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An efficient direct method is presented for the solution of the linear systems arising in the
solution of second and fourth order problems by certain multidomain spectral collocation
schemes. In it, the block structure of the global matrix is exploited. The performance of the

method is examined for problems in two and three dimensions on an RS6000 workstation
and a Cray J-916 supercomputer.
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1. Introduction

In [1] a fully conforming spectral domain decomposition collocation scheme
was presented for second and fourth order problems in two and three dimen-
sions. This scheme ensures that the approximations are C' pointwise continu-
ous across the subdomain interfaces for second order problems and C’
pointwise continuous across the subdomain interfaces for the fourth order
problems. The aim of the present study is to suggest an efficient method for
solving the resulting systems of linear equations. Unlike the problems examined
in [2] and [3] the matrices arising in the present study do not possess an almost
block diagonal structure. They are, however, sparse and structured and by

applying a capacitance-type matrix technique [4] the existing block structure
may be exploited.
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2. The method

2.1. Two-dimensional case

For the four-element decomposition [1] of the rectangle (o, 8) X (a, b) into the
subdomains (e, hy) x (h,,b) (Region I), (a,h) X (a,h,) (Region I, (h,,B)x
(a,h,) (Region III) and (hy, B) % (hy,b) (Region IV), @ < hy < fB,a < h, < b, we
used the spectral approximations

M.!‘ NS £,
& (x,9) =D D0 kT o) s = Ll Lo IV, (1)
m=0 n=0

where the polynomials 7%,(x) and T3(y) are appropriately chosen shifted Cheby-
shev polynomials. The above approximations were used to approximate the solu-
tion of either a second order problem or a fourth order problem. The global
system (2) has the form given in figure 1.

If we take k, = (M, + 1)(N,+ 1),s = I,II,IIl or IV, then clearly the global
matrix has dimension (k; + ky; + kpp + k)%, The vectors x;, X,, X3 and x, contain
the unknown coefficients in regions I, II, III and IV, respectively. The matrices
A, B, C, and D (which are dense) have dimensions k;, kyy, k;y and kpy respectively
and their rows correspond to the satisfaction of'the boundary conditions, the gov-
erning equation and interface conditions in each region. The matrices Ry, Ry, Sy,
S,, Ty, Ty, Vi, and V, (which are dense) correspond to the interface conditions
-1 I—1V, ]I - I I - 0T, 0I — IV,I — IV and IIl — IV, respectively.
and have the following dimensions: Ry is m; X ky, Ry is ny X kpy, Sy is my X kj, S 1¢
ny X kg, Tyis my X kyp, Ty is ny X kyy, Vi is myg X ky, Va is ng X k. For example, 1n
the case of second order problems m; = M;, ny=N;—1,my=My—1,n =
Ny,my = Ny — 1,13 = My, my = Nyy and ng = My

A % a
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Figure 1. Structure of the global system for the 2-D case.
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By denoting Ry = [0/R;], R = [R,/0], S| = [S,/0],S3 = [0/S,], TT = [71/0],
= [0/T5], Vi =[0/V,], V5 = [V,/0], the global system (2) may be rewritten in
component form:

Ax; + Rixy + Roxy = a, (3a)
S1x1 + Bx, + S3x3 = b, (3b)
Tixy + Cx3 + Toxs = ¢, (3¢)
Vixi+ Vixs+ Dxy =d. (3d)

From (3a) and (3c) we express x; and x3 in terms of x, and x, (as these equations
are independent of each other). Subsequent substitution of these expressions into
(3b) and (3d) leads to the Schur complement system for the vectors x, and x;.

Once x, and x4 have been calculated, x| and x; can be easily obtained from (3a)
and (3c).

2.2. Three-dimensional case

From [1], the cuboid (a, 8) x (a,b) x (4, B) is decomposed into the eight cuboi-
dal subdomains («,hy) x (a,h,) x (h,,B) (Region I), («a,h,) x (a a,hy) x (4, h,)
(Region 1), (hy,B) X (a,hy) X (4,h;) (Region III), (hy,B) X (a,hy) x (h,,B)
(Region 1V), (hy, f) x ( 4y,0) x (1, B) (Region V), (e, ) X (1, ) x (A,
(Region VI), (e, hy) X (hy,b) x (4,h;) (Region VII), (a,hy) X (hy,b) x (h;, B),
(Region VIII), where o < hx <fB,a<h,<bA<h, <B. In each, the solution is
approximated by

M; N, L
(x,,2) = X T () Ta () T (2),
m=0 n=0 /=0
= I,II,III, 1V, V, VI, VII or VIII, (4)

where the polynomials f}f,,(x), T;(»), Ti(2) are appropriately chosen shifted Cheby-
shev polynomials. As in the two-dimensional case, the above approximations were
used to approximate the solution of either a second or a fourth order problem. The
global system (5) is of the form given in figure 2.

As before, we take ky= (M;+ )(N,+ 1)(L,+ 1), s=1IIIIV,V, VI,
VII or VIII. The global matrix has dimension S /7 k; x Zfﬂ‘r . The vectors
X1,X3,X3,X4, X5,X6,X7 and xg are vectors containing the unknmwn coefficients
in regions [, II, IIT, IV, V, VI, VII and VIII, respectively. The matrices 4, B, C,
D, E,F, G and H(which are dense) have dimensions k;, kg, ki, kv, ky, kyp,
kyir and kypy, respectively, and their rows correspond to the satisfaction of the

boundary conditions, the governing equation and interface conditions in each
region.
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Figure 2. Structure of the global system for the 3-D case.
The global system (5) ma}? be rewritten in component form as:
Ax, + Rix, + Roxs + Rixs = a, (6a)
S1x1 + Bxy + S3x3 + S3x7 = b, (6b)
Tixy + Cxs + Thx4 + T5X6 = ¢, (6¢)
Vixy + Voxs + Dxq + Vixs = d, (6d)
Wixs+ Exs + Wixe + Wixg =g, (6e)
X1x3+ Xyxs + Fxe + X3x7 = f, (6f)
YiXxy+ Yox¢ + Gx7+ Y3xg = g, (6g)
Zix) + Zyxs + Z3x7 + Hxg = h. (6h)

The “starred” matrices in (6a — h) are defined in a way similar to the corresponding
“starred” matrices of section 2.1. As in the two-dimensional case, from
(6a), (6¢), (6e) and (6g) we may express Xx;,Xs,Xs and x; in terms of x,, x4, Xg
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and x3 (as again these equations are independent of each other). Substitution into
(6b), (6d), (6f) and (6h) gives the Schur complement system for the vectors

X7, X4, X¢ and xg. The unknown vectors xp,xs3, x5 and x; may then be obtained
from (6a), (6¢c), (6e) and (6g).

3. Experimental results
3.1. Implementation details

In the implementation of the above algorithms all matrix operations were per-
formed using calls to the appropriate level 1, 2 and 3 BLAS subroutines [5] of
the NAG Library [6]. In the calculations, advantage was taken of the presence of
the zero blocks in the matrices S7,S5, V{, V5 in the 2-D case, and matrices

1, 82,83, Vi, Vy, Vi, X{, X5, X3, Z{,Z5 and Z3 in the 3-D case.

The experiments were performed on an RS6000-250 workstation and on a Cray
J-916 supercomputer. Timings on the RS6000 were obtained on an empty machine
using the time function. Timings on the Cray (in the one-processor mode) were
obtained using the perftrace utility. Timings on the Cray multiprocessor were
obtained on an empty machine using the timef function (as perftrace does not pro-
duce accurate results in the multiprocessor mode). Each result presented here 1s an
average of multiple runs.

3.2. Numerical examples

The performance of the capacitance matrix techniques described in section 2 was
tested on two problems from [1].

Example 1: Two dimensions

rh(x,p) = (p> = De™ + (x> = 1)e? +2e* +2¢”  on (-1, 1)?

subject to Dirichlet bnundary conditions whiuh correspond to the exact solution of
this problem, ¢(x,y) = (y*—1)e® + (x*—1)e”. For this example we used
hy=0.1,h, =02 and M, = MH_—,M;H—MIV-_N;—NH—N;H—N;;;mn
The tc:-tal number of unknowns is therefore 4(n + 1)°.

Example 2: Three dimensions
Vp(x,,2) = e*(y? = Dx? 1)+’ (x? = 1) - D+ex" - D(»y" - 1)
+2((Z2 = De? + (p? =D + (22 — e’ + (x* = 1)é
+ (2 —1e*+ (x2=1)e*) on (—1,1)

subject to Dirichlet boundary cﬂndltmns which carreapﬂnd t{:} the exact sc:nlutmn
of this problem, ¢(x,y,2) = (y? —1)(z22 = e* + (x* = 1)(z* — 1)e Y4 (x2-1)
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Table 1
Experimental results for the 2-D case.
n Matrix RS6000 Cray
S1Ze
Full Capacitance Ratio Full Capacitance Ratio
system technique system technique
4 100 0.52 0.41 1.26 0.0739 0.0517 1.42
5 144 0.82 0.52 1.57 0.152 0.0901 1.68
6 196 1.36 0.65 2.06 0.244 0.131 1.86
7 264 3.34 1.08 3.09 0.443 0.193 2.29
8 324 5.65 1.48 3.81 0.592 0.264 2.24
9 400 11.95 2.49 4.79 0.897 0.369 2.43
10 484 20.89 3.83 5.45 1.30 0.433 3.00
11 576 33.99 7.33 4.63 1.97 0.702 2.80
12 676 51.90 11.67 4.44 2.72 0.935 2.90
13 784 80.44 18.71 4,29 3.87 1.28 3.02
14 900 114.88 27.72 4.14 5.30 1.69 3.13

(y2 —1)e*. For this example we used h, = 0.1,h,=0.2,1, =0.3 and
My=N;=L;=mg,s=1I11I,.,VII and m; =my = ... = My = m. The total

number of unknowns is therefore 8(m -+ 1)°.
3.3. One processor performance

In table 1 the timings for the 2-D problem on both computers for = 4,5,...,14
are presented (the results are presented in seconds). The ratio of execution time of
the full system technique to that of the capacitance method is also shown.

The capacitance technique is clearly superior to the full system technique. The
gain from its usage increases as the size of the system increases (the time ratio
increases from 1.26 to 5.45 on the workstation and from 1.42 to 3.13 on the
Cray). On the Cray, for n = 14 the full system technique was running at approxi-
mately 110 MFlops whereas the capacitance technique achieved about 89
MFlops (assuming that the practical peak performance of the One-processor
Cray J-916 is about 195 MFlops [7], the capacitance technique reaches about
46% efficiency).

Table 2 presents the results of experiments with the 3-D problem on both com-
puters (for m = 4, 5, 6 for the workstation and form = 4,5, . . . , 7 for the Cray). The
results are presented in seconds or fractions thereof (lack of results means that the
system of a given size did not fit into the computer’s memory). In addition, the ratio
of execution times of the full system technique to that of the capacitance technique
1S presented.

The gains from using the capacitance technique are even more apparent for the
three dimensional case where the sizes of the dense systems are much larger and
grow faster as m increases. The time ratio reaches 4.08 for the workstation and
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Table 2

Experimental results for the 3-D case.

m Matrix RS6000 Cray

S1Ze

Full Capacitance Ratio Full Capacitance Ratio
system technique system technique

4 1000 58.75 17.41 3.37 5.8 1.7 3.41

5 1728 284.61 69.75 4.08 27.9 7.3 3.82

6 2744 04 .4 24.2 3.90

7 4096 316.0 83.4 3.79

3.90 for the Cray. The new algorithm is not only superior as far as the execution
time is concerned, but also its memory requirements are much smaller. For
m = 7 the memory requirements when the capacitance technique was used were
approximately 19.0 MW of Cray’s memory. At the same time the full system did
not fit into the 32.0 MW memory system (here the matrix size 1s 4096 x 4096).
For the large systems the capacitance technique executed at more than 170
MFlops so it surpassed 87% of the practical peak performance.

3.4. Sparse solver performance

We also experimented with the application of a general sparse matrix solver. In
particular we experimented with UMFPACK, which represents one of the most
recent of such solvers [9]. UMFPACK is based on a multifrontal method based
on a sequence of small dense frontal matrices which are factorized using the
dense matrix kernels. It is an improved version of the M48 routine from the
Harwell Library [10]. Table 3 summarizes the results of the experiments performed
on the RS6000 workstation and the Cray J-916 for both the 2-D problem (for
n=4y75,...,14) and for the 3-D problem (for m =4,5,6). The results for the
capacitance technique (column Capaci) are provided for comparison purposes
and the ratio calculated is between the values obtained by using UMFPACK
(column UMF) and the capacitance technique. Empty rows indicate that the
system did not fit into the memory of the RS6000 workstation. The results are
reported in seconds.

In the 2-D case on the RS6000 the capacitance technique outperforms the UMF-
PACK based approach. In the 3-D case on the RS6000 for m =4 UMFPACK
slightly outperforms the capacitance technique. For m = 5, when the sizes of indi-
vidual blocks increase, the overall matrix size increases, the capacitance technique
substantially outperforms UMFPACK solver.

The situation is more interesting on the Cray. Here in all cases the capacitance
technique is substantially (in the 2-D case between 2 and 3 times faster; in the
3-D case approximately 2 times faster) outperforms the UMFPACK solver.
This can be explained by the fact that Cray provides highly optimized BLAS



316 A. Karageorghis, M. Paprzycki [ Spectral collocation schemes

Table 3
Performance of the sparse solver.
2-D
RS6000 Cray
" UMF Capaci Ratio NAG UMF  Capaci Ratio NAG
4 0.50 0.41 1.21 0.73 0.095 0.051 1.86 0.174
5 0.59 0.52 1.13 0.66 0.152 0.090 1.68 0.491
6 0.90 0.65 1.38 1.22 0.322 0.131 2.45 0.932
7 1.24 1.08 1.14 1.99 0.457 0.193 2.36 2.47
8 2.16 1.48 1.46 3.55 0.670 0.294 2.27 4.05
9 3.65 2.49 1.46 9.04 0.989 0.369 2.68 10.7
10 3.15 3.83 1.34 8.47 1.47 0.433 3.39 13.4
11 9.42 7.33 1.28 24,03 2.00 0.702 2.84 29.8
12 14,27 11.67 1.22 31.55 2.78 0.935 2.97 29.3
13 21.97 18.71 1.17 117.26 3.52 1.28 2.75 75.1
14 30.30 27.72 1.09 61.70 5.12 1.69 3.02 73.1
m 3-D
4 15.64 17.41 0.89 57.24 3.64 1.76 2.06 44.9
d 93.07 69.75 1.33 371.07 14,00 7.39 1.89 378.0
6 45.80 24.20 1.89 1510.0

kernels and the capacitance technique takes full advantage of them, while in
UMFPACK, the multifrontal approach introduces additional overhead and pre-
vents it from taking full advantage of the Cray’s hardware. This fact is clearly
illustrated by the MFlop rates achieved by both approaches. The capacitance
technique reaches more than 80% of the practical peak performance of the
Cray (see section 3.3) while UMFPACK reaches 33 MFlops in the 2-D case
(approximately 17% of the practical peak) and up to 70 MFlops (approximately
36% of the practical peak) in the 3-D case. While this fact does not play a domi-
nating role in the case of a RISC processor of the RS6000, it clearly makes a
difference on the Cray’s vector-processor. It should be also noted that in con-
trast to the capacitance technique, UMFPACK requires additional memory to
be used as a temporary space.

We also examined the performance of the FOIBRF and FO4AXF pair from the
NAG Library [6]. These routines are based on the MA28 package from the Harwell
Library and attempt to permute the system to the lower triangular form [8].
FO1BRF provides a user controllable parameter (PIVOT) which is a relative
measure used to control the pivot strategy: the smaller its value the more
FO1BRF maintains sparsity at the expense of stability. We experimented with
PIVOT =1071,1072,...,107® while only the results for PIVOT = 107" (the
default value suggested in the documentation) are presented (table 3, column
NAG). It should be noted that PIVOT = 107° was the last value for which at
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least in some cases a numerically correct results have been obtained while in most
cases the breakdown in accuracy occurred as early as for PIVOT = 107, A
number of observations can be made. The NAG based solver is outperformed by
UMFPACK, the capacitance technique and the full matrix solver (see tables 1
and 2) on both computers. For the decreasing values of PIVOT the performance
of the NAG solver was improving (while the numerical stability was decreasing)
but even for PIVOT = 107% it was only approximately that of the full matrix
solver. These results confirm the superiority of the newer general sparse solvers
over the standard algorithm used by NAG.

3.5. Parallel performance

Parallelization characteristics of the proposed method were tested on the 16-proces-
sor Cray J-916. The parallelization was introduced inside the BLAS kernels. Since
most of the cases have rather short execution times, only the results for the largest
3-D cases are reported. Figure 3 presents the speed-up of the capacitance technique
form=4,5...,8for P=1,2...,12 processors. For small values of m we stopped
experimenting when the speed-up curves flattened, indicating that further increase
on the number of processors would not produce additional performance gains.

It can be observed that the capacitance technique performs quite well but the
efficiency of parallelization depends heavily on the value of m. For small m a
speed-up of 2 is observed while for m = 8 the speed-up is as high as 4.31. It can
be predicted that the efficiency of the proposed method increases with m. At the
same time, since parallelization was limited to the BLAS kernels, reasonable
parallel performance can be expected only for shared memory computers with a
small/medium number of processors. It should be mentioned that the problem in
question (the linear system resulting form the discretization) is too small for
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Figure 3. Speed-up for the 3-D problems.
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good overall parallel performance. There are two possible ways in which the system
size could increase. First, by increasing the sizes of individual blocks in the discre-
tization (see figure 2) which would correspond to introducing a larger number of
degrees of freedom in each subdomain. In this case the capacitance algorithm
and 1ts BLAS-based implementation proposed here will definitely lead to a very
efficient solver for shared memory computers (with the efficiency being limited
only by the efficiency of the BLAS kernels). The performance on a distributed
memory architecture would still be limited by the amount of data transmission
and a scheme similar to that proposed in [11] for large dense systems would need
to be designed. Second, the system size could increase by increasing the number
of blocks in the system (and possibly keeping their sizes constant). This would
correspond to an increase in the number of subdomains. In this approach a differ-
ent parallelization approach should be sought for both shared and distributed
memory architectures. It i1s possible that a sparse matrix solver based on parallel
reordering or a parallel multi-frontal-type method [8,12] could be relatively success-
ful. The increase in the number of subdomains would, however, defeat the purpose
of using the spectral domain decomposition method in the first place, as the whole

idea of the method is the discretization with a relatively small number of large
domains.

4. Concluding remarks

An efficient direct method is presented for the solution of linear systems arising
in certain multidomain spectral collocation schemes for boundary value problems
in two and three dimensions. In previous spectral multidomain discretizations [2,3]
the global matrices possessed an almost block diagonal structure and could be
solved using standard software. The present type of decomposition which is par-
ticularly useful in problems involving boundary layers and/or boundary singu-
larities (see [13]) leading to linear systems which do not have an almost block
diagonal structure, but are sparse and structured. As a result one cannot use stand-
ard software for the solution of linear systems as was the case in [2,3]. Furthermore,
the systems are not sparse enough for a general sparse matrix solver to be effective.

The algorithm is easy to implement and provides substantial savings in storage
and computational cost. In addition, for large systems, it is quite effective on
shared-memory multiprocesors. The fact that the structure of the linear system
depends only on the decomposition makes the algorithm widely applicable in the
sense that it can be applied to any second (or higher) order problem in two and
three dimensions. It would be particularly useful for non-linear problems where
the non-linear governing equation is linearized using a Newton-type technique
and as a consequence one needs to solve a sequence of linear systems possessing
the present structure. The technique is also general in terms of the formulation
of the method. It is not restricted to a collocation formulation but can also be
applied to a Galerkin (weak) formulation, as the two formulations are equivalent
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in this sense (see [14, chapter 13] ). The reason is that the structure of the matrix
depends only on two families of equations: the ones arising from the discretization
of the satisfaction of the differential equation and the boundary conditions (blocks
A, B, C and D in figure 1) and the ones arising from the discretization of the inter-
face conditions (the matrices R,,S; and 7 in figure 1).
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