PROCEEDINGS OF THE FIFTH SIAM CONFERENCE ON

PARALLEL
PROCESSING FOR
SCIENTIFIC
COMPUTING

Edited by Jack Dongarra
Oak Ridge National Laboratory
and University of Tennessee

Ken Kennedy
Rice University

Paul Messina
California Institute of Technology
and Argonne National Laboratory

Danny C. Sorensen
Rice University

Robert G. Voigt

National Science Foundation

Philadelphia /9.92

CHAPTER 9

Using Level 3 BLAS to Solve Almost Block
Diagonal Systems

M. Paprzycki*
I. Gladwellt

Abstract

We implement an efficient, stable almost block diagonal solver using level 3 BLAS. The
algorithm is an implementation of the “best” sequential algorithm with blocked updates and
blocked interchanges. These blocksizes are problem dependent. Also, the code calls blocked
algorithms where their “established” blocksizes are system dependent. A numerical comparisot
is made with the most efficient level 2 BLAS implementation [3].

1. Introduction

In [13], the authors discuss the parallel solution of almost block diagonal {ABD) linear
systems arising when a two-point boundary value problem (BVP) for ordinary differential
equations (ODE’s) is discretized along with its boundary conditions (BC’s) using box-type
difference schemes. The method extends a “tearing” algorithm for banded symmetric matrices
presented by Dongarra and Johnsson [6] and Dongarra and Sameh [7], and later extended by
Wright [16]. We make three observations. First, the usefulness of the tearing algorithm for
solving this problem is still in question, since relatively small speed-ups are achieved both
theoretically and in practice compared with a very efficient sequential algorithm. Second, the
performance of the tearing algorithm improves when the number of internal blocks, k, increases,
whereas it is essentially unaffected when the size of these internal blocks, n, increases. Third,
treating the ABD systern as banded and using a parallel banded system solver 1s computationally
inefficient.

In current BVP algorithms {for example PASVA3 [10]), k, the number of meshpoints in
the discretization of the BVP, may be large but will not grow unrestrictedly. The number of
differential equations, n, may also be large. The arithmetic cost for ABD solvers is dominated by
terms in k and n®. The approach here provides significant speed-up when the number of
equations, n, is large. -

Our algorithm is based on the level 3 BLAS, Deongarra et al. [5]. It uses block
decomposition with a careful interchange strategy. It is similar to the algorithm for Cholesky
decomposition of symmetric positive definite banded matrices proposed by Mayes and Radicati
[11] and for LU decomposition of a general matrix presented by Bischof et al. [2].

*Department of Mathematics and Computer Science, University of Texas of the Permian Basin, Odessa, TX 79762,
TDepartment of Mathematics, Southern Methodist University, Dallas, TX 75275.

MATRIX COMPUTATIONS 23

We use three basic block matrix operations. Two are calls to level 3 BLAS routines:
() For a triangular T solve TB = A (or BT = A} for B using routine _TRSM.
(i) Form a matrix-matrix product C = cAB + BC using routine _GEMM,
The.last is a compound operation, utilizing simple level 3, 2 and 1 BLAS:

(i) Compute a matrix decomposition A~ > LU using routines _ GETRR (a minor modification
of the routine _GETRF, {2]) and _GETRC a column interchange version of _GETRF.
Parallelization can be introduced at the level of block operations inside the level 3 BLAS.

2. Algorithm Description
2.1 Block Gaussian Eliminatiog

Consider the ABD system arising when a two point BYP is solved using a box-type
difference scheme, Keller [9] (sce Figure 1). The size of each internal block is n x 2n, and the BC-
type blocks have sizes qxn and (n-q) x n. {The BC’s are assumed to be separated and q is the
number of left BC’s). For systems which arise from collocation methods [1] the algorithm is
similar. Figure 1 presents a typical ABD structure with 5 internal blocks (corresponding to 4
internal meshpoints).

We use block Gaussian elimination. To assure stability and to avoid fill-in we use
alternating row and column pivoting, similar to Varah [15]. Consider the structure in Figure 2.

Fa

Figure 1. ABD system corresponding to 4 mespoints.

o4

LU =

PAPRZYCKI AND GLADWELL

A1l Ara Apgs L1 Ujpg Uiz Uig
Ag1 Agg Ags [=| Loy Log Uga Usa
Azl Asg Az | | Lan D32 L3z || Us3s
L1.1Y1, Ly Uy 2 L11Y1,3

Ly1Ur1 LoiUpotLgolyo Ly U3+ LooUsg
LyjUpy L3gUpe+1L39Usg LgqUp g+ LgoUsg+Lg3Uss

Figure 2. Block LU structure for the ABD solver.

1) A’l,l

The block Gaussian elimination algorithm is:

(of an “established” size) is decomposed: A |- > SRS RE

2) Blocks of L and U are calculated:

-1
Aa=L1U12-> Uio=1 18010
Ajg=L11Ujg—> Ui3=Ly4A1 3,

1
Ag1=LyiUi1~> Loy =49 Yy

1
Agp=Lg Uy —> L3 =Aq,Uy;

3) Updates on the remaining blocks of A are performed:

I —
Ag 9 =Ly Uy o+ LyoUgg

—> LgolUgg = Agg—Ly U9,

f
Agg =Ly Ujg+LyoUsgg—> Logglgo= Agg—1Ly,U;3,

f
Azp=Lg Uy +L39Ugo—> Lyalgg= Ago—~1L3,Uya.

!
Ag 9=

Ly 1U; 3+ L3 oUg g+ Ly 3Ug 3 —> Lg 9Us 34 L3 3Ug 3= Ag 3— L3 1Uy 3

= LU

(1)
(2)
(3)
(4)

(1)
(2)
(3)
(4)

4) The process is repeated startmg from step 1) for a “new” A 1.1 bleck (which is either all of

Azzﬂl‘

an upper left corner of A 2. of the “established™ size).

2.2 Block ABD decomposition

decomposing the ABD system. This is implemented in routine

Using the block structure described above, we define a two phase per step algorithm for

_ABDB3 (see Appendix 1 of

MATRIX COMPUTATIONS 5D

[14]). In each step (except the last) Phase I decomposes a part of an internal block equivalent to a
BC-type block. Phase II then decomposes the part of the internal block occuring before the next
BC-type block enters. Phase I uses column interchanges and decomposes a rectangular qxn
block. Phase 11 uses row interchanges and decomposes a rectangular n x (n —q) block.-

Figure 3 shows the block placed inside the system for execution of Phase I. There is the
following cotrespondence between Figure 3 and Figure 2:

a) Blocks E and F were calculated in previous steps,
_ X n
b) D .-[Aly Am] € R1*H,

c) Ajg=0¢€ RA* 4 lies outside the ABD structure,

p— -

d) C = *21 € R*X9,
—Aa,lu

- _
) U = Ag 9 ¢ RAX(n-q)
L A3'2 -

nz=| "23 | ¢ poxa

ready from

previous step

Figure 3. Block structure in Phase [

56 PAPRZYCK! AND GLADWELL

In Phase 1:

1) D is decomposed (operations 1 and 2.1 from block Gaussian elimination). Column
interchanges are performed internally in D;

2) These column interchanges are applied in C and U “below” and in F “above™ D in a blocked
fashion;

3) Cis calculated (operations 2.3 and 2.4 from block Gaussian elimination);
U is updated (operations 3.1 and 3.3 from block Gaussian elimination).

W

Because Ay q = 0 lies outside the ABD, operations 2.2, 3.2 and 3.4 of block Gaussian
elimination are not performed.

Figure 4 shows the parts of the system already in place and the location of the block to

be decomposed in Phase II. There is the following correspondence between Figure 4 and Figure

2:

a) Block E was calculated in Phase 1.

b) D

Alrl = Rnx(n"q)‘

Azt

c) AS 1= 0 € R9%9 Jies outside the ABD structure,

d) C

e) U

_ n-q) x n
= A1 AL3]ER()xn

— xn

) Z =[Azo Ags] e r{TVxE

ready from
Phase 1
C
E D
D
0 Z

Figure 4. Block structure in Phase 1l

MATRIX COMPUTATIONS 87

in Phase II:

1) D is decomposed. {operations 1 and 2.3 from block Gaussian elimination). Row
interchanges are performed internally in D;

2) These row interchanges are applied in C and U on the “right” and E on the “left” in a
blocked fashion;

3) Cis calculated (operations 2.1 and 2.2 from block Gaussian elimination);

4) U is updated (operations 3.1 and 3.2 from block Gaussian elimination).
Because A3‘1= 0 lies outside the ABD, operations 2.4, 3.3 and 3.4 of block Gaussian
elimination are not performed.

This ends one step of the algorithm. Figure 5 shows the resulting system. Observe that
the undecomposed (but updated) part of the ABD has the same structure as the initial system.

ready from
Phase 1

ready from
Phase []

Figure 3. System after one step of decomposition

The block LU decompositions in Phases 1 and Il are performed by calls to _GETRC, and
_GETRR. Blocks of L and U are calculated by calls to _TRSM. The remaining part of the
blocks in Phases I and II are updated by calls to _GEMM. In the last step both phases are
performed on a reduced sized block (see [14]).

2.3 Block backsubstitution

The decomposition above has the form:
A = PLUQ
where L is unit lower triangular, U is upper triangular, and P and Q are permutation matrices.

The solution of Ax = b will be calenlated by calling routine _ABSB3, [13] which implements the
sequence:

(a) Pr=b, (b) Ls=rp, (c) Ut=s, (d) Qx=t.

Only for multiple right hand sides is it possible to obtain any parallelization in steps (a) and (d).

a8 PAPRZYCKI AND GLADWELL

We use a level 3 BLAS algorithm for stepa (b) and (c). For multiple right hand sides this is a
blocked algorithm. For a single right hand side our code is equivalent to using level 2 BLAS.
Figure 8 shows two typical rows of the block division of the ABD system after decomposition.
Forward substitution proceeds in a block by block fashion. Subetitution for the top BC-type
block uses a call to _TRSM. The i-th internal block is treated by updating the appropriate part
of the right hand side using information from R, by a call to _GEMM then solving the system
LE =T by acallto _TRSM (§ and T represent appropriate parts of g and [from (b) above).
Back substitution also proceeds a block by block fashion. Back substitution for the bottom BC-
type block uses a call to _TRSM. The i-th internal block is treated by updating the appropriate
part of the RHS using information from T, by a call to _GEMM then solving the system U.t =

s by a call to _TRSM (f and§ represent appropriate parts of § and g from (c) above).

Figure 6. Block subdivision for back substitution

Using the decomposition computed in _ABDB3J we can also solve
ATx = b
via

QTuTLTPT 5 = b

for any right hand side b using _ABTB3 and a sequence of steps similar to (a) - (d) above.
Thus we can estimate the condition of A using the algorithm of Higham [8]. This is a necessary
with our code since it, like -GETRF, only exits with an error indication when exact {zero pivot)

singularity is encountered.

3. Practical considerations

3.1 Routines _GETRR and _GETRC *

Routines _ GETRR (row interchange) and _GETRC (column interchange) are special cases of
the routine _GETRF implementing block Gaussian elimination. Each uses the block structure in

Figure T:

(1) The size of the block A, ; is “established” for a given computer architecture,

MATRIX COMPUTATIONS 59

(2) Al,l is decomposed: Al,l - > LI,IUI,I’ with interchanges applied internally:
(3) Interchanges are applied to the outside blocks;

() Vg = Lﬁl{lﬂl,ﬂ and Ly ; = AE,IU-II,I are calculated;

(5) Ag g is updated, A;,z =Ag 9 — Lo Uj o

!
{6) the process is repeated starting from 2) for a “new” A | block (which is either A, , or an
upper left part of .ﬁ& 9 With size established in (1)). ' ’

A A L, U U
o | A Ae || Mg 11 Y2 |
A21 Ao | | Lo Tgp Uzo
L1V 1 Li1VU12
LU =

LotV L9 Upo+Llgolss

e —

Figure 7. Block LU decomposition of A € RMxN

Thus in our algorithm different blocksizes will be used at different levels of the program.
We have problem dependent blockaizes introduced by the algorithm as described in Sections 2.3
and 2.3. However the level 3 BLAS and _GETRF (and our successor routines _GETRR and
_GETRC) work mternally with their own (machine and/or routine dependent) established
blocksizes. The latter are limited by the problem dependent blocksizes but are usually smaller.

The algorithms described above are listed in [l4]. There, Appendix 1 contains the
decomposition routine DABDB3J and the solution routines DABSB3 and DABTB3 (for a matrix
and its transpose). Appendix 2 contains the row interchange routine DGETRR and the column
interchange routine DGETRC,

4. Numerical Results

We have compared our block ABD solver with the NAG Library ABD decomposition and
solution routines, FOILHF and FO4LHF respectively, as described in [3]. The latter use level 2
and level 1 BLAS wherever appropriate. Qur solver, DABDBS for decompositon and DABSB3
for solution, calls Jevel 3 BLAS and in additioh some level 2 and 1 BLAS. Our comparisons were
made on a Cray Y-MP 8/864 at the University of Texas at Austin. All the software tested calls
CRAY assembly coded BLAS. In our test these BLAS are running on one processor. Of course,
if the level 3 BLAS were implemented on a multiprocessor version, the new solver would clearly
be expected to outperform the curreni single processor version. Here, we show that the

60 PaPRZYCK! AND GLADWELL

“overhead” of using level 3 BLAS at various “established” blocksizes leads to no penalty.

We only consider large problems with a significant number of large interior blocks. One
variable to be considered in the number of top BC’s, q. Another is the “established” size (ES) to
be used for the Gaussian elimination. We will show the effect of independent variations in q and
ES. Our results are given in megaflops. The reader should bear in mind that the theoretical
maximumn megaflop rate is for one processor of the Cray Y-MP8/864 is 333. Also note that the
Cray Library matrix multiplication rountine, calling level 3 BLAS, has a megaflop rate of about
315 {or large probilems, [12]. This rate is a realistic upper limit on performance. In Table 1 we
consider the effect of varying ES for a fixed, typical value of q. We consider the decomposition
routines DABDB3 and FO1LHF only, with k = 50 blocks, with blocksizes n = 400 and 401, and
with g = 100 left BC’s. All computed values are the average of {ifty runs on a lightly loaded
machine, We gee a similar pattern for other large problems. In most cases, DABDBJ out-
performs FOILHF by between 1% and 10% whilst performing precisely the same number of
arithmetic operations. Hence, the speed-up resulting from using higher level BLAS at least
compensates for the use of a blocked algorithm.

n = 400 n = 401

ES DABDB3J FOILHF DABDB3 FOILHF

1 271 260 287 269
64 272 260 289 269
65 274 260 287 269
128 275 260 287 269
129 275 260 285 269
256 271 260 286 269
257 271 260 287 269

Table 1 Effect of “established” blocksize, ES.

In Table 2 we fix n = 400, k = 50, ES = 420 and we vary q. The values in Table 2 are
quite typical. Observe the variation in performance of the solution routine FO4LHF as q varies.
For other problem sizes, we observe a similar phenomenon of increasing megaflop rate for
increaing q. This behavior is unexpected and suggests a reconsideration of the coding of FO4ALHF.

q DABDB3 FOILHF DABSBJ FOALHF

1 261 261 120 82
68 269 264 120 87
134 273 . 267 120 93
200 273 266 120 99
266 270 266 121 107
332 262 266 121 116
399 250 266 121 127

Teble 2 Effect of variations in g

o
5. Conclusion

We have developed a parallel algorithm for ABD systems. This algorithm is based on
block linear algebra and is implemented using level 3 BLAS. This algorithm maximizes
exploitation of the underlying structure of the system. It has the same stability properties as other
Gaussian elimination algorithms for ABD’s with row and column interchanges. We have shown

MATRIX COMPUTATIONS 6l

that there is no additional overhead in comparison with an efficient level 2 BLAS
implementation.

Acknowledgement

The authors wish to thank CIliff Cyphers who was responsible for mmany of the

computations on the Cray Y-MP.

References

1. U. Ascher, J. Christiansen and R.D. Russell, Collocation Software for Boundary Value
ODEes, ACM Trans. Math. Soft., 7, 1981, pp 209-229.

2. C. Bischof, J. Demmel, J. Dongarza, 3.J. Du Croz, A. Greenbaum, S. Hammarling and D.
Sorensen, LAPACK Working Note # 2 Provisional Contents, Report ANL-88-38, Argonne
National Laboratory, 1988.

3. R. Brankin and I. Gladwell, Codes for Almost Black Diagonal Systems, Computers Math,
Applic., 19, 1990, pp. 1-6.

4. C. DeBoor and R. Weiss, SOLYEBLOK: A Package for Solving Almost Block Diagonal
Linear Systems, ACM Trans. Math. Soft., 6, 1980, pp B0-87.

5. J. Dongarra, J.J. Du Crog, I. Duff and S. Hammarling, A Set of Level 3 Basic Linear
Algebra Subprograms, Report ANL-MCS-P88-1, Argonne National Laboratory, 1988

6. J. Dongarra, and L. Johnsson, Solving Banded Systems on a Paralle Processor, Parallei
Comput., 5, 1987, pp 219-2486.

7. J. Dongarra, and A.H. Sameh, On Some Parallel Banded System Solvers, Parallel Comput.,
1, 1984, pp 223-235.

8. N.J. Higham, FQRTRAN Codes for Estimating the One-Norm of a Real or Complex
Matrix, With Applications to Condition Estimation, ACM Trans. Math. Softw. 4, 1988, pp
381-396.

9. H.B. Keller, Numerical Solution of Two Point Boundary Value Problems, SIAM,
Philadelphia, 1976.

10. M. Lentini, and V. Pereyra, An Adaptive Finite-Difference Solver for Nonlinear Two-Point
Boundary Problems With Mild Boundary Layers, SIAM J. Numer. Anal., 14, 1977, pp 91-
111.

11. P. Mayes, and G. Radicati, Banded Cholesky Factorization Using Level 3 BLAS, LAPACK
Working Note #12, Mathematics and Computer Science Division, Technical Memorandum
No. 34 (ANL/MCS-TM-134), Argonne National Laboratory, 1988.

o

12. M. Paprzycki and C. Cyphers, Multiplying Matrices on the Cray — Practical
Considerations, CHPC Newsleiter, University of Texas at. Austin, 6, 1991, pp. 77-82.

13. M. Paprzycki and I. Gladwell, Solving Almost Block Diagonal Systems on Parallel

Computers, Parallel Comput., 17, 1991, 133-153.

62 PaPRZYCK! AND GLADWELL

14. M. Paprzycki, and 1. Gladwell, Solving Almost Block Diagonal Systems Using Level i
BLAS, SMU Math. Rept. No. 90-4, 1990,

15. JLM. Varah, Alternate Row and Column Elimination for Selving Certain Linear Svsterns,
SIAM J. Numer. Anal., 13, 1976, pp 71-75.

16. S.J. Wright, Parallel Algorithm for Banded Linear Systems, 1990, submitted for

publication.

	big copy.gif
	big0001 copy.gif
	big0002 copy.gif
	big0003 copy.gif
	big0004 copy.gif
	big0005 copy.gif
	big0006 copy.gif
	big0007 copy.gif
	big0008 copy.gif
	big0009 copy.gif
	big0010 copy.gif
	big0011 copy.gif

