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ABSTRACT

When spectral collocation methods are applied to problems in rectangularly decomposable
domains they lead to the solution of a structured linear system. Since the linear system
needs to be solved at each step of a Newton-type iterative process, an efficient method to
do so needs to be used. Two level 3 BLAS based algorithms are presented for the solution
of linear systems arising from discretizations of a re-entrant tube flow problem and Poisson
problems in two and three dimensions. The efficiency of the proposed algorithms is
studied.

KEYWORDS: Domain Decomposition, Spectral Methods, Collocation, Structured Linear
Systems, Capacitance Matrix Techniques

1. INTRODUCTION

Spectral collocation methods are often applied to the solution of partial differential
equations on rectangular domains [1]. These methods require the repeated solution of
structured linear systems, which becomes the most coslly part of the solution process.
These linear systems are either almost block diagonal (ABD) or augmented ABD where a
number of additional blocks appear regularly, adding complexity to the system (see e.qg. 1,
2]). In all cases the linear systems are composed of relatively few large blocks, As was
shown in [3] ABD systems arising from discretizations of two-point boundary value problems
can be solved efficiently using level 3 BLAS [4] kernels. The aim of this paper is two-fold.
First, we will show that this method can also be applied efficiently to the solution of a
channel flow problem discretized using a Chebyshev specitral collocation. The results of
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High performance domain decomposition

experiments performed on a Cray J916 will be presented and discussed. Second, we will
extend the BLAS based approach to certain domain decompaositions of rectangular (and
cuboidal) domains for Poisson problems. Here a capacitance technique described in [5] will
be applied. The performance on an RS6000 workstation and a Cray Y-MP will be
presented and discussed. We will also compare the performance of the proposed solver

with that of a general sparse solver from NAG,

2, THE RE-ENTRANT TUBE FLOW PROBLEM

We consider the flow of an incompressible fluid through a re-entrant tube (for
details, see [1]). The flow is assumed to be sleady and governed by the stream formulation
of the Navier-Stokes equations, As in [1] the flow region is divided inlo four elements and in

region i the solution is approximated by

M W

(2.1) vy = g0 DD den I T )

[ T

where 7 and 7. are linear combinations of Chebyshev polynomials chosen so that

appropriate boundary conditions are satisfied identically on the boundary. The functions
g’(y) are Poiseuille stream functions corresponding to each element, Careful selection of the

number of collocation points ensures that the approximation is C' continuous everywhere
on these interfaces [1]. The unknown coefficients 4., in {2.1) may be found at each

iteration by solving the linear system which is of the form shown in Figure 1.

"
T il h

Figure 1. The linear system resulting from the discretization.



High performance domain decomposiion

The blocks P, R, T and V result from the collocation of the governing equation and
boundary conditions whereas Q. S and U result from the imposition of the interelement
continuity conditions. The structure of the system is independent of the type of boundary
conditions of the problem. The transpose of this system has a generalized ABD form and
can be solved using a block form of the alternate row and column elimination algorithm of
Varah [6] as implemented using level 3 BLAS in [7]. Each step of the algorithm consists of
two phases based on an extended (9-block) block Gaussian elimination. First a rectangular
block (in case of the linear system in Figure 1 a row block in P') is factorized using
Gaussian elimination with row pivoting. If the size of the block to be factorized is larger than
the optimal blocksize (of a given computer), the decomposition is performed iﬁ a blocked
fashion [8). After this factorization the appropniate parts of the linear system (inside blocks
P" and Q) are updated. In the second phase, the next block (in case of the system In
Figure 1 a column block of Q") is factorized using Gaussian elimination with column
pivoting and the appropriate parts QT are updated. This process is then repeated. The
factorization is performed using the LAPACK provided routine SGETRF (see [8] for more
details). The update steps consist of calls to the level 3 BLAS routines STRSM and
SGEMM,

3. NUMERICAL EXPERIMENTS

(n the 4-block ABD system described in Section 2 the size of the first block depends
on d (the size of the re-entrant lip). We experimented with four different values of d=0.2,
0.5, 1.0 and 1.5 leading to first block of sizes 180x414, 475x509 646+680 and 684x718
respeclively. The total syslem size varies between 1547x1547 and 1851x1851. The
experiments were performed using the ABD solver implementation described in [7] and its
performance was compared to the FO1LHF/FO4LHF (decomposition/back substitution) pair
from NAG [9). We performed experiments of a Cray J916 and the Cray provided optimized
BLAS kernels were used in both the new code and the NAG routines, The perftrace utility
was used to measure the performance, Each result presented here is an average of
multiple runs. Table 1 presents the results for Re = 5 and Re = 400 (Re is the Reynolds

number), for varying d (the optimal blocksize 128 was used inside the decomposition step).

It can be observed that the value of Re has a minimal effect for the MFlop rate of the
solvers. The performance gains from the use of the new code are 16-35 MFlops (between

14% and 25%) and grow slightly as the size of the system increases, Since the practical
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High performance domain decomposition

peak performance of a single processor of the Cray J916 is approximalely 194 MFlops [10]

for the large system the performance is approximately 69% of the practical peak.

Table 1. Solution of the channel problem; one processor,
results in MFlops.

d New code NAG |} New code | NAG
0.2 116.0 926 | 116.2 100.9
0.5 117.1 91.2 118.4 101.8
1.0 134.3 102.2 134 1 113.2
16 | 1359 | 1017 | 1437 ~116.0 |

4. FULLY CONFORMING DECOMPQOSITIONS

In [2) a fully conforming spectral domain decomposition collocation scheme was
presented for second order problems in two and three dimensions. This scheme ensures
that the approximations are C' pointwise continuous across the subdomain interfaces for
second order problems. Unlike the problem examined in Section 3 the mairices arising In
this case do not possess a simple ABD structure. They are, however, sparse and

structured and a capacitance-type matrix technigue [5] can be applied to exploit the block

structure.
- ' R, Tr -
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Figure 2. The linear system of the fully conforming method in 2-D.

oM



High performance domain decomposition

For the four element decomposition of [2] of the rectangle (a,f)<(a,b) into the
subdomains {a, h, Jx(h,, b} (Region 1}, (a, h, )x(a, h,) (Region 1), (h., B)x(a, hy) (Region Il)
and (h., f}x(hy. b) (Region IV), &« < h,< 8,a<h,<b, we used the spectral approximations

My Ny

(4.1 #y) = D xm T iax) s =11, MorIV

me=me i
where the polynomials 77 () and j°(x) are appropriately chosen shifted Chebyshev

polynomials. The linear system {4.2) has the form of Figure 2.

The matrices A, B, C and D represent the boundary conditions, the governing
equations and the interface conditions in each region. The vectors x,, xs, X3 and x4 contain
the unknown coefficients in regions I, II, Il and IV. The matrices Ry, Rs, Sy, Sz, T1. T2 Vi
and V; correspond to the interface conditions between respective regions. We can rewrite

the global system (4.2) as:

(4.3.a) Ax,+Ry X +R; x¢=a
(4.3.b) Sy X1 +Bxa+ S X3 =b
(4.3.c) Ty X2+ Cxa+ Ty x4 =¢C
(4.3.d) Vi xy+ Va X3+ Dxe =d

Where the star represents the fact that a matrix was augmented by an appropriate block of

L ﬂ "
zeros (e.g. N, :[ ]}. From {4.3.a) and (4.3.d) we can represent x; and x; in terms of x»

I
and x,
(4.4.a) x;=A"a-A"R X - ARy x4
(4.4.b) %3=C'c-C' Ty xo- C' Ty x4

After subslitution into {4.3.b} and (4.3.d), a smaller system can be solved for x, and x, and
then the vectors for x, and x, are calculated from (4.4.a) and (4.4.b). In the case of the 3-D
problem the linear systems have a more complicated structure, but a similar solution
technique can be applied (for the details see [2])). The proposed solution methed is rich in

matrix-malrix operations, thus naturally leading to a BLAS based implementation.

2. EXPERIMENTAL RESULTS

The experiments were performed on a RS 6000-530 workstation and on a Cray Y-

MP supercomputer, Timings on the workstation were obtained on an empty machine using
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the time function. Timings on the Cray were obtained using the perftrace utility. The

manufacturer provided optimized BLAS kernels were used. Each result is an average of

multiple runs. In two dimensions we solved the Poisson equation on a unit square

(5.1)

Vi (6, y) =y’ - 1) et + (x2- 1) e + 2e" + 2¢

subject to Dirichlet boundary conditions, We took hy=0.1and h, = 0.2 Inthree

dimensions we solved the Poisson equation on a unit cube

(5.2)

VIh (Y. 2) = (- O - 1) e+ (3 (2 e+ (F - DY - e

+2((2" e+ (y 1)e” + (2% 1)e + (X% 1)et + (y3- et + (- 1)e)

subject to Dirichlet boundary conditions. We took h, = 01, A, =02and h, =03

(corresponding to h, and h, in three dimensions).

5.1 Performance of the proposed algorithm

In Table 2 the limings for the 2-D problem on bolh computersforn=4,5, ..., 14 are

presented (where n is the order of Lhe highest Chebyshev polynomial used in the

approximation in each direction in each subdomain), The ratio of execution time of the

solution of the full system to that of the capacilance method is also shown.

Table 2. Fully conforming method; 2-D performance, results in seconds.

| RSG6000 | Cray Y-MP
§ Full Capacitance | Full Capacilance | Ratio N
|_.lsize | system |lechnique | [ system | technique o
| 4 | 100 0.24 0.12 200 | 00348 0.0227 1.53 |
5 | 144 H 0.48 0.22 218 | 0.0687 | 0.0431 1,59
6 | 196 1.09 0.38 286 | 0.145 0.0539 2.69
7 264 1,72 0.52 330 | 0.242 0.0860 281
8 | 324 2.93 0.84 3.48 | 0.365 0.115 3.17
9 | 400 | 483 136 3.55 | 0.564 | 0.198 2.84
10 | 484 7.76 2.18 3.55 | 0.824 0.230 3.58
11 | 576 | 1133 3.03 3.73 | 1.27 0.420 3.02
12 | 676 16.18 4.71 3.43 | 1.73 0.531 3.25 |
13 | 784 | 2254 6.65 3.38 | 2.49 0.736 3.38
14 ] 900 J 3834 | 1060 361 | 3.28 0986 | 3.42

The capacitance technique is clearly superior to the solution of the full system. The gain
from its usage increases as the size of the system increases (the time ratio increases from
2 to 3.61 on the workstation and from 1.53 to 3.42 on the Cray). On the Cray, for n=14 the
full system technique was runnin{:_; at approximately 170 MFlops whereas the capacitance
technique achieved about 150 MFiops (assuming that the practical peak performance of the
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one-processor Cray Y-MP is about 315 MFlops [10], the capacitance technique reaches

about 48% efficiency),

Table 3 presents the results of experiments with the 3-D problem on both

computers, for m= 4,5, 6 (where m corresponds to n in 3-D) for the workstation and for m =

4,5, ..., 8 for the Cray (lack of results means that the system of a given size did not fit into

the computer's memory). In addition the ratio of execution times of solving the full system

to that of the capacitance technique is presented.

Table 3. Fully conforming method; 3D performance, results in seconds,

- —— —

RSG6000 Cray Y-MP
m | Matrix | Full Capacitance | Ratio | Full Capacitance
size system | technique system | technique
4 | 1000 29.1 7.7 3.76 3.8 1.2 3.15
5 [ 1728 || 1456 31.6 460 18.2 4.8 3.81
6 | 2744 101.1 60.5 15.0 4.03
7 | 4096 188.0 471 3.99
h 8 | 5832 ] 120.0

The gains from using the capacitance technique are even more apparent for the three
dimensional case where the sizes of the dense systems are much larger and grow faster as
m increases. The time ratio reaches 4.6 for the workstation and 3.99 for the Cray. The new
algorithm is not only superior as far as the execution time is concerned, but also its memory
requirements are much smaller. For m=7 the memory requirements when the capacitance
technique was used were approximately 19.0 MW of Cray's memory. At the same time the
full system did not fit into the 32.0 MW memory system (here the malrix size is 4096x4098).
To perform experiments with the largest systems reported, a 64.0 MW memory Cray was
used. It should be noted that the full matrix technique is characterized by almost the same
MFlop rate as the capacitance technique (e.g. for m=7 the dense solver reaches 253
MFlops whereas the capacitance technique attains 246 MFlops). This can be explained by
the fact that even though the dense solver uses longer vectors and a smaller number of
subroutine calls, the sizes of the individual blocks (varying from 64x512 to 512x512) are
large enough for the level 3 BLAS kernels to reach high efficiency. For m=8 the capacitance
technique is executing at about 273 MFlops so it reaches about 86% of the practical peak

performance,

H'«.-hl
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2.2 Sparsg yolyer performance

Wo also experimented with the application of a general sparse matrix solver. For
'POB0 we used the FO1BRF and FO4AXF pair from the NAG Library [9]. These
routines are hageq o the MA28 package from the Harwell Library and attempt to permute

the system to the lower triangular form [11]. FO1BRF provides a user controllable
parameter (PIVOT),

this pu

a relative Measure used to control the pivot strategy: the smaller its
value the More FO1BRF maintains sparsity at the expense of stability, Table 4 summarizes
the resully ( the e

Xxperiments Performed on the RS6000 workstation and the Cray Y-MP for
both the 2.1 prob

emfforn=4 5 .« 14) and for the 3-D problem (form=4, 5), We

experimentad with PIVOT = 107, 102 ., 107 while only the results for PIVOT = 10" (the

default valyq Buggested in the ducumentatiun] and PIVOT = 10"° (the last value for which at

least somyg rosulls remained meaningful) are

presented. it should be noted that in most
cases

the bronkdown In accuracy occurred as early as for PIVOT = 10 The results are
reported In soeonds The results for the den

PUrposes nny the ratio calculated |
dense 8Olvar,

se solver are provided for comparison
§ between the values obtained for PIVOT = 10" and the

Table 4, Comparison with the general sparse solver; 2-D and 3-D, results in seconds.

. 2-D
RSB6000
U=10% Dense
SDIU‘EF E— —
0.12 024 | 050 0.09 .
0.12 0.48 1.08 0.25 0.24 0.06 4,17
0.37 1.09 0.31 R 0.47 0.45 0.14 3.35 |
0.67 1,72 0.44 1.19 1.06 0.24 4.95q
1.60 2.93 0.86 1.95 1.82 0.36 5.41
5.99 483 3_31~ 5.06 3.78 0.56 9.03
9,31 7.78 2 02 6.2 6.82 03 |
20.68 11.33 413| 13.80
22.90 16.28 1.78 | 13.40
55,72 22 54 670 | 35.10
63.32 38.34 2.87| 3360
3-D .. I
28,82 29.10 2241 2190 17.00 3.80
228.70 | 14580 | _7.35] 181.00 [ 115.0p | 18.20

A number gt Observations can be Made, In the 2-D case on the RS6000 workstation, the
general sparyg solver outperforms Re capacitance technique only for very small systems

(Up to n=6) "nd the dense solver only for minimally larger systems (up to n=7). Thereis a
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number of factors that can explain this behavior, For small 77 the block sizes are small
enough for the structured sparse matrix to resemble a general sparse matrix. The whole
system is small enough for the permutations to be very efficient and at the same time there
Is no special advantage from using BLAS-based algorithms. In the remaining 2-D cases as
well as all the 3-D cases the general sparse solver is up to seven times slower. In this case
the sparse solver is not able to successfully cope with the special structure of the linear
system. Furthermore, the matrices are large enough for the BLAS-based algorithms to take

full advantage of the underlying architecture.

The situation is even clearer on the Cray where the sparse solver neither
outperforms the capacitance technique nor does it outperform the dense solver. In this
case all the advantages of the Cray vector processor a}e lost. The processing speed drops
to 2-10 MFlops for the 2-D system and to 8-14 MFlops for the 3-D system. For the 2-D
_problem, the solution times for the Cray are comparable to (or worse than) these obtained
on the RS6000.

One should also observe that the matrices are relatively dense. In the 2-D case the
total number of non-zero elements is approximately 25%. In the 3-D case the total number
of non-zero elements is approximalely 12%. As a general rule the sparse solver will only
start to become competitive with dense solvers when there are less than 5% non-zero
elements [12]. The number of non-zero elements is independent of the values of n or m,
and as a result increasing these values does not lead to a sparser system, The oscillation in
the computational time of the sparse solver can be related to the number of permutations
performed and thus the size of the fill-in generated. The same oscillation patlern occurs for
both the RS6000 and the Cray,

Finally, the reduction in the value of PIVOT clearly reduces the time required by the
sparse solver but, as previously mentioned, it affects greatly the accuracy of results, For
large enough matrices the decrease in solution time was a linear function of PIVOT. At the
same time, only for the 2-D case on the RS6000 for relatively small values of n the
reduction in PIVOT led to the performance improvement significant enough for the sparse

solver to oulperform the dense solver,
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