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Abstract—Machine learning frameworks, like Tensorflow and
PyTorch, use GPU hardware acceleration to deliver the needed
performance. Since GPUs require a lot of power (and space)
to operate, typical use cases involve high-performance servers,
with the final deployment available as a cloud service. To address
limitations of this approach, AI Accelerators have been proposed.
In this context, we have designed and implemented a library of
neural network algorithms, to efficiently run on “edge devices”,
with AI Accelerators. Moreover, a unified interface has been
provided, to allow easy experimentation with various neural
networks applied to the same dataset. Here, let us stress that
we do not propose new algorithms, but port known ones to,
resource restricted, edge devices. The context is provided by a
speech synthesis application for edge devices that is deployed on
an NVIDIA Jetson Nano. This application is to be used by social
robots for real-time off-cloud text-to-speech processing.

Index Terms—speech-synthesis, AI accelerators, optimization

I. INTRODUCTION

The term, AI Accelerator (AIA) is, usually, designated for
hardware specifically built to increase the performance of
neural network (NN) models, by matching the structure of
computer hardware with that of the trained/applied neural
network. These systems are, typically, edge devices with less
computing capabilities than the large, full-scale, GPU systems.
However, they can power real-time neural models, e.g. for ob-
ject detection or image classification. AIA’s often materialize
on small, single board, computers, to deliver cheap decentral-
ized smart systems, which can be taken off the cloud. Since
the AIA’s have appeared only recently, novel applications,
outside of computer vision, continue to emerge. In this context,
responding to the actual needs of the SmartLife company,
AIA’s are being explored (their capabilities and limitations)
in, among others, accurate real-time speech synthesis and
recognition, and motor PID controls. Here, we are interested
in scenarios where the AIA’s are placed on-board of the target
devices and work “autonomously”. Let us note that, in this
context, autonomy means that the device will not be connected
to the Internet (i.e. to the cloud service). This is needed since
SmartLife is developing social robots (designed to interact
with humans in a natural way).

Therefore, the goal of this work is to explore ways of
delivering an NN-based solution, to be placed (off-line) on a
social robot, to synthesize, in real-time, natural speech, based
on text inputs. In this context, existing NN algorithms were

turned into a library, deployed on the NVIDIA Jetson Nano.
Moreover, a unified interface for the library was developed, to
allow experimenting with different NNs, applied to the same
dataset, and to fine tune the NN model. Model tuning, in
speech synthesis, means, among others, balancing the quality
of generated speech and the speed of speech generation.
Moreover, a customized API, for using the model on edge
devices (in production systems), was also developed, allowing
modular functions for preprocessing input text, synthesizing
output, and post-processing speech for playback. Note that,
since SmartLife is an SME, the developed software is its
intellectual property and, at least for the time being, will not
be open sourced. Therefore, material presented here is the
maximum that the company decided to release at this time.

This being said, the remaining parts of this work are orga-
nized as follows. We start with a summary of the related works
that were studied to understand of the evolution of state of the
art in embedded speech synthesis solutions, over the past few
decades. This is followed by the design considerations for the
components in our proposed solution. We also provide details
of the models incorporated and how they were trained, using
our custom dataset, and optimized for embedded platforms.
The evaluation results of our library’s performance on different
platforms is discussed before stating the concluding remarks
and enumerating limitations of our system.

II. RELATED WORK

Over the last 15 years, a very large amount of research
has been devoted to application of NNs in speech generation
and recognition. However, it can be easily noticed that most
of considered models rely on the processing power provided
by (large) cloud systems. Obviously, until recently, there was
no need for edge-device-focused work. Only in 2019, Google
launched a speech-to-text model [1] on the Gboard in the
Pixel phones, which allows offline, on-device, recognition in
real-time. While typical models used for this purpose require
almost 450MB of space, the Google model uses only 85MB.

Keeping this in mind, let us now discuss the state-of-the-art
in speech synthesis on embedded devices, and methods that
make the model smaller and more efficient. Note that, while
some presented results concern also speech recognition, in this
work we are interested only in speech synthesis. Moreover,
while some presented works are not focused directly on speech



synthesis, they propose how NN models can be converted,
or pruned, for the deployment on resource restricted devices.
These proposals may consider methods that are very different
from the one used in our work but, nevertheless, are of direct
interest, as they have the same overarching goal in mind, i.e.
how to take a large NN model and make it “smaller” to run
on a limited-resource device.

In [2], Black and Lenzo reported on the design of a small
and fast library, called Flite that is suitable for embedded
systems and servers, generating voices based on text input.
Moreover, the size and speed were given high priority. The
proposed system consists of three parts, to accomplish the
voice synthesis: language model, lexicon and voice. In the
language model, it provides: (i) phoneset, (ii) tokenization
rules, (iii) text analysis, and (iv) prosodic structures. The lexi-
con deals with the calibrating rules, for the vocabulary words,
based on the letter to sound rule. The language segment, and
the lexicon, can be expressed in the same language. However,
they have separate, individual, libraries. The voice segment
is the prosody model, based on a speaker, and is defined by
the primitives provided by the language model. As the library
is written in C++, it supports cross-platform functionality.
In order to ensure the efficiency of the Flite system, voice
samples, with frequency of 8KHz, were collected. However, it
should be noted that these 8KHz samples result in a very low
quality. Overall, Flite is a small and fast embedded system
based on a library server, but does not deliver quality that
would be acceptable for the intended use in social robots.

Statistical approaches, like the Hidden Markov Model
(HMM), gained popularity after 1999 (see, [3], [4]). They
generate similar-sounding speech clips, based on voice pa-
rameters. This is completely different from the unit selection
method that used speech segments from the database. The
HMM is used to generate a complex acoustic model, while
(i) reducing the footprint, (ii) tuning parameters, and (iii)
delivering separate control over the voice spectrum, magni-
tude, and duration. Separately, HMM provided techniques used
in speech recognition. The drawbacks of this approach are
mainly related to the acoustic modeling accuracy, and the over-
smoothing of the output waveform, resulting in poor quality
of speech. Even though there have been several attempts at
overcome these issues, they requires careful design and tuning
of each individual component parameter to ”get it right”.

The, IBM proposed, stylistic synthesis [5] was one of the
first approaches to showcase variations in recordings. How-
ever, this approach requires large databases that can be costly
and very difficult to create. Moreover, it does not support
running speech synthesis on restricted-resource devices.

In the work, described in [6], an expressive speech, based
on the Emotion Markup Language [7], and the MARY Text-
to-Speech (TTS), are introduced. Here, an audiobook, built-in
the HMM-based voice, segregated according to voice styles,
is used to create an expressive unit selection. Principal com-
ponent analysis, based on acoustic features, acquired from
segmented sentences, is used to segregate the audiobook data.
Note that the voicing strengths, extracted from several bands,

and the voicing rate, have very good mutual relationship with
expressivity, in the audiobook data.

In [8], the authors proposed Quantized Convolutional NN
(CNN) that allows to simultaneously speed-up the computation
and reduce memory and storage overhead of the models. They
managed to quantize the filter kernels in the convolutional and
fully connected layers of the CNN, while aiming at minimizing
the error in each layer’s response. As a result they were able
to achieve a 4-6x speed-up, and up to 20x compression, with
just 1% of loss in accuracy. This work was one of the first
attempts to explore reducing the precision of the models from
floating 32bit to integer 16bit, or 8bit, while retaining the
accuracy of the results. Nowadays, frameworks, like Tensor-
flow, allow post-training quantization and quantization-aware
training. This allows the models to be quantized in later stages
of the deployment, matching the device to be used.

In 2016, a system called Idlak Tangle [9] was proposed.
It is a library, based on the open source speech recognition
system. Speech is modeled using a deep neural network
(DNN). It is a system, in which text processing happens
in the front end. Here, the vocoder, used at the output, is
based on a mixed excitation Mel log spectrum approximation
(MLSA) [10]. Experimental results showed that the systems
attained higher scores in the MUSHRA tests [11] and proved
that it sounds more natural and performed better than the
HMM-based Speech Synthesis System solutions. Based on
the research reported in this paper, it can be stated that Idlak
Tangle is the first DNN-based parametric synthesis system,
with no usage restrictions. However, this solution is still not
considered as the current state of the art as the vocoder model,
used there, produces largely invariant, or monotonous, speech.
While we draw inspiration from the Open Source approach of
Tangle, we focus on improving the system’s capabilities, as it
is neither better nor worse than the proprietary HMM-based
solutions.

In the 2018 paper [12], the architecture proposed by Google
in [13], was improved, by incorporating a Wavenet based
vocoder for the final stage of voice synthesis, rather than
the, earlier considered, Griffin-Lim method [14]. Wavenet
model [15] is a fully probabilistic and autoregressive deep
neural network model for generating raw audio waveforms,
with the predictive distribution for each audio sample con-
ditioned on all previous ones. The system consisted of: (a)
prediction network, (b) Mel scale spectrogram, and (c) a
modified Wavenet model. The prediction network compiles
a recurring sequence, which is mapped to the Mel scale
spectrogram. After the mapping, a modified Wavenet model
is used by the vocoder. This Wavenet is trained separately,
usually by feeding the model spectrograms and audio samples.
This approach has been experimentally shown to outperform
its predecessor. Nevertheless, even after simplification, this
model is suitable only for large scale servers, and high powered
GPUs. However, the cited paper contains an important idea
of using the simpler Long short-term memory (LSTM) cells,
instead of, more complex, Gated Recurrent Unit (GRU) cells,
for the Recurrent NN (RNN) to simplify the model.



In summary, works summarized above proved capable of
solving smaller parts of the overall problem we need to solve
to have a lightweight offline speech synthesis solution for a
social robot. Statistical models based on HTS and rule based
systems were light enough to be portable, while DNN-based
systems provided rich expressive voice, while allowing for
quantization to compensate for their large sizes.

III. DESIGNING SPEECH GENERATOR FOR
RESOURCE-RESTRICTED DEVICES

Taking into account the presented background, let us now
discuss the proposed approach to speech generation. First, let
us summarize the existing devices, platforms and frameworks,
to outline the main idea as to why each of them can be
considered for the final solution.

A. Devices, platforms and frameworks

Recall that the aim of this work is to design TTS solution
for social robots (their controller boards). Hence, we have
analyzed Single Board Computers (SBCs) and the add-ons
that they support. The most popular SBC is a Raspberry Pi.
Therefore, a Raspberry Pi 3B+ that has an on-board 64-bit
ARM SoC, with 1GB RAM, and multiple communication
buses and interfaces, was selected for initial prototyping. Since
its operating system, is a Raspbian OS, a Linux-based environ-
ment (with some unimportant deviations) was available. These
devices have also Bluetooth and WiFi connectivity, as they are
intended, among others, for IoT applications.

The second platform that was considered was Intel Movid-
ius. Here, however, we have run into a number of issues with
the existing, at that time, version of Open Vino framework.
Since, we are told, these issues have been already solved, we
only mention this as a reason why Movidius was not pursued
further. At the time of our research, we could not use it.

Therefore, the Nvidia Jetson Nano platform was considered.
This SBC has an onboard GPU and a newer 64-bit ARM
processor, with 4GB RAM, WiFi, Bluetooth and GPIO inter-
faces, similar to that of the Raspberry Pi 3B+ model. It uses
an Nvidia’s custom version of Ubuntu 18.04 LTS with their
GPU drivers, and the CUDA SDK. This makes it compatible
with popular machine learning frameworks, like Tensorflow
and Pytorch. Moreover, it allows training of small models
onboard, with full GPU support, which is very attractive for
deployment of AI models to small robots.

Mentioned Tensorflow is a, Google developed, library for
machine learning. The library code is production-ready, and
supports multiple model pipelines, device architectures, and
development frameworks. It also provides tools to prune and
optimize the model to reduce its time and memory footprint.
Although the base code is in C++, it has wrapper libraries in
Python, Java and Javascript. Additionally, the Tensorflow Lite,
and an experimental Tensorflow Micro, help trimming down
resources required for mobile devices and microcontrollers.

PyTorch is a machine learning library developed by Face-
book. Comparing their most recent releases we have found
that Tensorflow is more suitable for production models, and

scalability. PyTorch, on the other hand, is somewhat better for
rapid prototyping. Thus, we used both frameworks.

B. Speech synthesis algorithms

For implementing TTS systems, on low powered devices,
selecting the right approach is crucial. There exist multiple
options with different resource demand and quality level. Let
us summarize approaches selected for the TTS, on the basis
of experiments (details of which are out of scope, here).

1) Tacotron: Tacotron was first proposed by Google in
the 2017 (see, [13]), and later improved ( [16], [17]). It
is a more complex version of the standard encoder-decoder
structure. It consists of a custom component that consists of
a convolutional bank, highway networks, and a bidirectional
RNN. As noted above, in our work, in the RNN, the GRU
cells have been replaced with the LSTM cells, as they have an
extra gate that can help when processing longer sentences. This
model relies on external vocoders to convert the spectrogram
output, of the encoder-decoder, to the waveform.

2) Deep Voice 3: Deep Voice 3 was proposed by Baidu
in 2017 [18]. It is also encoder-decoder-based, but relies on
CNNs (without RNN components). It is one of the fastest
available models. Compared to all available, at the time of our
work, TTS systems, Deep Voice 3 was the only one with a
comparable quality to the Tacotron. Therefore, our library was
developed in such a way to allow switching between Tacotron
and Deep Voice 3, while using the same vocoder.

3) Griffin-Lim Algorithm: Finally, recovery of the audio
signal from the spectrogram is done using the Griffin-Lim
Algorithm (GLA; [14]), based on the short-time Fourier
transform (STFT) redundancy. The resulting spectrograms are
consistent, due to the STFT’s redundancy. The GLA is focused
on consistency and does not take into consideration any prior
knowledge of the target signal.

C. Architecture of the library

Since the aim of our work was to design a library, for the
social robot platform, a simple API was needed to configure
the model, send text inputs to run on the model, and a response
mechanism to return the generated speech data, or play it. To
maximise modularity, the code was split into synthesizer, text
processor, audio processor and request handler components.

1) Text Processor: The text processor takes the text (input)
from the request handler and converts it to a vector of
numeric values, to be fed to the network. Raw text input is
preprocessed. First, the text is converted to ASCII form, then
punctuation is added to the end of the sentence (if not present).
Text is converted to lower-case letters. Common abbreviations
are expanded, while numbers and currency symbols are turned
into text, for the synthesizer to be able to say them. Finally,
unwanted white-spaces are trimmed. This text is then con-
verted to numbers. However, we added also possibility of using
ARPAbet [10], which provides a phonetic form of a word, or
a sentence, to be pronounced in an expected way.



2) Synthesizer: Synthesizer runs the neural network model
and synthesizes the audio waveform, from the input text. This
part of the library contains configurable parameters, which are,
initially, set up to balance speech quality and inference time.
The inferencer can run on the Tensorflow, or the PyTorch,
frameworks. Once the synthesizer is loaded, an initial run of
the model might be required to “warm it up”. This can lead
to longer run time of the first run.

3) Audio Processor: The audio processors’ role is to apply
low pass filters, or audio gain adjustment, to the raw waveform
generated by the synthesizer, and to assure that the audio
playback is carried smoothly. It also provides direct control
for the request handler to interrupt, or queue, multiple audio
fragments to be played.

4) Request Handler: This component is responsible for
handling HTTP, or Message Queuing Telemetry Transport
(MQTT), requests. Note that the MQTT protocol is lightweight
and thus more suitable for the Internet of Things messaging.
The created application stack uses an MQTT broker running
in the background, allowing subscription for the ”TTS” topic
requests, from any other application.

D. Inference pipeline

The inference pipeline is embedded within the edge device
that is the core of the social robot. It is to communicate
with users through voice commands, and expected to “talk
back”. When the robot shall say a text, it is generating a
TTS command for the TTS pipeline, to play audio as soon
as possible.

The TTS pipeline has two goals: a) to perform TTS
processing (preprocessing input text, encoding it, generating
spectrograms, and audio waveforms) on the device itself,
without use of external resources, and b) to perform the TTS
task in real-time, i.e. the total time of processing the pipeline
for a single sentence should not exceed the total time of
generating waveform for that sentence. The delay between
initiating TTS processing, and start of hearing voice was
imposed to be 1 second (or less). This value corresponds to
known findings in Human-Robot Interaction studies [19].

IV. IMPLEMENTATION OF MODEL

Let us now present the details of the implemented model,
and the optimizations performed to attain low latency speech
synthesis. This optimization is achieved by speeding-up matrix
operations of the network, and using third-party libraries to
speed-up math operations in Python, to achieve speeds similar
to those obtainable in C++.

For their speed and quality, Google’s Tacotron and Baidu’s
Deep Voice 3 were selected, for the developed library. All
optimizations were done post-training, to the frozen models,
using techniques specified below.

A. Synthesizers

The Tacotron architecture was used for the primary default
synthesizer, with few changes made to suit our needs. The
fundamental structure of Tacotron is a seq2seq model with

attention [20], [21]. It takes characters as input, and generates
spectrogram frames, used to create a waveform data using a
vocoder. Unlike the original model, we use the LSTM cells in
the attention and decoder units, to compensate for the memory
loss that will occur when the model is optimized. Figure 1
shows the components that make up this model.

Fig. 1. Tacotron based architecture with bi-directional LSTMs

The second synthesizer is the Deep Voice 3 architecture,
which consists of three parts that are similar to the Tacotron,
but differ in the type of network used. Deep Voice 3 is a fully-
convolutional model. To ensure minimal attention errors, in the
production TTS system, a monotonic attention mechanism, as
described in [22], instead of the usual attention mechanism,
has been applied. The structure of this model is presented in
Figure 2.

Fig. 2. Architecture of the Deep Voice 3 based model

B. Vocoder

The phase signal reconstruction, from the spectrogram out-
put of the decoder, is done using the GLA. When given
a magnitude spectrogram, to produce time-series data, the
algorithm works in the following manner.

1) Initialize complex matrix with magnitude values as real
part, and uniform noise values as imaginary part. This
gives amplitude value, but no phase information.

2) Apply inverse Short-Time Fourier Transform (ISTFT) to
get time series data from amplitude information.

3) Apply Short-Time Fourier Transform (STFT) to the time
series, to obtain initial phase information, which will be
inaccurate as the time series is of low quality.



4) Replace the real values received from the STFT with the
original magnitude values to preserve the amplitude.

5) Iterate over steps 2-4, each time gaining more phase
information.

6) Stop when the phase information is satisfying, or when
the process converges.

What needs to be assured is that the duration of the output
signal does not differ a lot from the original time series. Since
above steps involve multiple matrix operations, they are time
consuming. Hence, Tensorflow implementation of STFT and
ISTFT that utilizes GPU (if available), and CPU-optimized
implementations of STFT and ISTFT, were applied.

V. DATA USED IN EXPERIMENTS

Like for any neural networks, the quality of results depends
on the quality of the data used to train it. Hence, we had
to provide several hours of audio data, along with their text
transcriptions. We had to ensure that the training data has a
diverse combination of words, to assure that the model “can
handle” the text on “any” topic. For initial evaluation, the
model was trained on a single speaker data. Obviously, multi-
speaker scenario is much more complex, and is outside of
scope of current contribution.

Usually, for speech synthesis, the English language is used
and training involves the, so called, Linda Johnson (LJ) Speech
dataset. This is a public dataset, consisting of 13,100 short
audio clips of a single speaker reading passages from 7 non-
fiction books. A transcription is provided for each clip. Clips
vary in length from 1 to 10 seconds, and have a total length
of approximately 24 hours. The texts were published between
1884 and 1964, and are in the public domain. The audio of
the texts, read by Linda Johnson, was recorded in 2016-17.

Although the files are good quality, their content is outdated,
and does not contain words that are commonly used today.
This is unacceptable for modern social robots. To overcome
this issue we needed a dataset with a wider vocabulary. Since
we already had 24 hours of audio data we decided to add
several more hours of new data. This data was obtained from
BBC, in the form of articles from news website corresponding
to stories, in five topical areas, from 2004-2005. The areas
are business, entertainment, politics, sports, technology. This
dataset consisted of 2225 documents, with each containing few
short articles. Before we could train the model the data needs
to be split into the form of sentences so each sentence and it’s
audio can be used as a [text,audio] sample pair provided in
a comma separated file for the training code. Since it is not
possible to generate the BBC text dataset’s audio using the
same voice as LJ dataset, we had to generate all sentences from
both datasets using the same voice, to ensure consistency. This
was achieved by extracting the text data from the LJ dataset
and combining is with the text from the BBC dataset.

Also, a preliminary analysis was done for the dataset, to
understand the lexical diversity. Lexical diversity is a ratio
between the number of unique words (excluding stop words
such as “the”,”a”, etc., and non-alphabetic characters) and

the total number of words. This was done using the NLTK
(Natural Language Toolkit) library.

Fig. 3. Lexical diversity comparison for speech datasets

TABLE I
COMPARISON OF THE SPEECH TRAINING DATASETS

Feature Datasets
LJSpeech BBC

Duration 23.4 hours 26.7 hours
Unique Words 14986 17058

Figure 3 shows the lexical diversity of the two datasets (LJ
and BBC) individually and after combining. The notable drop
in lexical diversity for the combined dataset is due to the sheer
volume of the text. Table I further illustrates the statistics of
the text dataset and the duration of generated audio files, which
were used for training. Slightly more audio of the BBC dataset
was used, as it contained a more diverse set of words that are
suitable for a modern vocabulary.

For the combined dataset, we applied basic preprocessing.
Using the NLTK, articles were tokenized to sentences. Un-
wanted expressions, and symbolic characters were removed.
Sentence-tokens that were too small to be spoken sensibly, or
that were non-unique (like 37m/h – meaning meters or miles
per hour) were removed.

To provide a voice for the collected data, the Google’s Cloud
Text To Speech engine was used, as it provides high quality
natural sounding Wavenet voices. It uses large Text-To-Speech
models, on GPU farms, running Wavenet vocoders in real time.
Note that this makes then useless for our assumed scenario.
All audio was turned into WAV files with constant 32kbps
bit rate, and sampling rate of 24,000Hz, varying from 1 to
15 seconds in duration each. The complete dataset contained
24,837 audio files with a total size of 8.3 GB and total duration
of 50.1 hours.

VI. MODEL TRAINING AND OPTIMIZATION

The training was carried out on Microsoft Azure Cloud. The
audio files were preprocessed to generate numpy array files,
with spectrogram information, which was used for training
Tacotron, and Deep Voice 3 models, as ground truth for



the text input provided for the corresponding audio files.
Figure 4 shows what is expected from the different stages
of training process of an encoder-decoder model. The encoder
and decoder time steps should match, forming a clear diagonal
line. This denotes that there is a direct correlation between the
input and the output, at the same time step. The speech was
“sounding human” in around 3000 steps, and started being
intelligible after approximately 6000 steps. It was trained for
a total of 30000 steps, in the final model, used for live tests.

Fig. 4. Encoder and decoder alignment progress in training

The training lasted 8-10 hours, for the hyperparameters
summarized in Table II. Note that a lower batch size, or
learning rate, like 16 and 0.001, respectively, can make the
training process take over 10 hours to complete. Increasing the
batch size allows the model to take more samples at a time
and allows it to learn faster. Increasing the sampling rate also
makes the training slower but can give better quality sound.
Increasing the batch size and learning rate over the above given
values resulted in model “not learning”. The time taken for
each step, for the Deep Voice 3 model, was considerably lower
than the Tacotron, so the step count is not a representative
parameter. The reported Adam optimizer beta 1 and 2 values
provided the fastest results with reasonable accuracy.

TABLE II
TRAINING PARAMETERS FOR SYNTHESIZER MODELS

Parameter Tacotron Deep Voice 3
Mel frequency banks 80 80

Sampling Window 1024 1024
Batch Size 32 16

Sampling Rate 24000 22050
Initial Learning Rate 0.002 0.0005

Beta 1 0.9 0.5
Beta 2 0.999 0.9

Training Iterations 33000 640000

A. Optimization of trained model

There were several methods applied to optimize the model.
Let us now describe them in some detail.

1) Freezing and Pruning: Freezing the graph is the most
basic form of optimization. The model files have the weights
represented as constant operations in the graph definition,
and as Variables in the checkpoint files. Redundant storage
can be removed by combining the two, reducing the model
size. This eliminates the requirement that weights be loaded
and combined separately, resulting in a lower overhead while
loading the model. This procedure decreases the model’s total
size by a reasonable amount. After freezing, transforms can
be applied to the graph.

(A) Node removal. Here, single-input-single-output nodes
can be removed and their actions delegated to the preceding
nodes. This operation is “dangerous” because it’s possible that
removing some nodes may change the output of the model,
so model accuracy check is required.

(B) Merging duplicates. Specifically, constant nodes with
the same types and contents, or nodes with the same inputs
and attributes, can be merged. This operation can be useful in
a graph with a lot of redundancy.

(C) Stripping unused nodes. This removes all nodes not used
in calculating the output layers fed by inputs. For instance,
this removes training-only nodes, like save-and-restore, or
summary, operations.

(D) Folding. Fold constant nodes operation, searches for
any sub-graphs, within the model, that always evaluate to
constant expressions, and replaces them with those constants.
This optimization is always executed at run-time, after the
graph is loaded. Hence, running it “offline” won’t help latency,
but it can simplify the graph. Folding of batch normalization
nodes scans the graph for any channel-wise multiplies and
applies them so that this can be omitted at the inference time.
This is performed after folding the constants, as the pattern can
be spotted only if the normal complex expression collapsed
down into a simple constant.

2) Third party libraries: During the training, a Google-
developed TCMalloc library [23] was used to speed up the
memory allocation, thread caching, and garbage collection.
This allowed for each training step to be about 40% faster.
Usually each thread has its own arena of space allocated. When
it finishes, the next thread cannot use the space and allocates
the needed space elsewhere. TCMalloc allocates a thread-local
cache instead. As needed, objects are moved from the central
data structures to the thread-local cache, and periodic garbage
collections migrate memory back.

A GPU supported implementation of GLA was used within
the Nvidia Jetson platform. Moreover, LibROSA, package for
audio analysis was used to implement fast CPU version of the
Griffin-Lim algorithm, for the Raspberry Pi. To handle matrix
operations, during runtime, Numba Python compiler, with the
LLVM library was used.



VII. EVALUATION OF RESULTS

The research objective was real-time speech synthesis, on a
single board computer. It was expected that, for example, an
audio of 5 seconds will be synthesized, on the device, within
5 seconds or less. This goal was, mostly, achieved.

A. Speech synthesis quality and speed

Realistically speaking, speech quality needs to be evalu-
ated by humans, to judge factors like intelligibility, prosody,
intonation and pronunciation. To remain objective, we focus
on spectrogram analysis, to explain changes in quality, as
related to the vocoder parameter. Here, the parameter is the
number of Griffin Lim iterations, used while recreating the
audio waveform from the network generated spectrogram. This
is the main factor (other than model optimization) that defines
the balance between speed and quality.

In Figure 5 we present the spectrograms of the same
sentence being spoken by three different models. The top is
the Tacotron with 5 Griffin Lim iterations, the second is also
the Tacotron but with 60 Griffin Lim iterations, and the last
one is the Deep Voice 3 with 60 Griffin Lim iterations.

Fig. 5. Spectrogram comparisons for synthesizers

In areas marked A and B, there is a noticeable clarity in the
onset of the frequency spectrum, as B compared to A. This is
heard even in the audio, as the words are clearly separated and
have a distinct onset. Comparing areas marked B and C, with
D and E, we see a lot of missing frequencies in area D, and a
mixture of several frequencies in area E. This is also visible
in other areas that are not marked. When we compared the

generated audio, this difference was pretty evident, as there
was no clear distinction between different sounds.

As illustrated in Figure 6, time taken for the model to syn-
thesize the audio of length 6.8 seconds, on different devices,
varying the number of Griffin Lim iterations, differs mostly
in CPU only tests, when compared to the devices with the
GPU. The performance on the CPU, without any acceleration,
dropped exponentially, as the number of iterations increased.
The Jetson Nano, on the other hand, is able to deliver real-
time performance, even when the iteration number increased.
This is, in part, due to the fact that the Griffin Lim algorithm
uses Tensorflow and can run in parallel on the GPU.

Fig. 6. Inference speed comparison chart

B. Optimization results
With the optimizations summarized in Section VI-A1 the

size and complexity of the model was reduced by almost 3
times, as summarized in Table III. Hence, the model loads
faster and is portable across resource constrained devices,
while the quality remains indistinguishable to the human ear.

TABLE III
MODEL OPTIMIZATION STATS

Features Optimization GL Iterations
Before After 20 60

Network Nodes 12295 1069 3400 7851
Model File Size 89.31 MB 30.02 MB 30.53 MB 31.51 MB

VIII. CONCLUDING REMARKS – LIMITATIONS

This contribution summarizes initial work on delivering
Speech-to-Text capabilities to social robots, using single board



computer systems with limited resources. By combining, ap-
plying and optimizing existing algorithms/techniques promis-
ing results have been achieved.

However, we have noted a number of limitations of the
developed solutions (even in their most advanced versions).
(1) The trained model lacks speed when running on pure CPU
based machines. This is caused, primarily, by the requirements
of the Griffin-Lim algorithm. (2) While the quality of speech
is great, for a portable real-time model, it does not have capa-
bilities of the newer generation vocoder solutions [24]. These
vocoders produce a lot of acoustic features of human speech
that algorithms, considered in this work, cannot compete with.
(3) There is less customizability with the speaker voice, as
only single speaker TTS models were tried. (4) The sensitivity
of the model does not allow for lowering the floating-point
precision of the weights (post-training). This further limits its
speed on CPU architectures. (5) The model lacks ability to
specify the stress for each syllable of the input sentence, based
on emotion of the context. Since the English language rules are
not very clear when we consider phonetic consistency, there is
no easy way to, for instance, add a rule-based preprocessing
for automating this task. (6) The initial overhead for loading
the model can cause delays, if the TTS module is frequently
enabled and disabled to free up the processing power for other
tasks on the platform. This can be the case when system
resources need to be allocated for computer vision tasks.
Delay time can go up to 30 seconds when the TTS module
is deallocated and brought back. The same is the case if the
users want to dynamically switch, or change, the parameters
of the model that they wish to use.

These limitations can be seen also as a research program
that we plan to delve into to deliver the needed (by the
SmartLife company) solution. We will report on our progress
in subsequent publications.
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