HIGH PERFORMANCE SCLUTION TO STRUCTURED LINEAR SYSTEMS

MARCIN PAPRZYCKI
CLIFF CYPHERS

Bepartment of Mathematics and Computer Science
University of Texas of the Permian Basin
Cdessa, TX 78782

USA

ABSTRACT

Structured linear systems arise from discretizations of 2 number of mathematical problems,
Since they can be solved in each step of an iterative process it is very imporiant to solve
them efficiently. Two level 3 BLAS based algorithms for the solution of structured linear

systems (block tridiagonal and almost biock diagonal} are presented. Their efficiency is
studied.

KEYWORDS: Structured linear systems, direct solution, BLAS, software library, efficiency

1. iINTRODUCTION

Structured linear systerﬁs arise from the discretization of a number of mathematical
problems [1,2,3]. A structured linear system is a large sparse system assembled out of a
number of rectangular and possibly triangular blocks. It is assumed that each of these
blocks is dense. Examples of such systems include banded, block bidiagonal, bieck
tridiagonal, almost block diagonal systems and others. In case of noen-linear problems such
systems are solved in each step of the iterative process. Since these systems are large
and sparse a number of tearing-type strategies have heen designed toc solve them on
parallel computers [4,5,6]. Typically, each processor sclves a smaller problem of the same
structure as the original problem. It is thus extremely important to have an efficient solvar to
perform factorizations on individual processors as this is the only way to achieve the overall
high efficiency of parallelization. In the case of a Newton-type iteration the linear system
solution is the most costly part of the process, so any performance gain in this step will

substantially reduce the total solution tima.

in this paper, we will introduce two level 3 BLAS [7] based families of algorithms
designed 1o perform basic operations on block tridiagonal and almost block diagonal linear
matrices, Each family consists of &8 matrix-matrix multiplication routine (for the basic and
transposed matrices), a Gaussian efimination based decomposer (where special care has

been taken to eliminate the fill-in) and a back solver {for the normal and transposed

131

High performance structured linear syslem solvers

system). Each family of algorithms will have the form of a library with a unified, LAPACK [8]
based interface. The performance of the proposed libraries will be illustrated on a Cray Y-
MP supercomputer.

2. BLOCK TRIDIAGONAL MATRIX LIBRARY

- 2.1. Malrix Factorization

Wae consider the solution of a linear system Mx = b, where malrix Mis block
tridiagonal of order N = nm, where n denotes the number of blocks and m denctes the size

of each square block:

(A, C,)
B: A O
B A G
M =
Bov Aw.v Ca
\ 8 A/

Matrix M can be factorized using block-Gaussian elimination. Each factonization step §

{except the last one) invalves a 4-block submatrix of M

o Al

8., A.

In the first step of the factorization. block A; will be L; U, decomposed using Gaussian
elimination with partiai pivoting. To aveid the generation of fill-in, pivoting is performed only
inside this block. The decomposition is performed using a call to the LAPACK routine
_GETRF [8]. To optimize the perfarmance of the algorithm, the decomposition is performed
in a blocked fashinn‘if m (the size of the biock A,) is larger than the optimal block size for
the given machine or in an unblocked fashion otherwise. In the second step, block 8, is
multiplied from the left by (resulting in 8., }and block C, is multiplied from the right by
L (resulting in Cr). These two sleps are accomplished by back substitution using calls to
the level 3 BLAS routine _TRSM {7]. In the final step, block A, is updated by 8., C; by
calling the level 3 BLAS routine _GEMM [7]. The steps of the algorithm are then repeated
starting from the just updated Ag,. In the case of the last block (4.} only the factorization

step is applied. We have developed two versions of this algorithm with row pivoting and
with column pivoting.

Ta9

High performance structured linear system solvers

It is clear that the algorithm can be unstable as the pivoting is applied only inside the
diagonal blocks. The following result by Varah [2] provides the stability condition for the
proposed algorithm. It can be shown that if malrix M is block diagonally dominant the block

decomposition algorithm described above is numerically stable [2], where matrix M is bfock

diagonally dominant with respect to the matrix norm || «] if; j!A"'”[”E, b+ 1C, ||) < 1 where

i=1, ..., n.

in addition to the decomposition routine described above we have developed a
matrix-matrix multiplication routine that muttiplies the block tridiagonal matrix {or its
transpose) by another matrix (or vector). {Such a routine can be used in an iterative solver,
as well as in an iterative refinement step.} We have also implamented two varsions of a
back soiver: for the solution of the original linear system and for the solution of its
iranspose. All these routines have a unified intedface based eon the interfaces used in the
LAPACK project.

2.2 Numerical Experiments

We have experimented Iwith the hbrary of routines for the tridiagonal matrices on a
Cray Y-MP 8/864 supercomputer. The Cray provided optimized BLAS kernels were used.
Timings were oblained using the perftrace utitty. All results presenled are averages of
multiple runs. Figure 1 presents the results of increasing the size of these blocks m = 79,
... 125 and multiplying a block tridiagonal matrix and its transpose by a full matrix for 7 = 19
blocks. The matrix multiplication routine is very efficient. Since the practical peak
performance of a one-processor Cray Y-MP is approximately 315 MFlops [9]. the matrix
multiplication rouline reaches 97% of this peak. For the multiplication of the transposed
matrix {which utiizes calls to the transposed version of the level 3 BLAS routine _GEMM)
the effects of the memory section conflicts can be cbserved. This can be explained by the
fact that in the case of a transposed matrix multiplicalion the blocks of M are accessed in

the row-major order,

Figure 2 presents the performance factorization routines (with row and column
prvoting) for 7 = 19 blocks and increasing block sizes m =79, ..., 129 The faclorizalion
roulines are not as efficient as the matrix muttiplication routines. Their efficiency increases
as the block size increases and reaches approximately 85% for m = 127, Both the row- and
column-oriented versions behave similarly with a shght advantage of the row-oriented one.

Typical effects of memory seclion conflicts can be observed in both routines for m = 80, 96,

==
et
—J

High performance siruclured linear sysiem solvers

250 !
LL
* 200
—O— MULT
150 —A— MULT(T}
1 PEAK,
103 ' r—t o T ——t r . ' e ey "
A~ nz B 2 o, 97 100 103 D6 108 112 115 1B 121 174 327

m

Figura 1. Matrix-matrix multiplication; n = 19 resulis in Mffops.

0

MFiops
3

210

120 ¢

1.1

—O— GE(row)
=& GE{calunn)
-—— PEAK

—mn—ra

-y & i
L L

L
T

o 82 8 B8 9

i I I Il | " " L i L
T 1 1 b 1 T T Ll T T T T Ll 1 1

o

o7

b ' -
1 L L r

100 103 106 108 112 315 118
m

121 124

177

-igure 2. Performance of the Gaussian elimination routines; n = 19: results in MFigps.

I34

High performance structured linear systam salvers

112 and 128 {the increase of the block size by 18) with the perfarmance dips being
especially visible at m = 96 and 28 {the increase of the block size by 32). The results are

In agreement with [10, 11].

300
250
o
(=3
[+
5
200
el — S ML {1 o)
150 —ry— SO S aluttn)
L= S5 [renw. PANSPOLE)
—— SOL(colum, transpotu) l
'\ ——PEAK
100 e e
g §2 a5 B3 31 O g7 1 103 108 1048 12 1% 1148 121 124 127

m

Figure 3. Performance of back solvers: n = 19 blocks. RHS = 50: results in MFlops.

Figure 3 illustrates the performance of the back solvers for n = 19 blocks, increasing
block sizes m =79, .., 129 and for RHS = 50 right hand sides. The performance reaches
almost 300 MFlops (approximately 95% of the practical peak) and increases slightly as the
size ¢f the blocks increases, The memory section conflicts are much more pronounced for
the transposed versions of the back solver for the same reason as in the case of the

lransposed matrix multiplication.

In the next series of experiments we have studied the effects of changing the
system size n and the number of nght hand sides KHS on performance. in Table 1 the
effects of changes of the system size (increase in number of blocks) n=4, ..., 9 for m = 100
and RHS = 50 are presented. As could be expected increasing the number of blocks has
almost no effect on the performance of the Library roulines. The only performance effect
that can be observed is for 7 = 8 where the system size becomes dwisible by 32 and thus

the effects of memory section conflicts can be observed.

High performance structured linear systemn sclvers

[able 1. EHecls of changes in the system size, results in MFlops.

n=] a 5 6 7 u_.? 9
MULT iamﬁ aos | 206 | 307 | 306 | 307

MULT(T) 298 | 295 | 289 | 299 | 2989 | 299]
GE(col) 258 | 261 | 261 | 264 | 263 | 265

GE(row) 256 | 253 | 260 | 262 | 261 | 263 |
SOL{col) 292 | 262 | 293 | 294 | 214 | 294

SOL{row) 292 | 263 | 293 | 294 | 214 | 294 |
SOL{col, T) 292 | 262 [7293 [204 | 293 | 294

T SOL{row, Ty | 292 | 262 | 293 | 294 | 214 | 294 |

et sl

Table 2 illustrates the effects of increasing the number of columns of the matnx Lhat
he block Indiagonal matrix M is multipbed by {from 1 — representing a matnx-veclor
nultiplication, through 25 to 50 columns) as well as of increasing Ihe number of nght hand
sides {1, 25, 50) on the performance of the back solvers The resulls were collected for

1= 8 blocks of size m = 100. There is a clear performance increase as the number of

Table 2. &ffects of change in the number of columns
outines gperate on; resulls in MFEIops

. AR am AN———— - —rr—— » b ———— et — —— o ———

#of columns (RHS) 1| 25 | 50]

_ LMULT L)..288 1 306 | 306
MULT(T) 266 | 298 | 299 |
SOLgrow) | 134 | 208 | 214
e 20D 133] 206] 214
SOL{row, T)_ | 133 | 206 | 214 |
SOL(col, T) 133 | 206 | 214 |

columns increases. The results for matnx-vector muttiphcation and for the sclution of the
subsystem with one right hand side illustrate the efficiency decrease observed when moving
from a blocked level 3 BLAS based algorithm ta an unblocked level 2 BLAS based

algonthm. These results are in agreement with {10, 11].

3 ALMOST BLOCK DIAGONAL MATRIX LIBRARY

We assume that matrix M is almaost block diagonal (ABD) as defined in [3, 12] The
proposed algorithm is a level 3 BLAS based extension of that proposed in {1, 13]. We will
describe it only briefly as a more detaled description ¢an be found in [3, 12]. For our

purposes we will rewrite lhe ABD system as

High performance slructured hinear system saolvers

II;A"'I A'I.:‘ b
A;H A]‘]‘ AIJ A]-l-
Jq_'lu'ln A]-J‘ Jq]!u A!Il

Al-l.l-l Al. Lt -3 Al-ll-l AL-J‘.I.
A.l,-'l.l.-l AL 11 2 AJ.-1I'.-| AL-LL
L A-I.I.-' AI.I'. £

where 4, are square and A;; are rectangular blocks of varying sizes. This system has thus a

total of n = L/2 blocks. The i-th step of the algorithm consists of two phases. In phase | the

[A?- LY L 1]
A—h -1
Is decomposed using Gaussian elimination with panial pivoting and row interchanges into

Ll‘r 18 - 1
P Un vz,
(Lihi'r 'I]

rectangular block

where P is the permutation matrix. After this factorizalien, block

[A.h 1?|AJ| Wilr I]
A}l T4 AT! FINEE
[Lh LI F] 1[]}
L:Il F FE Fi .

{A.’- 14 A.hih - "}

will be updated by the inverse of

In phase ll, the block

will be decomposed using Gaussian ehimination with partial piveting and column

interchanges inlo
Lon{Ann Aua) Q.
where () is the permutation malrix. After this faclorization, block
Ao Ao
(o i)
will be updaled by the inverse of block

[U]u Hl U:- P 'I]
0 i

The factorization will be performed in a block fashion using LAPACK [1] provided routine

_GETRF (see the comments in Section 2.1 above). The update steps consist of calls to the

High perfarmance structured linear syslem solvers

level 3 BLAS routines _TRSM and _GEMM. As was shown in [1] the stability of the
proposed alganthm will be the same as the stability of any Gaussian elimination with partial
pivoting. As in the case of block tridiagonal systems, the proposed family of mairix
manipulation routines consisls of the matrix-matrix multiplication routine {for the basic and
transposed matrices), the factorization routine described above, and back solvers for the

basic and transposed system. All these routines have a unified, LAPACK based, interface.

3.2. Numerical Experniments

Numerical experiments have been performed in the same arrangements as

described in Section 2.2 above, Without loss of generality it was assumed that the ABD

MEons

—— MLILT
—A— MULT(T)
—0— GE

§ ————

—&— S0L
/ —— SOL(TY
| — PFAK
1060 | . — .
79 B2 8BS BA G1 S4 97 100 103 106 109 112 115 118 121 124 127

m

Figure 4. Atmost Block Diagonal matrix library performance; 7= 7, RHS = 50 resulls in
MFiops.

system results from a finite difference discretization of a system of m first order differential
equahons with separated boundary conditions. The first and the last block thus have size
mi2 «m white all the remaining blocks have sizes m-2m. The results are summarized in
Figure 4 for n = 7 blocks, RHS = 50 right hand sides and increasing block sizes m =79, .,
129 The results are quite similar to those for the block tridiagonal linear systems. In this

case, however, the performance of the Gaussian elimination routine reaches only

High performance structured linear system solvers

appmximate.iy 82% of the practical peak performance. This decrease can be attributed to
the fact that due to the matrix structure the block operations are performed on smaller
blocks {see Section 3.1 above). The performance of the matrix multiplication routine
reaches 97% and the perfermance of the back solver for 59 right hand sides 94% of the
praclical peak. In a separate experiment we have established that the performance of the
back sclver for one right hand side reaches approximately 75% of the peak.

4. CONCLUSION

Two subroutine families for performing operations on structured Jinéar systems have been
presented. For large enough klocks they reach more than 75% efficiency. This makes
them good candidatles for the usage on one processor systems as well as parts of the
parallel learing-type algorithms. Ve were also able to observe the effects of memory
section conflicts typicaf for the Cray Y-MP architecture. The performance involving
transposed systems is severely imparrad by the row-oriented matrix operations. These

effects can be avoided by choosing odd leading dimansion of the matrices involved.

ACKNOWLEDGMENTS

A computer time grant from the Center for High Performance Computing in Austin is kindly
acknowledged. |

REFERENCES

LT)

2. J. Varah, Mathematics of Computation, 26, pp. 858-868 {1372).

3. M. Paprzycki and I. Gladwe!l, Proceedings of The Fifth SIAM Conference on Paralle!
Processing for Scientific Computing, SIAM, Philadelphia, (1892) pp. 52-62.

4. M. Paprzycki and |. Gladwell, Parallet Computing, 17, pp. 133-153 {1991).
5. V. Mehrmann, Parallel Computing, 19, pp. 257-279 (1993).
6. M. Berry and A, Sameh, The International J. of Supercomp. Appli., 2, pp. 37-57 (1988).

7.J. Dongarra, J. Du Croz and S. Hammarling, Technical Report ANL-MCS-TM57, Argonne
National Laboratory {1988).

8 E Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, 5. Ostrouchov and D, Sorensen, LAPACK Users' Guide, SIAM,
Philadalphia {1993).

9. M. Paprzycki and C. Cyphers, CHPC Newsletter, 6, pp. 77-82 {1991},
10. C. Cyphers and M. Paprzycki, CHPC Newsletter, 6, pp. 43-47 (1981).

High performance structured linear system sobvers

11. M. Paprzycki, Lin,_Alg. and Applications, 172 pp. 57-69 (1892},
12. C. Cyphers, M. Paprzycki and |. Gladwell, Software Report 92-3, Southern Methodist
University {1992).

13. J. Diaz, G. Fairweather and P. Keast, ACM Trans, Math. Software, §, pp. 359-375
{1983).

140

	aig copy.gif
	aig0001 copy.gif
	aig0002 copy.gif
	aig0003 copy.gif
	aig0004 copy.gif
	aig0005 copy.gif
	aig0006 copy.gif
	aig0007 copy.gif
	aig0008 copy.gif
	aig0009 copy.gif

