Parallet Compuling 17 (1991 133-153 133
Nuorth- Holland

Solving almost block diagonal systems
on parallel computers

Marcin Paprzyckt* and lan Gladwell

Depariment of Mathematics, Southern Methodist University, Dallas, TX 75275, USA

Received February 1999
Revised September 199)

Abstraci

Paprzycki, M. and |. Gladwell, Solving almost block diagonal systems on parallel compulers, Paraliel Comput-
ing 17 (1991) 133-153,

Finite difference methods for nonlinear boundary value problems (BVP's) in ordinary differential eguations
involve solving systems of linear equations at an inner iteration. In the 1ypical case of scparated boundary
conditions, these systems are atmost block diagonat (ABD). A new ‘tearing’ algorithm for the parallel solution
of thase ABD's is presented here. [t is an extension of one proposed by Dongarra and Johnsson {7] for positive
definie or sinctly diagonally dominant banded systems and it is similar to one proposed by Wright |15] for
banded sysiems. We compare the cost of the new algorithm with costs of other algorithms which might be
applied to ABD's. We simulate the use of the algorithm in solving BVP's. The new algorithm is not designed lor
a specific computer architecture and it is believed that the analysis is sulficiently general 16 be indicalive of
performance for most current parallel architectures.

Keywords. Lincar algebra; almest block diagonal linear systems; new tearing algorithm; comparison with other
algonhms; complexity analysis, simulation results.

{}. Introduction

When solving nonlinear boundary value problems (BVP’s) in ordinary differential equations
(ODE’s), often a ‘global’ method, such as finite differences or spline collocation, is the best
choice, Most robust global codes solve the BVP on a sequence of meshes determined using
internally compuied error estimates. On each mesh the method is used to produce a system of
nonlinear algebraic equations which are solved by a Newton method. At each Newton iteration
an almost block diagonal (ABD) system (see Fig. 1) is solved, possibly for several right hand
sides (RHS's) sequentially. All parts of the global algorithm are conceptually simple to
parallelize except this ABD solution and, at a much lower level of cost, the error estimation; see
[9.10] for a discussion.

We consider the solution of ABDs arising in the finite difference solution of a first order
systern of BVP’s, of any size, with separated boundary conditions (BC's). As a basis for
comparison we use a fast sequential ABD solver which we also use to solve the smaller ABD's
arising from ‘tearing’ the original system in a natural way. In Section 1 we describe an
algorithm, It extends to ABD systems one due to Dongarra and Johnsson {7] (D& J) for banded

* Current address: Department of Mathematics and Computer Science, Universuy of Texas of the Permian Basin,
CQdessa, TX 79762, U/S5A.

0167-8191 /91 /%03.50 3> 1991 — Elsevier Science Publishers B.V. (North-Holland}

134 M. Paprzyeki, I Gladwell

systems. In Seciion 2 we determine its arithmetic cost and an ‘optimal’ tearing strategy. We
compare this cost with that of the sequential algorithm and a version of the D&J algorithm
which assume no interchanges. The latter is an unrealistic approach to solving ABD’s arising in
BVP’s since it always costs more then our fast sequential algorithm. However, it enables us to
Judge the effect of assuming the ABD is just banded without any interior structure. In Section
3. we consider the interprocessor communication demands of our algorithm and the memory
requirements on a distributed memory system. Finally in Section 4, we provide a theoretical
simulation where we cost the solution of a ‘typical® set of ABD systems such as would arise
when solving a difficult nonlinear BVP system. We report a simulation on a Sequent Symetry
with 20 processors designed to verify our theoretical predictions.

1. Algorithm description
1. 1. ABD solvers

We limit discussion o ABDYs of the type arising when finite differences are used to solve
BVP's for ODF’s. For simplicily, we assume the system resulis from discretizing a linear
first-order system of n ODE’s with ¢ separated BC’s, ¢ < n at the left end, using the ‘box
scheme” due to Keller [12]. Such systems arise at each Newton iteration of the discretization of
nonlmear BVP’s with separated BC’s. The results can be extended to ABD systems arising from
the collocation method and /or treating higher order equations directly.

As far as we are aware there are no parallel solvers specifically intended for ABD's. The best
known sequential codes are the row elimination code SOLVEBLOCK [4] which is used in
COLSYS [1] and the alternating row and column elimination code ARCECO (COLROW)
described in [14] and later coded in [$3]. The advantage of ARCECO over SOLVEBLOCK is
that ARCECO does not generate fill-in. We use an implementation available in the NAG
bibrary (subroutines FO1LHF and FO4LHF) [3,13]. It is coded using the level 2 BLAS, [6]. and
is suitable for use on vector processors. It uses row and column interchanges to avoid fill-in
(like the unpublished ROWCOL [5]) rather than the row and column efiminations of ARCECO.
We use a modified version of this code on each processor to solve a subproblem that is ABD.

It 1s possible to solve ABD's by treating them as banded or block tridiagonal systems. Both
these possibilities have significant disadvantages. The former does not allow us to take fuil
advantage of the structure. As will be shown later, use of parallel banded system solvers leads
to signtficant increases in the expected workload in comparison with the ABD approach. The
latter method is also problematic. Matrices which arise from finite differences not only require
pivoung, but also require codes with good stability properties. Most popular ways of solving
block tndiagonal systems cannot be used directly without compromising on stability. See [2] for
a futler discussion.

Our parallel algorithm is based on techniques developed for banded systems and presented
in [7,8]. The general idea is to divide the system into smaller segments of similar structure
which can be factorized independently and from these to create a reduced system again of the
same structure which is factorized on a single processor. Finally the result is calculated in
parallel. We will separate the decomposition phase from the solution phase as, in the context of
solving BVP’s, we will often need to solve for several RHS’s sequentially.

1.2. Partition strategy

For banded systems, Dongarra and Johnsson [7] ‘tear’ the system into a number of
approximately equal sized subproblems. Of course. each of these nroblems is automaticallv also

Sedving almost Mook diegonal systems on purallel compruters 133

v
.

— decomposition
S B

— pivieting and
interchanges

— no pperations
(later imterchanges) o

Fig. 1. The ABD system and its partition,

banded. The reduction process, similar 10 that described below, leads naturally to a reduced
system which 1s also banded. The “inequality’ of the ABD structure implies that we must make
a more carefull choice when “tearing’ the system.

Consider a typical ABD arising from discretizing a first order system of QDE's (see Fig.).
The partition strategy we adopt is one where each segment has the same ABD structure as the
original matrix. An example of such a division (into three segmenits) of an ABD with nine
blocks (seven internal) 1s presented. This is the maximum number of segments possible for a
ming-block ABD. In gencral the number of blocks 1in each segment will be greater. The ABD in
fig. 1 could have ansen from a finite difference method for a BVP using six internal mesh
points. Our way of partitioning the system allows us to use existing software. Fach of the 4,
matrices (segments) 1s factorized using the most efficient ABD strategy. When the rouline
FOLLHF 15 used to perform this task, the matrices 4, are decomposed as lollows:

A =P LUQ where P -contains row permutdtions
L -is lower triangular
U-is upper triangiudar

{ -contains cofumn permutations.

However for ABI's anising from finite differences one cannot guarantee *nice’ properties of
he segments. 11 can be shown that when the BVP s nensingular and the mesh 15 fine encugh
he overall ABD matnix from a finite difference discretization 1s nonsingular. This 1s not
1ecessarily true for the segments chosen as above and there exist simple exampies of nonsingu-
ar matnces A4 with structurally singular segments 4. Row and column permutations, P and
2. suitable for successful decomposition of 4 are not available to the processors which
lecompose the segments. They mught not provide a stable ordering in the scgments even if they
vere available,

To avoid this probiem a speciat way of treating first and last blocks in ezch internal segment
125 been used. For the first block the first n ¢ row ‘eliminations’ are just row interchanges
vithout decomposition. In a simtlar way for the last block the decomposition stops after n-g
ow ehminations. However the whole last block provides elements for interchanges. We have

134 M. Paprzyveki, 1. Gladwell

observed that this extra frecdom in the choice of pivots prevents the occurrence of structural
singularitics. For the first scgment A, the special treatment is necessary only for the last block.
The situation is different for the last segment 4,. When the last block contains right boundary
conditions, it is of full rank. A, should be copied ‘upside down’, which is equivalent to
decomposing it starting from the last element up. This approach allows us to avoid structural
singularity in the same way as for the first segment. Though we have no proof in the general
case, 1n all of the examples with structurally sinpular segments which we have considered, these
additional row interchanges prevent the occurrence of structural singularities. Obviously they
cannot prevent numeriwcal singularities.

[.3. The parallef algorithm

Phase I - Decomposition of the system

In Phase I the system is divided into P segments as shown in Fig. J, where P is no larger
than the number of available processors. Each segment is decomposed using a modified version
of NAG routine FO1ILHF which we call ABDEXT. This lcads to the system in Fig. 2 (using

notation stmilar to Dongarra and Sameh [8)) where

A & RY7M

. Io , . [T
S'IFRW-*;:‘ ilH‘J:[S‘ERMi"w ?:ER‘” g "1 T:: {];]ERM{{H*
I L
- A ~ £)
- ¢y - I H —- () — - HEDRN
M e RYTT M!---Iﬂ = R N e g 0T = Nr‘{:R ,
W e R,
M = size of the segment.
Ai
S
|
M;
Ww.
1 Ni
-)]
THI
Ai+1
5i+:l
Min

Fig. 2. Svstem after Phase L

Solving afment Mock diagonad systems on parallel computers 137

i+1 Ll i+1

i+l

Fag. 3. System aler mverse mulliphicanon.

Interchanges in the first and last small blocks of 4, should also occur where appropriate in
5. M, T and N. Interchanges in M, and N, can already be performed by FOILHF by a
careful choice of starting pointers to the stack containing the segments. We have extended
FOILHF in code ABDEXT to perform row interchanges in § and 7. We need to be able to
solve for successive RHS's as occur in an iteration for a nonlinear system. For this, it is
necessary to keep the ainformation about the interchanges inside the decomposed matrices A,
and to save the information about those interchanges which occurred outside the decomposed
segments. This phuse can be performed independently by each processor and no interprocessor
commumnication 1$ necessary.

Phase Il Inverse multiplication
The systemn from Phase [is multiplied implicitly by
diagi A, '. 1. A, ", 1,.... 4.} =INV
to give the system in Fig. 3. £ and F, are obtained by solving
PLUQIE, F)=[T, $]

We expect £ and F, to be full matrices. If our original system had the form Ax =} the new
system has the form

Ax = INV b where 4 = (INV)A.

This phase can be performed independently on each processor and no interprocessor communi-
cation 15 necessary.

Phase 11l - Additional eliminations
Phase 1II climinates the M,’s and N's using row additions in the appropriate parts of the
identity matrices produced in Phase [l. When M, is eliminated the first n — g rows of W, are

134 M. Papraveks, 1 Gludwedl

ERRLAARES

TITT]
|
)
1niedl] aslil i
- .

] : FHrl Z;

:” Hl+l~”’ '"|'"TI'HT"' ””
R Wit i)
-—— 141il]., JI_UH

[] [—] — pactd of the reduced :

Bystem

Fig, 4. Sywtem after addional climinations,

| S
P

[
.
—

., W

o)

S —

] -

L1,

-— are—— g

¥a
G,y

Fig. 5 tar: Reduced system represented in block indiagenal form; (b) Reduced ABD svstem and its nght hand side.

Seving aofmast Mook dhagonal svsiemy on puralte! compuiters] 34

allered and an additional fill-in // &€ R'™™ #'7" iy generated. When N, 1s eliminated the last ¢
rows of W, are altered and additional fill-in G, € R%*" is generated (sce Fig. 4). The allered W
is denoted W,. To perform the appropriate operations on the RHS's, the multipliers must be
stored 1n an additional vector. They cannot be stored in the filled-in parts, because the values
there will be necessary for Phase V (solution calculation). In Phase 111 a new, reduced ABD
system is crealed (see Fig 54 and b,

To create the reduced system on a shared memory machine no INLerprocessor Communica-
tion ts necessary. On a distributed memory computer appropnate parts of the new system must
he sent to the processors which will decompose it in Phase 1V.

Phase IV - Decomposition of the reduced ABD system

We decompose the reduced system created in Phase I11. This svstem has the same ABD
structure as the onginal, values n and g remaining unchanged. It will have P-2 blocks of size
n X Zn and 2 BC-type blocks. Since we assume that the starting number of blocks K is large and
the number of processors P is correspondingly moderate, it seems natural to solve this new
system using one processor and the original ABD routine, FOLLHF,

In the case when P is large, recursive tearing can be considered. For cxample, the reduced
system may then the too large for the memory of one processor. Even if i is not. it scems
possible that a recursive parallel algorithm may be faster than the sequential algorithm, in
terms of wall-clock time. It is casy 1o see that this will only be the case if 2. and hence the
reduced system, s very large. Since we arrange our original partition into segments so that & /P
15 large, this scenarnio is vnlikely.

Phase V' Salution of the reduced svsrem

The nght hand side b 15 multiplied by the matnx INV, in paratlel. Next the multiplicrs
stored 1n Phase I are used to recalculate parts v of the RHS (see Fig. 4). The v’s are then
sent to the processors used in Phase IV as the RHS of the reduced system (see Fig. 5b). The
solution ¥ of 1he reduced system is calculated using routine FO4LHF.

Phase VI - Caleulation of the solution

The solution of the reduced system effectively decouples the original matrix. After Phase V
partial solutions of the original system have been catculated. In Phase VI parts of ¥ {corre-
sponding (o appropriate v.'s in Fig. 4) are distributed to the other processors and backsubstitu-
tion is performed in each decoupled scgment to compute 2 s (corresponding to 2,'s on Fig. 4)
which together with previously computed ¥ constitute the complete solution of the problem.
This phase can be carried out in parallel. In the case of a shared memory machine no
INtErprocessor communication is necessary, because Phase V is performed in a global shared
matrix. On a distributed memory architecture the resuits from Phase V must first be trans-
mitted to processors which hold the parallel decomposition. A more detailed description of the
implementation of this phase (for a banded matrix) is given in {8},

2. Arithmetic operation count

We use estimates from [5) for the cost of ABD solution. The basic unit of cost is one
additon and one multiplication. To make the analysis as close as possible to computational
reality, the following assumptions were made:

- n (the size of the system of ODE's) is fixed:

k {the number of internal blocks representing the number of meshpeints in the discretiza-

tion) is variable. In an adaptive BVP solver & might start smait and increase:

144} M. Pupraveki, J. Gladwell

- P (the number of processors used) can change. Really the number is fixed but one might not
choose to use them all.

We have & internal blocks of size n X 2n and BC-type blocks of size g X n and (n— g) X n
respectively. Suppose & + 2 is divisible by P. Then, we have P segments each containing
[k — 2(P — 1))/ internal blocks and 2 BC-type blocks. To account of multiple RHS's, the
operation count will be calculated independently for decomposition and for solution. Workload
for the first and last processors 1s smaller as only one-sided fill-in 1s calculated. There is no way
to exploit this, except unequal division of blocks between segments. Thus we will count the
workload equal for all processors.

21 Decomposition

Phase I
From [5] the total number of basic operations necessary to decompose a segment coniaining
[(k+ 2}y/P — 2] n X 2n blocks and 2 BC-type blocks is

[k +2)/P][(5/6)n* + (1 /2)n%q — (1/2)ng? — n* + (1/6)n]
—{4/3)n —ng+ng* + 32002 — (1/6)n.

lFor P =1 this formula contains all of the cosis of decomposition. The following costs are
used only when P>],

Phase i1

The number of basic operations for back substitution per n X 2n block for one right hand
side is 2n%, for the top BC-1ype block it is #° — ng. and for the bottom BC-type block it is ng.
Hence the number of operations for one right hand side is n*(2[(k + 2)/P — 2] + 1). There are
2n right hand sides per segment, n each for matrices T and S,. Therefore the total number of
operations is 2n°[2(k + 2)/P — 3] per processor,

Phase 11

A simple estimate shows that the total number of basic operations for each segment is 217,
except the first and last segments for which there are n' operations. The total effective number
of operations for this phase is 2n'P

Phase IV
Using the formulas of Phase 1, the total number of operations to decompose the reduced
systemn with (P~ 3) n X 2n blocks and 2 BC-type blocks 15

P(5/6)n° + (1/2)n*q — (1/2)ng® — n? — (1/6)n]
— {4/ —ng+ ng* + (3/2)n* — (1/6)n.

Hence the effective total number of operations for decompositton of the segmented ABD
syslem 1s

TOTAL(%, a. g, P)
= [(k+2)/P1[(29/6)n" + (1/2)n*q - (1/2)ng* —n* + (1/6)n}
+ P[(17/6Yn* + (1/2)n%g — (1/2)ng* — n* + (1/6)n]
—(26/3}n" — 2n'g + 2ng* + 3n* ~ {1 /3}n.

There are two specific and commonly occunng cases which can be considered ‘extreme’ from
the point of view of workload. The first is g = n/2 {the BC’s are equally balanced between left

Sofuing almost black diagenal systems on paralic! computers 14]

and nght) and the second is ¢ =1 (almost all BC’s are¢ on the right). For these cases the total
work 1§

TOTAL(k. n, n/2. P)=[(k +2}/P]{(119/24)n" — n? + (1 /6)n]
+ P[(N/24)n — n? + (1/6)n] — (55/6)n° + 3n2
—(1/3)n, (2.1)
TOTAL(k. n. 1. PY=[(k+2)/P]{(29/6)n* — (1/2)n* — (1/3)n]
+ P[(17/6)n° — (1/2)n? — (1/3)n] = (26,/3)n® + n?
+(5/3)n. : (2.2)

The cost with almost all BC's on the left {(g=n — 1} is the same as (2.2).

For any n > 2 and any values of P and k the leading order terms in (2.1) and (2.2) caplure
at least 90% of the total cost. Therefore we can reasonably add the assumption that » is large
enough to keep only the highest order terms, that is terms of O(n?) can be neglected. The
approximate arithmetic costs are then

TOTAL(k. n, ¢, P)={{k+2)/P]{(29/6)n* + (1 /2)n’g — (1 /2) ng?
+ P[(17/6)n + (1/2)n*g — (1/2)ng?] - (26/3)n°
— 2nig + 2ng?
which for the ‘extreme’ distributions of boundary conditions is
TOTAL{k, n, n/2, P} = {(119/28)(k + 2) /P + (71 /24) P — (56 /6) } rn®, (2.3)
TOTAL(k, n, 1. P)= {(29/6)(k+2)/P + (17/6)P — (26 /3)) n*. (2.4)

The ‘optimal’ number of processors to minimize the workload in these latter cases is

P (1) = /(29 /17)}(k + 2)

In Table I, Py, segment size and total workload is given for & = 58, 118, 238, 478. This
number of internal blocks per segment was chosen to allow balanced usage of all 20 processors
on a Sequent Symmetry.

o (n/2) = 6Tk +2)

2.2, Saolution phaves

Phase V

The cost of calculating the new RHS (the multiplication INV » can be performed 1n parallel)
is 2n’[(k +2)/P — 3] per processor. After this, the cost of solving the reduced system 1s
2n*{ P — 3) on one Processor.

Table 1
Optimal number of processors for a given number of blocks. (Segment $ize rmeasured in number of internal n X2a

hlocks.)

[——

g=n,2 g=1

K Popr Segment size Tortal k Fopr Segment size Total
58 10 4 51n® 58 10 4 4953

118 14 & 750" 118 14 6 7in’

238 20 9 110x? 238 20 9 106x°

478 28 14 15977 A7H 70 13 154n"

|42 M. Pagrzvehs, 1 Gladwelf

Phase Vi

The cost of calculating the solution of the system (which can be performed in parallel} is
2nf[(k + 2)/P — 3] PEr Processor.

Hence, the cost of the solution phases for » RHS's is r[4(k + 2) /P + 2P — 18]#°. Observe
that this is ¢ independent: that is the distribution of BC's is irrelevant.

For the interesting case n > r, the cost of decomposition is higher than for solution.
Therefore the number of processors used should be based on the demands of decomposition.
Overestimation of the number of processors leads to a smaller increase of the decomposition
workload than underestimation (see Fig. 6 and 7). When 4. and and hence P, varies, il we
cannot vary £ accordingly, P should be chosen to overestimate any likely values of Popr.

2.3, Comparisont with other afgorithms

H our ABD was solved sequentially (using, say, FOILHF and FO4LHF) the total cost of
decomposition would be

TOTAL (k. n, ¢) = k{{5/6}n* + (1 /200’ — (1/2)ng? — n* + (1,/6)n]
+(1/3)n ~ (1 /2)n? + (1/6)n.
For the ‘extreme’ cases this is
TOTAL (k. n, n/2)
~k[(23/2ayn" 0P+ (1/6)n] + (/30 = (1/2) 0% + (1 /6)n,
TOTAL (k. n. 1)
= k[(5/6)n" - (1,/2}n? — (1/3)n| + (130"~ (1230 + (1/6)n.

For n > 9 the leading order term capture no less than 90% of the total cost, Therelore for n
large, the approximate workload s

TOTAL (k. n. n/2) = [{23/24)k + 1 /3] n’.
TOTAL (k. n, 1)~ [{5/6)k + 1/3]n".

These costs are tabulated in Table 2 for the same values of & as in Table 7. The cost of the
solution phase is r(2k — 3)n’.

Consider now the D& J purallel algorithm {7, §5] for banded systems. It was designed under
the assumption that no interchanges are necessary (as for instance for positive definite or
strictly diagonally dominant matrices). Because most ABD's require wnterchanges for stahility
we cannot use 1t directly. We could use the algorithm proposed by Wright [15] which is an
extension of the D& J algonithm which allows for interchanges. However, here we cost the D& J
algonthm with interchanges, assuming the ABD is included inside a banded system of
ninimum bandwidth. Below, we refer to this as the modified D& J algorithm. The resulting
cost will certamnly be no more than for Wright's approach. Using the formulas from [7] the

Table 2

Arithmene cost of decomposition using the sequential method.

'y g — n;/2) N g =1
T) Sén? - B 45
118 114n° 99y
234 229n° 199,

478 45957 3997

Solving almost Mock diagonal systems on paralfef computers 143
Table 3
Workload of modified D&J algorithm; results in the last column represent workload lor g=n/s1 and ¢ =1
respectively.

m—rr. e ———

k Four o Segmenl size Total

S8 14 2 201n 3\ 476n
118 19 4 30277 71547
238 27 7 444n*\ 1052 n°
478 x 10 645031528

——ia —_r— = e — - e e s W ———

e
Key to Figures 68

O-58 blocks
A-478 hlocks

------ — - parailel algorithm
- - - - == —- - —xerial algonthm
- e e - D&Y alygorithm

Key to Figures 9-13

58 internal blocks
- 118 interna! blocks
238 internal klocks
----------- 478 internal hlocks

E
ii"'l"'-\.-"-\.- !

PR R R
_ = =

th.

A
"
Tra
.ﬁﬁh_
Py
BATAA LA ALAAMAHNEAOTARS

B

g
EHHDEHF

oo 5%, o
F LI”‘D-%E.,’ - EE}W?EEHUBHU]

o A g A A A TR A AT
A B ety TR s

mEEdY

N Fa : : R
T **Hﬁwwh'mu{ﬁrﬁf b H H B MR HO R c— -
tryr 4 _
_ . - _, .. . C e = Cp e e
(] ‘ 10 1) 210 25 A0 1s 4 a4 5[

el e5500S

Fig. 6.

144 M. Paproyveki, I Glodwel

- 1
fi
e :
L] '
= Fi]
o '
[l | '
A
£ Y
. .
1
b a
A
A._
E o &
5 A
o A
1 hl&-
' nh
b 1
o | ﬂﬁﬂfrﬁaﬁﬁh&hﬁﬂ'ﬁa'ﬁ
-] 1
£ '
i 1
L
o -:El | L
o) '
["
D 1
e -6
|:..'|
k|
[} "_-‘*I T[
E__: L'-'l"_-TLr-
5 3ﬁnu
e
S
-,F'I
L [_IE][
Ly I';-T”
= "l‘r![
o _ﬂﬁuH"
TMae: yH poplae
]
i s
[
N
ﬁﬁﬁﬁﬂﬁ A
P) ﬁﬁﬁﬁﬁ*”ﬁ“ﬁﬁ*ﬁﬁ“““ﬁﬁﬁﬁﬁﬁﬁnﬂﬂﬁunuuﬁ
A 81 o TR IR IR A LELE TR '
Tt gL TSVETRTRVETRVRRTRTTE TR LD A LG Mt 1A
1) | ' 1 1 | b - . I
| c, HR | i L A i i1 al, tA

F]fl.'ll 7 afE,

Fig. 7.

number of operations to decompose the system s
TOTAL(k. n, g, P) = (k/P)Em*) + P(8/3)m* - 11m” + (1/3)m

where m = 2n — ¢ is the half-bandwidth.
For n > 1 the O(n*) terms capture no less than 90% of the total cost. Under the assumption
that n is large enough. in the cxtreme cases the cost is approximately

TOTAL(k. n, 1, P)=[64(k/P) + (64/3) P — 88] n’
TOTAL(k, n, n/2, PY=[27(k/P) + 9P — (297/8)| n".

The minimum of both these functions is at P,py = ¥3k . The total workload for the modified
algorithm using P,p processors is given in Table 3 using values of k corresponding to Table 1.
The cost of the solution phase is rm*[8(k/P)+ 3P - 9.

For large n, and r = 0, the arithmetic costs of the three algonthms are illustrated in Figs. 6
and 7 (with g=n/2 in Fig. 6 and g=1 in Fig. 7). We have shown the costs for the range
P =2, 3,....50] and for k= 58 and 478.

Clearly, if more than P,p; processofs are avatlable it may be better not to use them all;
additional processors will increase the run time instead of decreasing it. This is especially true
when the total number of internal blocks is small. 1t is an even more serious problem for the
modified D&J algorithm. However the penalty for using slightly more than Pgpr processors is

| —

Wk oo

(!

I

Solung almaost block diugonaf systems on paratfel COMPLTErS

*1

y

Y

rl

Tl

"k ¥ 4 mH““E

1.

S

n =

Ik

i'lrl

| LR)

Fig &,

)

i

1,

4]

145

not large. When the number of processors used is smaller than P, the penalty, if avoidable,
can be more severe.

Similar remarks apply for small systems; see Fig & which presents the workloads for n =2
and ¢ = 1. The workload for the modified D&) algorithim when & = 478 gave values too large
1o be captured on the figure.

In Tuble 4, for n large we compare of the costs of the decomposition in the other algorithms
to those of our parallel one. We assume the parallel ABD and the D&J algorithms use their
own optimal number of processors for each given number of blocks. Indeed, for P ~ O(Vk)
processors the mit as & — 20 of the ratios of the cost of the sequential algorithm to the parallel
algorithm are .12vk + 2 and 11Vk + 2 for g=n/2 and g =1 respecuvely. This is in quite

Tabile 4

Ratios of costs of the sequential and the modified D&J algorithms to the parallel algorithm

Sequential approach ') Modified D&J algorithm

. q=n,2 g = g=n/2 g=1
58 1.10 1.00 Y 9.71

11E 1.52 1.35 4.02 079

23R 2.08 1.87 4.03 0.92

2.R9 2.59 4.05 9.92

478

146 M. Paproveki, | Gludwelf

good agreement with the first two columns of Table 4. The results of Table 4 and Figs, 64
demonstrate that the modified D& J algorithm is uncompetiive for BYP systems. We will not
consider it further.

3. Additional topics
3.1 Interprocessor communication

Two cases should be distinguished. On a shared memory compute no ‘interprocessor’
communication is necessary. Phases L, [l and 111 are performed on one global shared memory
matrix. Each processor is operating on a set of shared variables and calculates its private
pointers when necessary. At the end of Phase 111 all processors are filling a separate part of the
global shared vector which represents the reduced system. This operation also does not require
interactions between processors. The start of Phase 1V is the first moment which requires the
synchronization because, in principle, all of the parts of the reduced system must be 1n place 10
decompose it. One could start decomposition as soon as the first two blocks are in place {a
frontal approach). This would lead to a very complicated code and we are not convinced that
such a price is worth paying because of the expected small size of this system. Similar
comments can be made for compuiing the solution of the reduced system in Phase V. Phase VI,
which involves computing the solution of the large system, can be performed independently by
all of the processors using the information from the global shared vectors.

The situation is slightly different on a distributed memory architecture. Before the algornithm
starts alt processors must receive their tora parts of the system. Each of them must also have
some {ree memory space to create the necessary additional vectors. Assuming that the optimal
nurnber of the processors will be used and each has enough local memory, Phases [to 111 are
performed independently on all processors. At the start of Phase TV all the necessary
information must have been communicated to the processor which will decompose the reduced
system. After the solution of the reduced system is computed in Phase V. at the start of Phase
V1 the partral solution must be communication to the processors which calculate the solution of
the original system.

There is considerable interprocessor communication at the end of Phase 111 and. to a lesser
exteni, at the start of Phase VI. We have made no attempt to include these costs. Note.
however, that while about 2 Pn? elements are communicated to a single processor in Phase 111,
about (23/24)Pn’ arithmetic operations are performed in this phase, There is a similar
favorable imbalance in Phase VI. Thus for large n, arithmetic costs are likely to dominate.

3.2. Memory requiremenis

In the case of a distributed memory configuration the size of memory connected with each
processor plays an important role. Each processor needs to be able 10 keep its segment of the
ABD. The memory requirement for the first and last segments are smaller, but there is no
simple way to exploit this fact. Therefore memosy demand will be calculated for all Processors
equally. In Phase { the size of the segment is 2(k + 2)/Pn*. The fill-in generated in Phase I11 is
20k + 2)/P —]]ﬂl. The multipliers in Phase [V demand 4n? elements. Therefore the minimum
memory requirement per processor is [4k + 2)/P + 2]n* elements. Once this memory is ‘used’
It cannot be *reused’ because the decomposition information is necessary to calculate results for
multiple RHS's.

This size of the reduced system in Phase IV is approximately [2(P — 2) + 1]#* elements.
Therefore the total memory requirement (where it is assumed the reduced system fits on one

Sutving afmost block diagonal systems on paratlel computers 147

Table 5
Number of processors to balunce memory reguirements

A Py

— T - - -
118 I

234 23

47 kY.

processor) is [44 + 4P + 5]n° words on a total of P +] processors. It 1s casy to see that if » is
large enough and P ~ O(Vk). then as & — o the toral memory required for the parallel
algonithm s twice that for the sequential algorithm.

Increasing the number of processors used increases the total memory demand, but the
memory required per processor decreases. When n is large we may balance memory demands
hetween the requirements of the segments and the requirecments of the reduced system. We do
this by solving [4k + 2)/P + 2n’ = [P -) + 11r* for P,. This gives P, = (5
+ V89 + 32k) /4 processors. See Table § which should be compared with Table 1. P, is slightly
larger than P, [t is natural (o chooese the number of processors to maximize the speedup:
that ts J' = P . However, as shown in Figs. 6, 7 and &, the penalty for using a shghuy larger
number of processors to satisfy memory requirements, if necessary, IS not severe.

I the memory availuble per processor is smaller than is required to use P, processors then
the system should be segmented between a larger number. However, we must be able 1o kcep
approximately 4n? words an cach processor. Also we must have enough memory to solve the
reduced system created in Phase 1V of the algorithm. When the number of PrOCESSOrs IRCTeases
the size of the reduced system increases. For all P = 3 the sive of the reduced system s larger
than 4n° words. For large enough # and P - P, this implies using tearing 1o solve the
reduced system.

4. Simuiation
4.1, Theoretcal problem simuduation

We present our ssmulation in terms of relevant parameters arising in the solution to realistic
problems but our results are fur the parallel lincar algebra only. Our simulations are intended
to reflect the situation of solving large, difficult nonlinear BVP's, Assume the solution is started
with 26 meshpoints. (This allows us 1o divide exactly the number of internal blocks by the
optimal number of processors. In all cases for 26 internal blocks the optimal number of
processors 18 7, with two anternal blocks per segment.) Simple doubling of the mesh is used o
caleulate a senies of solutions. Assume we need S consecutive mesh doublings. For coarse
meshes a large number of iterations is usually necessary. When the number of mesh points
increases the number of iterations usvally decreases. Assume that for 26 and 52 meshpoints 8
erations are performed. Similarly for 104 and 208 meshpoints assume 4 iterations are
necessary and for 416 and 832 meshpoints 2 iterations suffice. This means solving for 8, 8, 4, 4,
2 and 2 RHS's respectively. Suppose that each step is calculated by the sequential approach
and by the paralle] algorithm. For each step of the parallel algorithm the optimal number of
processors 1 used. This choice favors the parallel algorithm over using any fixed number of
processors for the whole BVP solution, For a smatl system (n = 2), Table 6 contains the ratios
of costs of solving the problem using the sequential approach to solving the same problem as
using the parallel algorithm. The results after the (%) represent the situation with a limited

144 M. Paprzyeki, 1 Gladwelf

Tahle 6
Smull system simualation
. e e el e 4 "_;:-“FT . o —
26 7 o 276
52 o 316
104 14 i25
2O¥ 19 4.26
416 28820 4,56 4. 28
832 420 6.26% 4.96
Total relative cost - 4.55\4.17
Table 7

Larger system simulations

; s pou
Fom Cost o - 10 Cast n - [O] Coston =10 Cost v = 1
_2;‘ R ? e I:ﬂ _ _._.-_._.___..”IH'.:].. 3 = e
52 il 1 .93 1.17 1) 1.90 1.08
1004 14 2.04 I 5 14 1.97 1.37
JOR 14 2.5 2.05 19 266 1.87
416 26 N 1200 3.06 275264 27) 3065 291 2.MN2.39
Ri2 JiN 20 4.44% 3.62 IR3I A6 REaI) 4.24~3.45 347 285
'I'ulalll - ?]‘4\394 2.(:432--‘-.14. . 1065 281 2400221

number (20) of processors. For a moderate-sized system (2 = 10) and a lurge system (n = 100),
the results are summarized in Table 7,

Using the formulas in Section 3.2 Tor the total memory, we have calculated the minimal
memory requirement (per processor and in total) for the simulation described above. Table &
summarizes the memory requirements in words /n°. The approximate factor of two between the
memory requirements of the parallel and sequential algonithms as evident.

4. 2 Practicad simufarion

To confirm our theoretical predictions we performed a computational simulaton. We coded
the parallel algorithm using Force directives {11] and tested it on a Sequent Symmetry with 20
ProCessors.

To make a fair comparison the parallel code was tested against the best sequential algonthm,
routine FOLLHF from the NAG library. The numbers of blocks were chosen to match the

Tahle ¥
Comparison of memory requirements; PP memory requirement per processor, RSS - redoced system size. SEQ -
memcry requirement [or the sequential algonchm.

k Py PP RSS Total SEQ
26 7 15 11 137 53
52 14 24 17 253 105

104 14 33 25 477 209

20K 19 47 35 9113 417

416 264,20 b7 B 49 37 1773, 1749 833

832 38, 20 90, 169 73,37 34855 3413 1665

Seelering almost block diagonal systems on paraliel computers 149

teescret ol e -2

.|-
A

SpEedun
1 1

Foo I - r | . . : I I . | | | I : | I I |
P ' A | i o i, ! H g I3 TG 1h d | T <Y I T ¥ B

Fig, .

theoretical predictions made in Section 2. Tests were performed only for cqual divisions of the
total number of blocks. This implies that first and last processors waited for the other
processors to ‘catch up’, but it makes the overall picture much clearer (preveating erratic
behavior), Comparisons were made for the most expensive part of the process, decomposition
of the system. to match results from Section 2.2, Tests were performed for g = n/2, which
‘ext{reme’ case Is more common 15 computational practice.

Fig. ¢ summarnizes the theoreticat speedups for 21 = 2 with all terms included in the formula,
whereas Frg. [0 presents speedups achieved in the test. Fig. /] summarizes the theoreucal
speedups for # = 10 (the largest system with 478 blocks that {its into memory) with all terms
included in the formula. Fig /2 summanzes the theoretical results when only the O(n?) terms
were included. Fig 13 presents speedups achieved in practice.

As predicted earlier, the behavior when n = 2 cannot be approximated by O(#n') terms only
(compare Figs. 9, 10 and 12). The erratic behavior of the practical test for n =2 can be
probably explained by the system overhead (visible especially for smail problems). When
=10 test results are very close to the truncated approximation. The influence of the lower
order terms is close to negligible. The timings of the sequential code behave as predicted. They
double (with some small overhead) when the number of internal blocks 15 doubled.

150

soeedud

re
'_-'

SO
T &

ot
ok

1Y
~

e

Ll |

‘11
oy

et

P

L]

i
[

[

PR

M. Paprzycks, [Gludwell

practv.nd n=¢

I : I ' .
H] M "o

farcar e

Fig. 14

T |r'_'."_.

Ehvesvarer® e 3l 1o 3E)

I.%

)
1

1.

™ - T
[1&

T3
&
1

0

C—

s

aad
il

i

10

i A

e
-

LY

Sofvung almost block diagondad sestems on paraflef computers

F u -

highe:st order_ terms only

L]

Fap. 12

frele Bieilor

I}

131

152 M. Paprzyveki, . Gladwelf

For a large number of processors the speedups are slightly better than predicted theorett-
cally. This can probably be explained as the effect of *cache’ memory, which oa the Sequent
Symmetry is added to each processor. When the number of processors increases the size of
segments decreases and the amount of communication with the global memory decreases. That
18, we gel more than just the arithmetic cost reductions. Even 1f this effect is machine dependent
it has three important consequences. First, it suggests P,pr should be used as a fower bound for
the number of processors, if feasible. Second, 1t suggests considering memory balance require-
ments as an alternative criterion for choosing the number of processors. Third, it implies a
distributed memory model may be a good predictor for shared memory cache machines.

Tests were also performed to check the stability of the proposed algorithm. For well-condi-
tioned matrices (regardless of the size of the internal blocks and the number of such blocks) the
parallel code produced answers which differed (in Euclidean norm) by a small multiple of
machine precision from the results computed by the (stable) sequential code.

5. Conclusions

We have developed a parallet algornithm for Almost Block Diagonat systems. This algorithm
is is based on ‘tearing’ the system into smaller almost block diagonal segments which can be
decomposed in parallel. This algorithm maximises the exploitation of the structure of the
underlying system. it is shown to be vastly superior to using tearing on the narrowest banded
system containing the almost block diagonal structure.

We have presented a realistic simulation of the solutton of almost block diagonal systems
anising 1n a finite difference approximation to an ordinary differential equation boundary value
problem. Our best theoretical speedups over our sequential algorithm are about the factor of 4
on small systems when using up to 40 processors. For large systems our theoretical speedup 18
about a Tactor of 3. This and some limiting observations demonstrate that the teanng algorithm
is unlikely (o be competitive in terms of speedup 1n finile difference calculations. However, It
may be useful as an alternative o a sequential algorithm, when memory limitations preclude
the latter’s use. In a later paper we will present more promising results for higher order spline
collocation techniques.

Acknowledgement

The authors wish 10 thank Gertrud Kraut for her assistance with producing the figures.

References

1] U. Ascher, J. Christiansen and R.D. Russell, Collocation soltware for boundary value ODXEs, ACM Trans. Math.
Sofr. 7 (1981} 209 .229,

[2] U. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary
Differential (Prentice-Hall, Fnglewood Cliffs, NJ, 198K),

[3} R.W. Brankin and | Gladwell, Codes for almosi block diagonal sysiems, Comput. Math, Appl 19 (1990) 1-6.

[4] €. DeBoor and R. Weiss, SOLVEBLOK: A package for solving almost block diagonal linear systems, 4CM
Trans. Matk. Soft. & (1980) 80 . 87.

(5] J.C. Diaz, GG. Fairweather and P. Keast, FORTRAN packages for solving certain almost block diagonal linear
systemns by modiflied alternate row and column eliminations, ACM Trans. Math. Soft. 9 (1983) 358- 375,

(6] J.J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson, An extended set of Fortran basic hinear algebra
subprograms, ACM Trans. Marh. Soft. 14 (1988) 1-17.

Solving almeast hlock diagonaf systems on parallel computers 153

(7] J.J. Dongarra and 1. Johnsson, Solving banded systems on a parallel processor, Paralfef Compur, 5 (1987)
219- 246,

8] 1) Dongarra and A H. Sameh, On some parallel banded system solvers, Paralle! Compur. 1 {1984) 223- 235,

9] I. Ciladwell and R.1. Hay, Vector- and paratiehzatuon of ODE BVP codes, Parafle! Comput. 12 (1989) 343-350.

[10] R.A. Hay, The impact of vector processers on boundary value codes, Ph.D. Thess, University of Manchester,
England, 1986

[11] LI Jordan, M.S. Benten and N.5. Arcnstorf, Force User's Manug! (University of Cotorado, Boulder, Colorado,

1986,

[12] H.B. Keller, Numerical Solution of Two Point Boundary Value Problems (S1AM, Philadelphia, 1975).

{13} NAG Fortran Library Manual, Mark 13 (1988), NAG Lid., Wilkinson House, lordanhilt Road, Oxford, (X2
XDR, UK.

[14] I.M. ¥Yarah, Alernate row and column elimination for solving certan linear sysiems, SIAM J. Numer, Anaf 13
(1976) 71-75.

[15] 5.1, Wrnight, A parallel zlgorithm for banded Linear system, 1o appear.

	big copy.gif
	big0001 copy.gif
	big0002 copy.gif
	big0003 copy.gif
	big0004 copy.gif
	big0005 copy.gif
	big0006 copy.gif
	big0007 copy.gif
	big0008 copy.gif
	big0009 copy.gif
	big0010 copy.gif
	big0011 copy.gif
	big0012 copy.gif
	big0013 copy.gif
	big0014 copy.gif
	big0015 copy.gif
	big0016 copy.gif
	big0017 copy.gif
	big0018 copy.gif
	big0019 copy.gif
	big0020 copy.gif

