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Abstract. A parallel algorithm for solving linear systems that arise from the discretization of
boundary value ODEes is described. It is a modification of a eyclic reduction algorithm that takes
advaniage of the almost black diagonal structure of the linear system. A stable modification of the
original algorithm is also propesed. Numerical results on a distributed memory parallel computer
with 32 processors are presented and discussed.,
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1. Introduction. Almost block diagonal (ABD) linear systems arise in vari-
ous mathematical problems: in Chebyshev spectral decomposition on rectangular do-
mains, in orthogonal spline collocation for elliptic problems, and, most importantly, in
various discretizations of boundary value ordinary differential equations (BVP ODEs}.

There are a variety of methods for high-performance solution of such systems.
A level 3 BLAS-based [4] modification of the alternate row and column elimination
algorithm proposed in |17| and implemented in [10] provides good performance on
high-cnd workstations (8] as well as on vector computers [16|. For large block sizes an
cfficiency of 50% has been reported on a shared memory parallel computer with a lim-
ited number of processors [11|. Tearing-type methods can be applied to systems with a
large number of relatively small blocks [3, 6, 15, 18, 19, 20]. Of them, the methods de-
scribed in (6, 18| arc suitable primarily for shared memory computers. The algorithms
introduced in (3, 15, 19, 20| are suitable also for distributed memory computers. Of the
latter methods, only the two algorithms introduced by 8. Wright in [19, 20] are capable
of solving lincar systems arising from discretization of BVP ODEs with nonseparafed
houndary conditions (which are characterized by an additional corner block; see {2}).

The aim of this paper is to introduce a new cyclic reduction-based algorithm
for paralicl solition of such ABD systems. In section 2 the proposed algorithm is
introduced. Its parallel implementation is discussed in section 3. The stabilized
version of the algorithm is presented in section 4. Section 5 discusses the arith-
metic complexity of the proposed algorithm. Section 6 contains the results of numer-
ical experiments.

2. The cyclic reduction approach. Consider the BVP
y' =Mty +alt), tcled], ygeR*MeRV",
Bayle) + Bpy(b) = d, de R"

When discretized on a grid

(1)

a =tg <ty < - <ty =h,
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the following linear systemn arises:

[ & R \ (1)
S;g Rg Yo fﬂ
(2) SN A I
Sm Rm .y.: .fm
\ B, By / - \ d

Note that the same general sysiem arises from using multiple shooting, finite differ-
ences as well as collocation metheds, and the only difference will be in the particular
block sizes. For simplicity of notation, we will assume that a finite difference scheme
was used Lo discretize the BV, Let

, Ci Big Ao Do
151' ) th — 1
D Ay f33; Ch;
where € ; and Ay, arc ¢ x ¢, Ay, and Cy; are (n — g) x {n — q), Drf:i;, By ngt.,
and Dy ; are ¢ x (n — ¢), ¢ is the number of initial conditions when the boundary
conditions are separated or any nonncgative integer less than or equal to n otherwise

(usually ¢ n/2 can be used; sce also section 4). Morcover, let

y Ay g Dag ? Cia B
it ' b - ,
H"E.m bl C:s,mn Dl,m -1 A'ﬂ’”'* 1
where the blocks Ay o, Dag, B my - .., have the same dimensions as the correspond-
ing Auq, {225, B1; ... Pormuting the appropriate equations in (2) we obtain the
following matrix:
( As g 0 Clio 30 \
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(observe that blocks C) g, Big, 82,441, and C'a.m+1 arc null blocks in the case of

separated bonndary conditions) which can be expressed in a block tridiagonal [orm
a5
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We may now apply the odd even cyclic reduction to matrix {4). We ouly require
that the first and the last row of {4) be treated as even rows (the first row is considered
row §). For example, the first step of reduction applied to the permuted matrix
(assuming m is even)

(Al C: B \
Am—l C‘m— ] Bm—l
g Ap Cly ?
Cy; . As
T £ S :
\ Crn | Bun A

[ As DBy Cop
Ca Ay By
(5) Cr A :
. By o
\ Con  Am
whore
Ao - Ap WA 'O, An A - CuA) B,
G Agy - Ay, f{giﬂmn Coit CuAy By forz - 1,...,m/2 1,
Y 0211'11 1 Cay ori-1,...,m/2,
3., ---Bgiz'lﬁil (i fori - 0,...,m/2 -1

Nole that during this step, instead of explicitly inverting blocks A, (for odd 1), we
lactorize these blocks by means of the LU decomposition with partial pivoting and
then apply the linear system solution step to the columns of blocks B3; and ;. Because
3; and C} have zeroes in the first ¢ and in the last n- ¢ rows, respectively, ng}’l?‘il_l_ !
and Co; A, | will have zeroes in the same locations. Thus in matrix (5) blocks By, and
Cy as well as the first ¢ rows of Ap and the last n - ¢ of A, remain unchanged. (This
means that the blocks containing the boundary conditions are unchanged.) Moreover,
blocks C; and Bm maintain the same sparsity structure (the last n — g rows of Cy;
and the first g of By, are zeros) as the initial Co; and By;.

The same approach may be repeated and applied to {5) and after log, m steps, a
2n X 2n matrix {that is a 2 x 2 block matrix if expressed by means of the blocks A;,
B;, and C; or a 4 x 4 block matrix if expressed by means of Ay ;, By, C 4, and D; )
1s obtained and factorized using Gaussian elimination with partial piveting. Note
that the first ¢ and the last # — g rows of this final matrix still contain the boundary
conditions of the initial differential problem (1). {The clements are just those of the
first and the last block row of (3).)

The parallel implementation of this algorithm follows that of the evelic reduction
algorithm presented in {1]. Assuming m = 27, the number of processors p - 2°, and
r 2 &, the first r — s steps of reduction do not require comimnunication among the
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processors. Only the last ¢ steps require transmissions of matrices in the factorization
step and of veclors in the linear system solution step {(sce the next section). It should
be noted that in the case of a hypercube topology these transmissions will be between
neighbor processors only {scc [2|).

4. The parallel algorithm. The following algorithm represents the parallel im-
plementation on p processors of the eyclic reduction algorithm applied o the solution
of the linear system Mx = b, where M is almost block diagonal and has m = 27
internal blocks (corresponding to the BVP (1) being diseretized on m subintervals).
Woe assume that

T /3 T T T i& 3t
L - (T'EJ} Lia Taa 0 Ty Tym T )'.'

T T T T T i iA
b’ (bié,[il hl.I b:&,l E"1,1!':1. b'.c!.rm bl,m-}-] ]

Algorithms are presented in a pseudoprogranuming languapge, where all the block
opecrations should be substituted by calls Lo appropriate BLAS subroutines 4]. We
distinguish two phases: coefficient matrix factorization and lincar systom solulion.
The instruetions inside the “forall” cycles are exceuted in parallel on different proces-
sors. The matrices oblained in the snccessive steps of the reduction will be represented
by the superindex in parentheses (the original matrix has index (3.

FACTORIZATION

5 1
for 5 L log, m
it 7 > log,(m/p)
forall & - s 1:5%2:p 54 1

processor & sends Lo processor ks the block
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(7] (4] _ (7- 1) (f 1}
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cnd
ong
end

LU factorization with partial pivoting of the matrix

(A% D ol BY )
ni oAl B o)
Cim  Bi. A DY,

\ Bini Cionr Dy A0, )

LINEAR SYSTEM SOLUTION

s - 1
for 7 - 1:logyrmn
il 7 > log,(m/p)
forall & - s 1 l:65%2:p. 541

processor k sends to processor k- s Lthe vector
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for j = logom: —1:1
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ond
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The number of processors that elfeetively work at cach siep of the algorithm is
p/s and varies from p (for 7 1,..., log,(p/m)) o 1 (j logym).

There are three lustances reguiring data communication. One of them in the last,
log., p step of the factorization process (j > log,{rn/p)) requires matrix transmissions
while the others are performed during the linear system solution phase and require
veelor transmissions. Observe that it is possible to avoid the second instance of vector
{rahsmissions by performing bidirectional communications In the [Arst two instances
and always using all the processors available (see also 2, 3)). In this case some
processors perform the same operations on i{he same data al the same time (henee the
parallel arithmetic complexity does not increase) and in the last step of factorization
all processors [actorize 1the same 4 x 4 block matrix.

4. The stabilized algorithm. The stability analysis of cyche reduction has
been the object. of several studies from the moment that this algorithm was presented
[or the first time at the end of the 1960s. A eomplote stability analysis was first.
introduced in |7|, where a modified version of the eyclic reduction algorithm {no
matrix inversion is performed) is applied to the solution of the Poisson equation. A
few years later Heller [12] derived more general stability conditions. In our case,
stahility probloms are possible since the blocks

Ag Doy

T
{7) Digyr A

may be ill conditioned or even singular. Moreover, even if for a given BVDP we may
choose a grid such that any block (7} of the original matrix (3) is nonsingular, it is quite
difficult to prove that blocks obtained in the reduction process remalin nonsingnlar.
To overcome this problem, we can modify the previous algorithm slightly and thereby
ensure stabiliry.

The basis of the stabilized algorithm is thar the proposed eyclic reduction is ap-
plied to a matrix that is cssentially {(apart from the boundary conditions) block bidiag-
onal. Consider the first step of roduction. Observe that for each @ = 1, 3,5,...,m—-1,
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we apply the reduction process to the 2n x 3n block

[ Dhy Ay DBy Cy )
Ch, Bp As I i .151;' Ri
[:8] ) I.i 2.9 2, 'Qt‘
it A Bagyr Cagon Siv1 R
\ Crivi Brigr Asi Do )

(Q: is a permutation matrix; see also section 2) in erder to obtain the following n x 2n
subblock (sce section 3)

F.

( o Ay 13, Ca;

(9) _ , ) _
Ciart Bragn Asgoy Dy

To stabilize the algorithm, instead of specitying the value of ¢ a priori, we apply
the LU factorizalion with partial pivoting to the block

I

(10) \
i1

This is always possible because block (10) has full column rank if the original
matrix {3) is nonsingular, and hence we can always extract from it a nonsingular
tox 7 hlock.

If ¢: of the pivot clements (0 < ¢; < n} were chosen among the rows of R;, we
now choose the permuiation matrix i in (8} such thal the size of Ay, is ¢; x g; and
the size of Ay .01 is (n - g) x (n ¢.), and both contain the pivot rows of &, and
Sy p1. This means that we must substitute (he instructions inside the “for 47 loop in
the tactorization phase of our algorithm in seetion 3 with the following:

[ L \

n _ﬁl,ii | :(-‘l.t bl {5, f:};gﬂ- Hl:j.‘ k
Bas tor Cay gy Urii 551:; )
K Clint Bl /
Vau Wy, B‘.—I,i b 'f-r}:s,f St Lay |
Wi Vi él,ir! eI fjl,ﬂ] Ly

Define permutation matrices i, and €y 4,
( Dritii Ao

YRR
Ci B | [ @ sy
P Cloiyi Qi RE{L: R
\ Az Dyt /
Iy Ay I
Si[ijt - l., f ol ],i!. £-|—| ~ ;!11 Cl . Bl . :}
Q ¢ Wiik
| %, 9, W, .,
R . - ") ( Baiyr Caan ).
Agivi Doy Vi1

Observe that in matrix (3}, blocks Ay and Ay g, fori 1,3.5,... m — 1, are
not square anymaore. Because of the way that ¢, is selected we can only derive that
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Ay; has o - ¢; rows and Ag ;1 has q; rows. This means that also blocks A; in (4},
lori- 2,4,6,...,m, havesize n X (n—¢;41 — q;_1) and hence can be nousquare, but
this is not important since the reduction operations (6} can still be performed.

Moreover, at cach step of reduction if. is necessary to select a new value of ¢
depending on the choice of the pivot elements in the LU factorization of the odd main
diagonal blocks of the reduced matrices.

In order to illustrate the stabilization improvement, let us consider the following
cxample. Assumne that we want to factorize the following two block rows {“+” in the
matrix represents a nonzero clement with an unspecified value)

[+ %+ = 1 1 0 \
ok ok 2 2 1
. * ok x  — 1 1
(11) 0 5 -5 % %
3 0 -1 * %= =
\ 2 1 1 % *)
Observe Lhat if we choose ¢ - 2, block
2 2 ]
4 1 i
0o 5 5

s singular and the reduction cannot be performed. On the other hand, il we apply
three steps of LU [actorization with partial pivoling to the columns 4, 5, and 6, then
we obtain the following factorization:

/0 0 0 0 0 1Y/ 100 \

00 0 1 0 0 0.00  1.00

I D0 0 0 0 .75  0.15  1.00 1.0 1:‘; ig
01 0 0 0 0 050 -0.30  0.00 . ;‘r
00 0 0 1 0 0.50  -0.30  -0.80 ¥

L0 0 L0 0 0/ 025 025 060

Rows involved in the pivoting process are 3, 4, and 6 {see the first three eolumns
in the above perrmutation malrix). This means that it is sufficient to exchange rows
5 and 6 of the original matrix (11) (setting ;| equal Lo the 3 x 3 identity matrix
and (2; » that exchanges rows 2 and 3) and choose ¢ = 1 in order to ensure that the
rodnction process can be performed.

A slabilily analysis of this new algorithm ean bhe derived from that proposed by
5. Wrighl in |20 for his structured climination algorithm. In lact it is sufficient to
ohserve that il we apply Wright's algorithm 1o factorize matrix (2) and set 2 = m/2
(sce |207), then we obtain just the same matrix obtained after one stop of the stabi-
lized cyclic reduction algorithm. The choice of log, P levels allows us to porform the
same operations. The diflerence is that row permutation used in the evclic reduction
factorization allows us to consider only operations cffectively performed and hence
to reduce the number of operations and memory requirement {see the next section).
Summarizing, the stabilily analysis of |20| applied to the case in which the maximum
possible number of processors is used shows that, under the set of conditions spec-
ified by 5. Wright, the stabilized cyclic reduction algorithm is stable when used to
solve BVPs.
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TABLE |
Arithmelic complezity of the proposed ABD paraliel algorithms; n. m, and p represent the num-
ber of first-order ODFs, the number of internal biocks, and the number of processors, respectively.

I

factorization  (3nd — 3n? — In)m/p+log,p) + Int 4 [n®- |}

T

solulion (6m¢ — n)(m/p+ log, p) + 202 —

5. Arithmetic complexity. In this section we analyze the arithmelic complex-
ity of the proposed algorithms. We assume that we want to solve a systemn of n
first-order BVI’s on a parallel computer with p processors and that the discretization
hased on finite differences leads to the ABD system wilh m > p internal blocks., We
will also assume Lhatl both m and p are powers of 2. The computalional cost depends
on the following paramocters:

. 7 15 the number ol first-order ODEs,
* is the number of internal blocks,
e 15 the number ol processors.

Observe that the cost of the proposed algorithm is independent. of ¢. The number of
operations of one generic step ol reduction (from (8) to (9), that is to reduce two nx 2n
blocks Lo one; see the operations inside the “lor 2" loop of the factorization phase)

iy '?n, Ezn.z %n. When i is greater than p the number of blocks participating
in cach reduction step is (m/p)/2 1 {(m/p)/4 | --- + 1. This is lollowed by log, p
simple reduction steps. Finally, the rﬂ(:lf{}ri?atiun of the last 4 x 4 block system (that,
corresponds Lo & 2n x 2n system} requires l:’ nt  2n? —'n operations. During the

solution of the lincar system (for one right-hand side) the ‘-:Ulllt][]ll ol the 4 x 4 block
sysiem requires 8n 20 operations. The total number of operations inside the two
“tor @7 loops is 6n¢ - 1 and (hese loops are executed m/p - 1+ logy p times, The total
nurnher of arithmetical operations is summarized in Table 1

As already mentioned, data transmissions are required only in the last log, p
steps of reduction. In Lhe factorization phase a i % 20 block 1s (ransmitted at every
step while in the solution phase a veetor of size 1 i Lransmitted (using the data-
Lransmission reducing approach suggested in section 3). Heneo the total cost of Lrans-
mission s (assuming that (k) is the ime needed for one transmission ol & elements)

(L{2n*) - t(n))log, p.

As a comparison we have chosen the parallel algorithm proposed by 5. Wright, in
20| which also solves BV with nonsceparated boundary conditions using Caussian
climination. This algorithm shows good performance when compared with other
existing algorithms for the solution of ABD systems (sec also |20], Table 3). Following
Wright's “two-level algorithm” suggestion, the algorithm requires

{ﬁn -1_; Nm/p t p)

parallel operations and approximately t(n?)p data transmissions.
Assuming thal n is large enongh for the n” terms to dominate the arithmetie
complexity funclions and that m is large, the following observations can be made:
1. The number of operations of the new algorithm is sensibly reduced in com-
parison with Wright’s algorithm (approximatcly from i-'éﬂ, L/ p to H‘ nim/p).
2. The optimal nuiber of processors for the new algurltlun is prupurtmndl to

m, in which casc its arithmetic complexity is O(n? log, m).
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As far as the storage requirerent is concerned, the proposed algorithm docs
not require additional memory {as the usual cyclic reduction algorithm for block
tridingonal systems) if the factorization step is performed together with the linecar
system solution step. On the other hand, if those two steps are performoed separately,
the per-processor memory requircment, is

3(m/p + logyp ~ 1)n?,

wherecas the minimum memeory requirement to store all the data on a single processor

(21 1 Din.

Assuming that the optimal number of processors was used, the tolal memory
requiremenl for the new algorithm is approximately 3nm log, mn,

In comparison, the per processor memnory requiremnent of Wright's algorithm is
3nim/p when the factorization step is performed together with the linecar system
sohition step, and 4mn?/p when the Lwo steps arce performed separaicely.

6. Numcrical tests. The stability properties of the presented algorithms were
Lested on two well-known BBVPs used also hy Wright, (see 119, 13]). The first example
i5 a4 system of three ODEs.

Proldem 1.

1 19cos(2t) 0O 1 - 19sin(28)
M) 0 19 () \
1+ 19sin(2¢) 0 11 19cos{21)

I 19(cos(2f)  sin(21))
g(t) of 18
T 19{cos(20) | sin{2¢))

with the following separated boundary conditions on the interval |0, 7 (Problem 1a):

?}[{”] ' J-*.n
yg(?f) .. llﬂ,
y1{m) + dyalm) - Ac”™.

The same problem has alse been solved with the following nonseparated boundary
conditions (see also 14|, {Problem 1b}):

1 {U} = 1,
12(0) 4 galm) < 1 -,
ys(0) + a(m) = 1 — ¢

The second example is a singular perturbation problem (see also (13|):
Problem 2.

ey’ L -ty —y=0, te[-1,1, e= 103,
y(-1) = 1, g(1) - 2.
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TABLE 2
Helative error in the solution computed by the ABDCR, SABDCR, and SLU algorithms for
different numbers of internal blocks: all three algorithms generate exacily the some error,

prohlein e — 32 o= 128 m — al2
1a 58.10 9% 46-1006 24107
1b 58-10 7 36-70°% 23907
2 25-100¢  14.10°% g9op-10 P

TABLE 3
Erecuiton dmes on random problems for m — 64 inlernal Hocks; (#me in ticks.

algorithm n -5 n—-10 n-—20

ABNDCH 6173 33haz2 218385

SABNCR 7066 38327 233710
S U HO{ 4 1889 AT 5

— — s —

The cyelic reduction algorithm (ABDCR) and its stabilized version (SABDCR)
have heen compared with 8. Wright's struciured climination algorithm (SLU). In all
the examples we have used the trapevoidal rule with constant stepsize Lo discretize the
diferential equation [5|. The fotal error was evaluated using the following formula
{where y is the computed solution and g(t) is the exact one) that combines the
absolute and the relative crror:

m:].:-c! 1, w0+ wt))],

where the operation ./ is a componentwise division and gy, and g{l;) are veetors of
length .

In all cases (the two eyelic rednetion algorithms and S, Wright's eode), exactly
i he same values of total error were observed (sce Table 2). In particular, for Problem
1 we oblained exactly the same total error while using separated and non-separated
bhoundary conditions. We have also solved the problems with separated boundary
conditions using SOLVEBLOCK |9] as the lincar equations solver. The values of
Lotnl error were exactly 1the same as for the remaining three algorithms. Ilence the
obtained error is just that due to the trapezoidal rule (Lhe rate of convergence of the
mcethod is always maintained).

The single-processor cfficieney of the proposed algorithms was studied on a single
transputer 1800 20 with 16 Mb of memory. We have nused all three algorithms to
solve a general system of first order dilferential equations (1) for random matrices M
of sizes 5§, 10, and 20. In all cases, nonseparated boundary conditions have been chosen
and the right-hand side vector g@(t) has been seleeted in such a way as Lo have the
components of the solution behave as ef. All codes were implemented using calls to
the BLAS kernels and the LINPACK subroutines DGEFA and DGESL (optimized {or
Lthe Transputer). In Table 3 we summarize the obtained results for m = 64 expressed
in ticks (1 tick = 64 - 107% seconds). All values arc averages of multiple runs.

As predicted, the ABDCIR algorithin outperforins Lhe remaining algorithms. For
small n the SABDCR. algorithm has cssentially the same performance as the SLU
algorithm, but for large n its performance becomes superior. Additional experiments
indicare that, as predicted theoretically, the execution time of all algorithms 1ncreases
lincarly for increasing values of m.

The parallel implementation of the cyclie reduction based solvers has been cval-
uated on a network of 32 Microway transputers T800 20, cach with a local memory
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TADBLE 41

Speed-ups of the ABDCH paratiel algorithm for various number of processors p and m — 3dp
inlernal blocks,

e — D5 mo— a2 m — 1021
problem p= 8 p = 16 p— 32
n—_5  7.05 12.62 91 .04
n— 10 7.40 13.99 25.99
n — 20 7.44 14,27 27.11

- — e

TAHLE &
Speed ups of the SADBDCR parallel algorithm for various number of processors » and o — 32p
irlernal blocks.

sroblem m - 256 e - 312 m— 1024
po— 8 p - 16 p - 2
nn—h 6. .50) 1242 21 AT
To— 10 V.14 13.56 25348
no. 20 7.21 13.88 26.15

ol 1 Mb. The parallel algorithms have been implemented in Parallel FORTRAN
21| with the Iixpress commmunication library |22|. As in the single-processor case,
optimized BLAS/LINPACK kerncls have been used wherever appropriate.

Tables 4 and 5 represent the speed-ups of the proposed parallel algorithms for
po 8, 16, and 32 processors and e 32p blocks {(whete the speed-up was calenlated
as a ratio belween the single-processor and parallel exeention (imes of a given algo-
rithm). It. can be ohserved that. ABDCR outperforms SABDCR. This becotnes more
Lransparent [or larger values of 1. The performance dependency on 1 does not [ollow
[rom the arithmetic complexity function presented in Table 1. Tt ean be atiribnuied 1o
the computation to communication ratio which is approximately a [unction of n (sce
seetion 5). Thus as n increases communication becomes less important.

7. Conclusion. A new eyelic reduclion algorithm for the solution of almosi
block diagonal systems arising from the discretization of BV ODEs has been intro-
duced. The experiments performed suggest, that it has relatively good numerical prop-
orties (similar to those of 8. Wright’s stable algorithm). In the single-processor mode
Lhe proposed algorithm outperforms that. of Wright. for all cases tesied. Our current
work concentrales on an efficient. distributed memory implementation of S, Wrighi's
algorithm that will allow us a fair comparison and an extensive study ol the parallel
performance ol the available algorithms.
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