Large-Scale Scientific
Computations of Engineering
and Environmental Problems

Proceedings of the First Workshop on
,Large-Scale Scientific Computations*

Varna, Bulgaria, June 7-11, 1997

Edited by

Michael Griebel

Olep P. Iliev

Svetozar D. Margenov
Panayot S. Vassilevski

viewed

A New Stable Solver and Block Elimination for
Bordered Systems

Plamen Y. Yalamov
Center of Applied Mathematics and Informatics, University of Rousse
7017 Rousse, Bulgaria
e-mail: yalamov@ami.ru.acad.bg

Marcin Paprzycki
Department of Computer Science and Statistics
University of Southern Mississippi, Southern Station, Box 5167
Hattiesburg, Mississippi 39406, USA
e-mail: marcin@usm.edu

Summary

A block elimination method for bordered systems is studied. The case when the leading
principal block is ill-conditioned, or singular, and the method is strongly unstable, is anal-
ysed. A perturbation approach is proposed to enhance the stability. The new algorithm is
compared to existing approaches, and it is shown that it works faster while preserving the
stability of the solution process.

Key words: bordered system, stable solver, block elimination, fast solver
AMS subject classifications: 65F05, 65G05, 65F30

1 Introduction

Let us suppose that we are given a linear system of equations in the following block form:

(g f})(;").—.(ﬁ) or Mz=b

where A € RY™ B € R™™ C € R™* D € R™™ g, f € R™! y.g € R™! are
matrices or vector blocks. Usually, m is very small in comparison to n. Matrix A4 may be
ill-conditioned, or singular. Such problems arise in various fields, e. g. parallel solution of
banded systems [10], numerical continuation and bifurcation [3, 5, 12, 14], symmetry-breaking
bifurcations [13], constrained optimization [6], and domain decomposition methods [2] and
others.

Typically, a standard black-box solver is applied to the matrix A. When A has some special
structure (e. g. banded, block diagonal, sparse) a special solver is applied which accelerates the
solution process significantly. But, as we mentioned above, this matrix can be ill-conditioned,
or singular. Thus the solver for this matrix can produce incorrect results. We can apply a stable

347

solver for the whole matrix M but then we will loose the structure, and the computational cost
(time) will increase considerably because we do not utilize the properties of matrix A.

In several papers [4, 8, 9] algorithms have been proposed that utilize the information about
the structure of A and allow a stable computation of the solution z. A method for the stable
computation of z proposed in [4] requires the computation of several singular vectors of A, and
at least 3m + 1 solves with A (in the case where A has maximum rank defficiency) are needed.
In [9] a new algorithm presented by Govaerts and Pryce needs 2 solves involving A and 1 solve
involving AT at each bordering step (the number of bordering steps is equal to m). The latter
algorithm is faster and produces quite accurate results.

In the present paper we will develop a new algorithm which produces better timing results
than those in [9] but preserves similar stability properties. The algorithm is based on applying
perturbations to stabilize the algorithm (similarly to, for instance, the methods introduced in
[1, 11]). The general idea is to add relatively small perturbations whenever in the algorithm there
s a division by a small number, which can produce a blowup of the rounding error. Because of
these perturbations we solve not the original problem but a perturbed one. After the algorithm
s finished we apply the usual iterative refinement [7, §3.5.3] to recover the solution of the
original system. This step is cheap because we use a black-box factorization of 4 (e. g. LU
factorization). In practice one step of iterative refinement is enough. So, this results in 1 block
solve and 2 scalar solves involving A in most of the cases. This means that we do not need a
solver for AT, and that the most time consuming part of the algorithm is the LU decomposition
of A. Even if we need more steps of iterative refinement for some matrices this will not lead to
=ssential increase in the computational time. The speedup of the new algorithm comes also from
the fact that we use the BLAS (Basic Linear Algebra Subrourtines) implementation of block
operations whenever possible. These are more efficient on high-performance architectures.
T'he main difference between our approach and the Govaerts-Pryce algorithm [9] is that our
approach is not so sensible to block operations while the algorithm in [9] is quite unstable if
dlock operations are applied.

The outline of the paper is as follows. In Section 2 we summarize the Govaerts-Pryce

ugorithm. Then in Section 3 we present the new algorithm and some theoretical analysis.
Section 4 presents the numerical experiments.

2 The Govaerts-Pryce algorithm

This algorithm has been originally developed for bordering with width I (i.e. m = 1 in our
10tations). For systems with wider borders the algorithm is applied recursively. The algorithm
S summarized as follows:

Step 1. Solve ATV* = CT.

Step 2. Compute §* = D — V*TB.
Step 3. Solve AV = B.

Step 4. Compute d = D — CV.
Step 5. Compute y, = (g — V*T f)/§*.
Step 6. Compute f; = f — By,.
Step 7. Compute g, = g — dy;.

Step 8. Solve Aw = f;.

Step 9. Compute y, = (g; — Cw)/4.
Step 10. Compute z = w — Vs,
Step 11. Compute y = y; + ¥».

348

The stability of the algorithm and a number of examples are given in [9]. The algotihm
is quite stable even for almost singular matrices A. But the stability is guaranteed only for
borders with width 1 (i. e. recursive application for wider borders), and it 1s not difficult to find
numerical examples in which any block bordering leads to strong instability.

3 The perturbation approach

Our approach is based on the following block LU-decomposition of the matrix M:

PLU 0 I, V
v= (1) (5 8)
where V. = A'B,A = D — CV. Here we calculate A = PLU by LU-decomposition
with partial pivoting (this is the most time consuming part of the algorithm). Then if A is ill-
conditioned (or singular) the matrix U has small (or zero) elements along its principal diagonal.

The division by these will lead to a blowup of the error in the final solution.

To overcome this difficulty we perturb the diagonal entries u;; of U by a number § which
will be specified later on. We have

Uy = Uy + 0y, = Uy + Sgn(uy)d,

where
sign(a), ifa # 0,
Sg“(ﬂ)={ i

In this way the growth of intermediate results is bounded to some extent, and we have some
correct digits in the solution. After the perturbation is done the solution 1s computed by an
obvious application of the biock decomposition (1).

Summarizing, the algorithm looks as follows:
Step 1. Compute PLU = A.

Step 2. If |u;| < 4, then perturb u;; = uy; + Sgn(uy;)d.
Step 3. Solve AV = B by the the LU-decomposition.
Step 4. Compute A = D - CV,

Step 5. Solve Az, = f by the LU-decomposition.
Step 6. Compute y, = ¢ — Cz;.

Step 7. Solve Ays = .

Step 8. Compute z5 =z — Vys.

The result of the algorithm is the perturbed solution 27 = (z] y5)7.

Since the solution is perturbed we are probably away from the exact solution. Therefore,
we apply the standard iterative refinement [7, §3.5.3] in order to recover the accurate solution.
Usually one step of iterative refinement is enough to obtain a solution with accuracy close to
the machine precision. This procedure is quite well-known, and we omit it here.

Our purpose is also to estimate the influence of the perturbation. At first glance the influence
is not clear because we perturb some of the intermediate results. But from the equation

i—1
Ui = Qg — zft’juﬁv
j=1

349

which defines the element u;;, we have that
i—1
Uii = Usi + Oy, = azi + Oay — Z ijugi.
i=l1

S50, the perturbation in u;; is equivalent to a perturbation in a;, and both perturbations are equal.
Let us note that a;; is a diagonal entry in the permuted matrix A4 but we stay with the notation
a; for simplicity of notation. This does not influence the final conclusions.

Summarizing, the perturbation of the elements u; is equivalent to solution of the original
problem but with a perturbed matrix M = M + §M, where |0M| < §I. The matrix 6M is
diagonal, where some of diagonal entries are nonzero and equal to 4. Now it is not difficult
to estimate the influence of the perturbation on the error of the solution but we shall do this

together with some roundoff error analysis in the next section. From this analysis we shall
derive a rule for choosing the value of 4.

4 Stability issues

In this section we use the result for the roundoff analysis obtained in [16]. Backward error

analysis (see [15]) for the scalar and the block versions of the bordering method is presented
there in the following form

(M +ep)z =0,

where € is the equivalent perturbation of matrix M, and 3 is the computed solution. A bound
of the following type is derived for £, in our notations:

leatlloo < Cnsm K || M || oo po, (2)

where ¢, 1., is a constant linearly depending on the matrix size n -+ m, K is a bound for the
growth factor (growth of intermediate results), and po 1s the machine roundoff unit. We shall
use this bound here for the perturbed matrix M + §M:

(M +06M +e5)z5 = b, (3)

where we assume that the bound 2 is also valid. The subscript § denotes that the solution is
computed with perturbations (possibly).

The term ¢,,,,, K is difficult to bound in our algorithm. Since we do not allow divisions by
numbers less than § we model this term by

Cn+mK ~ 1/'551

where s is again difficult to estimate. Then from (3) simple perturbation analysis (after some
manipulations) produces the bound

25 = 2lles _ _A(M)(3 + po/5)
[l = T= (M) + po/6%)

k(M) = ”Mﬂ”m”M”m}
provided that || M|, > 1 (which can be assumed true by some type of scaling).

(4)

350

We would like to have as small error in the solution as possible. Therefore, the value of § is
chosen so as to minimize the expression in the brackets on the right hand side of (4):
§ = (spp)'/+Y.
From our extensive practical experience (including a large set of random matrices) we observed

that the value of 1 < s < 2 is most probable (in most of the cases s = 1). Therefore, we

recommend the value of 6 ~ ,/py. In all the numerical experiments this value is chosen equal
to 10~* in single precision (py =~ 10~7).

5 Numerical tests

We present the results from tests with random matrices in single precision (pg & 10~7). The
exact solution in all the examples is chosen to be z = (1,...,1)7. The value of § in all the
examples is 1074,

The matrices A are generated randomly as follows:

A= Hl e Hlugdiﬂg(o,ﬂ, U,{J? + U[M.Tl,[}? -+ []04(?1 - l), vy U.BﬁJHmI . ngg,

where

Hy =1 - 2hh7,

and Ay is a vector of unit length which entries are random and uniformly distributed in [0,1].
Similar example matrices are used in [9].

Figures 1,2 present experimental results from SGI POWER CHALLENGE 8000 (SGI PC
8000), and Figures 3,4 from SGI POWER CHALLENGE 10000 (SGI PC 10000) supercom-
puters. In each figure the first picture shows the time, the second one shows the speedup (i. e.
time of the Govaerts-Pryce algorithm over time of the perturbation approach), and the third
one presents the forward error [|Z — z||oo /|2l in the computed solution Z. For more clarity
in the pictures representing the error we include also information about the machine precision
po = 107, We have made experiments with other values of n achieving similar results.

All the results lead to the following observations:

I. The computational time for the Govaerts-Pryce algorithm grows linearly with m, while

the computational time of our approach is almost constant when m varies. This is due to
the increased speed of blocked BLAS-based operations.

2. The perturbation approach works several times faster, and the speedup grows linearly
with m. Let us note that in all the examples the perturbation approach needs only one
step of iterative refinement.

3. The computational times on both SGI PC 10000 and SGI PC 8000 are almost the same
(the former is slightly faster but the difference is so small that it can not be seen from the

graphs). This result is slightly surprising as the speed of the floating point operations on
the 10000 machine should be about 25% faster than the 8000 machine.

4. The error in both algorithms is similar. In most of the cases the perturbation approach
produces a slightly better error.

5. The error does not change essentially with m.

351

n=200

Time (seo)
o
O

Speedup
. o
(- o)

Figure 1. The computational time (a), the speedup (b), and the error (c) on POWER CHALLENGE 8000 for
both algorithms: Govaerts-Pryce (continuous line), perturbation approach (dotted line}; n = 200,m = 1,...,19,
and the dashed line denotes the machine roundoff unit

352

nh=200

100 | | .
=
R
8 50| |
I—
0, : |
TR
40 | | |
Q
'Ezm |
W
DD é | 15 20
10" | E’S .
10 | |
10'80" 5_ - 15 — 30
o

Figure 2: The computational time (a), the speedup (b), and the error (c) on POWER CHALLENGE 8000 for
both algorithms: Govaerts-Pryce (continuous line), perturbation approach (dotted line); n = 900,m =1,...,19,
and the dashed line denotes the machine roundoff unit

353

n=200

100 . 1 :
S
jﬁ 50
£ |
i
0 5 aﬁ 15 20
40 . . |
3
320 | -
&
)
0 { | |
0 5 15 20
D S
10 ; | ;
505 | MO
Ll
10-100- 5 | 15 20
(o

Figure 3: The computational time (a), the speedup (b), and the error (c) on POWER CHALLENGE 10000 for
both algorithms: Govaerts-Pryce (continuous line), perturbation approach (dotted line); n = 200,m = 1,...,19,
and the dashed line denotes the machine roundoff unit

354

1.5

=5

Time (sec)
-
o1

o=

h=200

. .15.. e

20

Figure 4: The computational time (), the speedup (b), and the error (c) on POWER CHALLENGE 10000 for
both algorithms: Govaerts-Pryce (continuous line), perturbation approach (dotted line); n = 900,m = 1,..., 19,

and the dashed line denotes the machine roundoff unit

355

Let us also note that we used one processor each time on the SGI machines. So, multipro-
cessing was not an issue in these experiments. The behaviour on both SGI machines was similar

because the code is written mostly in terms of BLAS kernels, and these have been optimized on
SGI PC 8000, but not on SGI PC 106000.

Acknowledgment

This work was supported partially by Grant MM-434/94 from the Bulgarian Ministry of Edu-
cation, Science, and Technologies. The work was started under the COBASE program from the

National Research Council. Computer time grant from NCSA in Urbana-Champain 1s kindly
acknowledged.

(1]

(3]

(4]

5]

6]
[7)

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

356

References

S. M., Balle and P. C. Hansen, A Strassen-type matrix inversion algorithm for the Connection Machine,
Report UNIC-93-11, October 1993,

J. Barlow and U. Vemulapati, An improved method for one-way dissection with singular diagonal blocks,
SIAM J. Matrix Anal. Appl., 11 (1990), pp. 575-588.

T. F. Chan, Newton-like pseudo-arclength methods for computing simple turning points, SIAM J. Sci. Stat.
Comput., 5 (1984), pp. 135-148.

T. F. Chan and D. C. Resasco, Generalized deflated block elimination, SIAM J. Numer. Anal., 23 (1986), pp.
913-924.

D. W. Decker and H. B. Keller, Multiple limit point bifurcaton, J. Math. Anal. Appl., 75 (1980), pp. 417-
430,

P E. Gill, W. Murray and M. Wnight, Practical optimization, Academic Press, New York, 1981.

G. Golub and C. Van Loan, Matrix Computations, 3rd edition, John Hopkins University Press, Baltimore,
1996.

W. Govacents, Stable solvers and block elimination for bordered systems, SIAM J. Matrix Anal. Appl., 12
(1991), pp. 469-483.

W. Govaerts and J. D. Pryce, Mixed block elimination for linear systems with wider borders, IMA J. Numer.
Anal., 13 (1993), pp. 161-180.

I. N. Hajj and S. Skelboe, A multilevel parallel solver for block tridiagonal and banded linear systems,
Farallel Computing, 15 (1990), pp. 21-45.

P. C. Hansen, P. Y. Yalamov, Stabilization by perturbation of a 4n® Toeplitz solver, Preprint N25, Technical
University of Russe, January 1995,

H. B. Keller, The bordering algorithm and path following near singular points of higher nullity, SIAM J. Sci.
Stat. Comput., 4 (1983), pp. 573-582.

B. Werner and A. Spence, The computation of symmetry-breaking bifurcations, SIAM J. Numer. Anal., 21
(1984), pp. 388-399,

B. Werner, Computation of Hopf bifurcation with bordered matrices, SIAM J. Numer. Anal., 33 (1996), pp.
435-455.

J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.

P. Y. Yalamov, The bordering and the block bordering method, in: Advances in Parallel Computing, (1.
Dimov, O. Tonev eds.), IOS Press, 1994, pp. 60-65.

	big.gif
	big0001.gif
	big0002.gif
	big0003.gif
	big0004.gif
	big0005.gif
	big0006.gif
	big0007.gif
	big0008.gif
	big0009.gif
	big0010.gif

