figure 4 we present similar results for n = 1024000.

First, let us observe that the qualitative behavior of the five algorithms is
the same for both machines and is independent of the problem size n.

For m = 1 the Algorithm 1A is the most eflicient. For Algorithms 2 and
3 a performance dip manifests itselfl for m = 2. Starting from m = 2 further
increase in m results in the performance increase. Interestingly, for all values
of m, Algorithms 2 and 3 which utilize LAPACK library routine _-TBTRS are
substantially less efficient than Algorithms 1A and 1B and only barely more
efficient than the Scalar code.

As m increases, Algorithm 1B outperforms Algorithm 1A. This can be ex-
plained as an effect of the application level 2 BLAS matrix-vector multiplication
-GEMV.

Finally, note that the performance of the two Crays depends on the problem
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size (n). For small n Cray C-90 matches the performance of the newer SV-1
(for m = 6 it even outperforms it slightly). The situation changes radically for

Cray SV-1, n=64000 Cray C-90, n=64000
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Fig. 3. Performance of the algorithms for various m
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Fig. 4. Performance of the algorithms for various m

n = 1024K. Here, the Cray SV-1 is almost twice as fast as the Cray C-90.

We believe that from the point of view of the user one of the more interest-
ing parameters is the speedup of the “fancy” algorithms over the basic Scalar
approach. We illustrate this aspect of the problem in Figures 5 and 6. Here we
report the speedup as the function of the problem size n for both machines for
m = 1 and m = 4 respectively. As previously, the optimal theoretical value ¢

was used for algorithms 1A, 1B and 2.



Cray SV-1 for m=1
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Cray C-90 for m=1
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Fig. 5. Speedup of the algorithms for various n
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Fig. 6. Speedup of the algorithms for various n

As previously, the results are qualitatively similar for both machines. In all
cases (independently of n) Algorithms 2 and 3 do not result in a significant
speedup over the Scalar approach. Interestingly, while as n increases (for a fixed
m, speedup of Algorithms 1A and 1B over Scalar increases, as m increases (for
a given m) the speedup decreases. This indicates that the code generated by
the compiler from the Scalar algorithm for increasing m results in improved
efficiency.

Finally let us summarize the results of experiments

— Algorithms 1A and 1B achieve the best performance for values of the param-



eter ¢ close to the theoretical optimal value. The optimal choice of ¢ depends
only on the problem size (and memory bank conflicts).

— The use of Algorithm 1B instead of 1A is profitable when m > 2. This is
caused by the use of the level 2 BLAS routine _GEMV. However, use of _GEMV
requires additional space for gm entries of W.

— The speedup of Algorithms 1A and 1B over the Scalar code increases when
the problem size n increases and decreases when the order of the system m
increases.

— The MFlop performance increases when the problem size n increases as well
as when the order of the system m increases.

— When g = a2 (for integer a, k), performance rapidly decreases. Increase in
the value of k results in further substantial performance degradation. This
is the effect of memory bank conflicts.

— The performance of Algorithm 2 and 3 is rather poor and the algorithms
require additional space. This is a result of the fact that the _TBTRS routine
from LAPACK solves more general problem (2) and does not utilize the
special Toeplitz structure of the matrix L.

— For first order linear recurrences (m = 1) Algorithm 1A is approximately
six times faster then the Algorithms 2 and 3 which use _TBTRS routine
from LAPACK and for large n achieves speedup up to 60 against the Scalar
algorithm based on (1).
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