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Engineers and researchers in the automobile industry have tried to design and build safer automobiles, 

but traffic accidents are unavoidable. Patterns involved in dangerous crashes could be detected if we 

develop accurate prediction models capable of automatic classification of type of injury severity of 

various traffic accidents. These behavioral and roadway accident patterns can be useful to develop 

traffic safety control policies. We believe that to obtain the greatest possible accident reduction effects 

with limited budgetary resources, it is important that measures be based on scientific and objective 

surveys of the causes of accidents and severity of injuries. This paper summarizes the performance of 

four machine learning paradigms applied to modeling the severity of injury that occurred during traffic 

accidents. We considered neural networks trained using hybrid learning approaches, support vector 

machines, decision trees and a concurrent hybrid model involving decision trees and neural networks. 

Experiment results reveal that among the machine learning paradigms considered the hybrid decision 

tree-neural network approach outperformed the individual approaches. 

 

1 Introduction 

The costs of fatalities and injuries due to traffic 

accidents have a great impact on the society. In recent 

years, researchers have paid increasing attention to 

determining factors that significantly affect severity of 

driver injuries caused by traffic accidents [29][30]. There 

are several approaches that researchers have employed to 

study this problem. These include neural network, 

nesting logic formulation, log-linear model, fuzzy ART 

maps and so on.  

Applying data mining techniques to model 

traffic accident data records can help to understand the 

characteristics of drivers’ behaviour, roadway condition 

and weather condition that were causally connected with 

different injury severity. This can help decision makers 

to formulate better traffic safety control policies. Roh et 

al. [22] illustrated how statistical methods based on 

directed graphs, constructed over data for the recent 

period, may be useful in modelling traffic fatalities by 

comparing models specified using directed graphs to a 

model, based on out-of-sample forecasts, originally 

developed by Peltzman [23]. The directed graphs model 

outperformed Peltzman’s model in root mean squared 

forecast error.  

Ossenbruggen et al. [24] used a logistic 

regression model to identify statistically significant 

factors that predict the probabilities of crashes and injury 

crashes aiming at using these models to perform a risk 

assessment of a given region. These models were 

functions of factors that describe a site by its land use 

activity, roadside design, use of traffic control devices 

and traffic exposure. Their study illustrated that village 

sites are less hazardous than residential and shopping 

sites. Abdalla et al. [25] studied the relationship between 

casualty frequencies and the distance of the accidents 

from the zones of residence. As might have been 

anticipated, the casualty frequencies were higher nearer 

to the zones of residence, possibly due to higher 

exposure. The study revealed that the casualty rates 

amongst residents from areas classified as relatively 

deprived were significantly higher than those from 

relatively affluent areas.  

Miaou et al. [26] studied the statistical 

properties of four regression models: two conventional 

linear regression models and two Poisson regression 

models in terms of their ability to model vehicle 

accidents and highway geometric design relationships. 

Roadway and truck accident data from the Highway 

Safety Information System (HSIS) have been employed 

to illustrate the use and the limitations of these models. It 

was demonstrated that the conventional linear regression 

models lack the distributional property to describe 

adequately random, discrete, nonnegative, and typically 

sporadic vehicle accident events on the road. The Poisson 

regression models, on the other hand, possess most of the 

desirable statistical properties in developing the 

relationships.  

Abdelwahab et al. studied the 1997 accident 

data for the Central Florida area [2]. The analysis 

focused on vehicle accidents that occurred at signalized 

intersections. The injury severity was divided into three 

classes: no injury, possible injury and disabling injury. 

They compared the performance of Multi-layered 
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Perceptron (MLP) and Fuzzy ARTMAP, and found that 

the MLP classification accuracy is higher than the Fuzzy 

ARTMAP. Levenberg-Marquardt algorithm was used for 

the MLP training and achieved 65.6 and 60.4 percent 

classification accuracy for the training and testing 

phases, respectively. The Fuzzy ARTMAP achieved a 

classification accuracy of 56.1 percent.  

Yang et al. used neural network approach to 

detect safer driving patterns that have less chances of 

causing death and injury when a car crash occurs [17]. 

They performed the Cramer’s V Coefficient test [18] to 

identify significant variables that cause injury to reduce 

the dimensions of the data. Then, they applied data 

transformation method with a frequency-based scheme to 

transform categorical codes into numerical values. They 

used the Critical Analysis Reporting Environment 

(CARE) system, which was developed at the University 

of Alabama, using a Backpropagation (BP) neural 

network. They used the 1997 Alabama interstate alcohol-

related data, and further studied the weights on the 

trained network to obtain a set of controllable cause 

variables that are likely causing the injury during a crash. 

The target variable in their study had two classes: injury 

and non-injury, in which injury class included fatalities. 

They found that by controlling a single variable (such as 

the driving speed, or the light conditions) they potentially 

could reduce fatalities and injuries by up to 40%.  

Sohn et al. applied data fusion, ensemble and 

clustering to improve the accuracy of individual 

classifiers for two categories of severity (bodily injury 

and property damage) of road traffic accidents [15]. The 

individual classifiers used were neural network and 

decision tree. They applied a clustering algorithm to the 

dataset to divide it into subsets, and then used each 

subset of data to train the classifiers. They found that 

classification based on clustering works better if the 

variation in observations is relatively large as in Korean 

road traffic accident data.  

Mussone et al. used neural networks to analyze 

vehicle accident that occurred at intersections in Milan, 

Italy [12]. They chose feed-forward MLP using BP 

learning. The model had 10 input nodes for eight 

variables (day or night, traffic flows circulating in the 

intersection, number of virtual conflict points, number of 

real conflict points, type of intersection, accident type, 

road surface condition, and weather conditions). The 

output node was called an accident index and was 

calculated as the ratio between the number of accidents 

for a given intersection and the number of accidents at 

the most dangerous intersection. Results showed that the 

highest accident index for running over of pedestrian 

occurs at non-signalized intersections at nighttime.  

Dia et al. used real-world data for developing a 

multi-layered MLP neural network freeway incident 

detection model [5]. They compared the performance of 

the neural network model and the incident detection 

model in operation on Melbourne’s freeways. Results 

showed that neural network model could provide faster 

and more reliable incident detection over the model that 

was in operation. They also found that failure to provide 

speed data at a station could significantly deteriorate 

model performance within that section of the freeway.  

Shankar et al. applied a nested logic formulation 

for estimating accident severity likelihood conditioned 

on the occurrence of an accident [14]. They found that 

there is a greater probability of evident injury or 

disabling injury/fatality relative to no evident injury if at 

least one driver did not use a restraint system at the time 

of the accident.  

Kim et al. developed a log-linear model to 

clarify the role of driver characteristics and behaviors in 

the causal sequence leading to more severe injuries. They 

found that alcohol or drug use and lack of seat belt use 

greatly increase the odds of more severe crashes and 

injuries [8].  

Abdel-Aty et al. used the Fatality Analysis 

Reporting System (FARS) crash databases covering the 

period of 1975-2000 to analyze the effect of the 

increasing number of Light Truck Vehicle (LTV) 

registrations on fatal angle collision trends in the US [1]. 

They investigated the number of annual fatalities that 

resulted from angle collisions as well as collision 

configuration (car-car, car-LTV, LTV-car, and LTV-

LTV). Time series modeling results showed that fatalities 

in angle collisions will increase in the next 10 years, and 

that they are affected by the expected overall increase of 

the percentage of LTVs in traffic.  

Bedard et al. applied a multivariate logistic 

regression to determine the independent contribution of 

driver, crash, and vehicle characteristics to drivers’ 

fatality risk [3]. They found that increasing seatbelt use, 

reducing speed, and reducing the number and severity of 

driver-side impacts might prevent fatalities. Evanco 

conducted a multivariate population-based statistical 

analysis to determine the relationship between fatalities 

and accident notification times [6]. The analysis 

demonstrated that accident notification time is an 

important determinant of the number of fatalities for 

accidents on rural roadways.  

Ossiander et al. used Poisson regression to 

analyze the association between the fatal crash rate (fatal 

crashes per vehicle mile traveled) and the speed limit 

increase [13]. They found that the speed limit increase 

was associated with a higher fatal crash rate and more 

deaths on freeways in Washington State. 

Finally, researchers studied the relationship 

between drivers’ age, gender, vehicle mass, impact speed 

or driving speed measure with fatalities and the results of 

their work can be found in [4, 9, 10, 11, 16].  

This paper investigates application of neural 

networks, decision trees and a hybrid combination of 

decision tree and neural network to build models that 

could predict injury severity. The remaining parts of the 

paper are organized as follows. In Section 2, more details 

about the problem and the pre-processing of data to be 

used are presented, followed, in Section 3, by a short 

description the different machine learning paradigms 

used. Performance analysis is presented in Section 4 and 

finally some discussions and conclusions are given 

towards the end. 
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2 Accident Data Set 

A. Description of the Dataset 

This study used data from the National Automotive 

Sampling System (NASS) General Estimates System 

(GES) [21]. The GES datasets are intended to be a 

nationally representative probability samples from the 

annual estimated 6.4 million accident reports in the 

United States. The initial dataset for the study contained 

traffic accident records from 1995 to 2000, a total 

number of 417,670 cases. According to the variable 

definitions for the GES dataset, this dataset has drivers’ 

records only and does not include passengers’ 

information. The total set includes labels of year, month, 

region, primary sampling unit, the number describing the 

police jurisdiction, case number, person number, vehicle 

number, vehicle make and model; inputs of drivers’ age, 

gender, alcohol usage, restraint system, eject, vehicle 

body type, vehicle age, vehicle role, initial point of 

impact, manner of collision, rollover, roadway surface 

condition, light condition, travel speed, speed limit and 

the output injury severity. The injury severity has five 

classes: no injury, possible injury, non-incapacitating 

injury, incapacitating injury, and fatal injury. In the 

original dataset, 70.18% of the cases have output of no 

injury, 16.07% of the cases have output of possible 

injury, 9.48% of the cases have output of non-

incapacitating injury, 4.02% of the cases have output of 

incapacitating injury, and 0.25% of the cases have fatal 

injury.  

Our task was to develop machine learning based 

intelligent models that could accurately classify the 

severity of injuries (5 categories). This can in turn lead to 

greater understanding of the relationship between the 

factors of driver, vehicle, roadway, and environment and 

driver injury severity. Accurate results of such data 

analysis could provide crucial information for the road 

accident prevention policy. The records in the dataset are 

input/output pairs with each record have an associated 

output. The output variable, the injury severity, is 

categorical and (as described above) has five classes. A 

supervised learning algorithm will try to map an input 

vector to the desired output class. 

B. Data Preparation 

When the input and output variables are considered there 

are no conflicts between the attributes since each variable 

represents its own characteristics. Variables are already 

categorized and represented by numbers. The manner in 

which the collision occurred has 7 categories: non-

collision, rear-end, head-on, rear-to-rear, angle, 

sideswipe same direction, and sideswipe opposite 

direction. For these 7 categories the distribution of the 

fatal injury is as follows: 0.56% for non collision, 0.08% 

for rear-end collision, 1.54% for head-on collision, 

0.00% for rear-to-rear collision, 0.20% for angle 

collision, 0.08% for sideswipe same direction collision, 

0.49% for sideswipe opposite direction collision. Since 

head-on collision has the highest percent of fatal injury; 

therefore, the dataset was narrowed down to head-on 

collision only. Head-on collision has a total of 10,386 

records, where 160 records show the result as a fatal 

injury; all of these 160 records have the initial point of 

impact categorized as front. 

The initial point of impact has 9 categories: no 

damage/non-collision, front, right side, left side, back, 

front right corner, front left corner, back right corner, 

back left corner. The head-on collision with front impact 

has 10,251 records; this is 98.70% of the 10,386 head-on 

collision records. We have therefore decided to focus on 

front impact only and removed the remaining 135 

records. Travel speed and speed limit were not used in 

the model because in the dataset there are too many 

records with unknown value. Specifically, for 67.68% of 

records the travel speed during accident and local speed 

limit were unknown. This means that the remaining input 

variables were: drivers’ age, gender, alcohol usage, 

restraint system, eject, vehicle body type, vehicle role, 

vehicle age, rollover, road surface condition, light 

condition. Table 1 summarizes the driver injury severity 

distribution for head-on collision and front impact point 

dataset. From Table 1, it is immediately evident that the 

alcohol usage and not using seat belt, ejection of driver, 

driver’s age (>65), vehicle rollover, and lighting 

condition can be associated with higher percentages of 

fatal injury, incapacitating injury and non-incapacitating 

injury. 

There are only single vehicles with ages 37, 41, 

46 and 56 years reported in the dataset and therefore 

these four records were deleted from the dataset (since 

they were clear outliers). After the preprocessing was 

completed, the final dataset used for modeling had 

10,247 records. There were 5,171 (50.46%) records with 

no injury, 2138 (20.86%) records with possible injury, 

1721 (16.80%) records with non-incapacitating injury, 

1057 (10.32%) records with incapacitating injury, and 

160 (1.56%) records with fatal injury. We have separated 

each output class and used one-against-all approach. This 

approach selects one output class to be the positive class, 

and all the other classes are combined to be the negative 

class. We set the output value of the positive class to 1, 

and the (combined) negative classes to 0. We divided the 

datasets randomly into 60%, 20%, and 20% for training, 

cross-validation, and testing respectively.  

To make sure that our data preparation is valid, 

we have checked the correctness of attribute selection. 

There are several attribute selection techniques to find a 

minimum set of attributes so that the resulting probability 

distribution of the data classes is as close as possible to 

the original distribution of all attributes. To determine the 

best and worst attributes, we used the chi-squared (χ2
) 

test to determine the dependence of input and output 

variables. The χ2 
test indicated that all the variables are 

significant (p-value < 0.05). 

 

3. Machine Learning Paradigms 

A. Artificial Neural Networks Using Hybrid Learning 

A Multilayer Perceptron (MLP) is a feed forward neural 

network with one or more hidden layers. 
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Table 1: Driver injury severity distribution 

Factor No Injury Pos injury 

Non- 

incapacitating Incapacitating Fatal Total 

Age 

0 (24&under) 1629(52.80%) 608(19.71%) 505(16.37%) 307(9.95%) 36(1.17%) 3085 

1 (25-64) 3171(49.88%) 1362(21.43%) 1075(16.91%) 654(10.29%) 95(1.49%) 6357 

2 (65+) 373(46.11%) 168(20.77%) 143(17.68%) 96(11.87%) 29(3.58%) 809 

Gender 

0 (Female) 1749(41.95%) 1072(25.71%) 778(18.66%) 507(12.16%) 63(1.51%) 4169 

1 (Male) 3424(56.30%) 1066(17.53%) 945(15.54%) 550(9.04%) 97(1.59%) 6082 

Eject 

0 (No Eject) 5171(50.55%) 2137(20.89%) 1719(16.80%) 1047(10.23%) 156(1.52%) 10230 

1 (Eject) 2(9.52%) 1(4.76%) 4(19.05%) 10(47.62%) 4(19.05%) 21 

Alcohol 

0 (No Alcohol) 4997(51.35%) 2067(21.24%) 1600(16.44%) 935(9.61%) 133(1.37%) 9732 

1 (Alcohol) 176(33.91%) 71(13.68%) 123(23.70%) 122(23.51%) 27(5.20%) 519 

Restraining System 

0 (Not Used) 337(27.44%) 193(15.72%) 336(27.36%) 283(23.05%) 79(6.43%) 1228 

1 (Used) 4836(53.60%) 1945(21.56%) 1387(15.37%) 774(8.58%) 81(0.90%) 9023 

Body Type 

0 (cars) 3408(47.49%) 1600(22.30%) 1272(17.73%) 780(10.87%) 116(1.62%) 7176 

1 (SUV &Van) 747(56.59%) 259(19.62%) 189(14.32%) 111(8.41%) 14(1.06%) 1320 

2 (Truck) 1018(58.01%) 279(15.90%) 262(14.93%) 166(9.46%) 30(1.71%) 1755 

Vehicle Role 

1 (Striking) 4742(49.86%) 2011(21.15%) 1636(17.20%) 970(10.20%) 151(1.59%) 9510 

2 (Struck) 261(72.70%) 54(15.04%) 29(8.08%) 15(4.18%) 0(0%) 359 

3 (Both) 170(44.50%) 73(19.11%) 58(15.18%) 72(18.85%) 9(2.36%) 382 

Rollover 

0 (No-rollover) 5069(50.78%) 2123(20.85%) 1699(16.69%) 1037(10.19%) 152(1.49%) 10180 

1 (Rollover) 4(5.63%) 15(21.13%) 24(33.80%) 20(28.17%) 8(11.27%) 71 

Road Surface Condition 

0 (Dry) 3467(49.97%) 1404(20.24%) 1190(17.15%) 750(10.81%) 127(1.83%) 6938 

1 (Slippery) 1706(51.49%) 734(22.16%) 533 (16.09%) 307(9.27%) 33(1.00%) 3313 

Light Condition 

0 (Daylight) 3613(51.18%) 1487(21.06%) 1174(16.63%) 688(9.75%) 98(1.39%) 7060 

1(Partial dark) 1139(52.71%) 465(21.52%)  348(16.10%) 186(8.61%) 23(1.06%) 2161 

2 (Dark) 421(40.87%) 186(18.06%) 201(19.51%) 183(17.77%) 39(3.79%) 1030 

 

The network consists of an input layer of source neurons, 

at least one hidden layer of computational neurons, and 

an output layer of computational neurons. The input layer 

accepts input signals and redistributes these signals to all 

neurons in the hidden layer. The output layer accepts a 

stimulus pattern from the hidden layer and establishes the 

output pattern of the entire network. The MLP neural 

networks training phase works as follows: given a 

collection of training data {x1(p), d1(p)}, …, {xi(p), 

di(p)}, …, {xn(p), dn(p)}, the objective is to obtain a set 

of weights that makes almost all the tuples in the training 

data classified correctly, or in other words, is to map 

{x1(p) to d1(p)}, …, {xi(p) to di(p)}, and eventually {xn(p) 

to dn(p)}. The algorithm starts with initializing all the 

weights (w) and threshold (θ) levels of the network to 

small random numbers. Then calculate the actual output 

of the neurons in the hidden layer as:  

yi(p) = f [∑(i=1 to n) xi(p) * wij(p) - θj],  

where n is the number of inputs of neuron j in the hidden 

layer. Next calculate the actual outputs of the neurons in 

the output layer as:  

yk(p) = f [∑(j=1 to m)xjk(p) * wjk(p) - θk],  
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where m is the number of inputs of neuron k in the 

output layer. The weight training is to update the weights 

using the Backpropagation (BP) learning method with 

the error function: 

E (w) = ∑ (p= 1 to PT) ∑ (i= 1 to l) [di(p) – yi(p)]
2 

, 

where 

E (w) = error function to be minimized,  

 w = weight vector, 

PT = number of training patterns, 

l = number of output neurons, 

di(p) = desired output of neuron I when pattern p 

is introduced to the MLP, and  

yi(p) = actual output of the neuron I when 

pattern p is introduced to the MLP. The objective of 

weight training is to change the weight vector w so that 

the error function is minimized. By minimizing the error 

function, the actual output is driven closer to the desired 

output.  

Empirical research [19] has shown that the BP 

used for training neural networks has the following 

problems: 

• BP often gets trapped in a local minimum mainly 

because of the random initialization of weights. 

• BP usually generalizes quite well to detect the global 

features of the input but after prolonged training the 

network will start to recognize individual 

input/output pair rather than settling for weights that 

generally describe the mapping for the whole training 

set. 

The second popular training algorithm for 

neural networks is Scaled Conjugate Gradient Algorithm 

(SCGA). Moller [20] introduced it as a way of avoiding 

the complicated line search procedure of conventional 

conjugate gradient algorithm (CGA). According to the 

SCGA, the Hessian matrix is approximated by 
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where E' and E" are the first and second derivative 

information of global error function E (wk). The other 

terms pk, σk and λk represent the weights, search direction, 

parameter controlling the change in weight for the 

second derivative approximation and parameter for 

regulating the indefiniteness of the Hessian. In order to 

obtain a good, quadratic, approximation of E, a 

mechanism to raise and lower λk is needed when the 

Hessian is positive definite. Detailed step-by-step 

description can be found in [20]. 

In order to minimize the above-mentioned 

problems resulting from the BP training, we used a 

combination of BP and SCG for training. 

B. Decision Trees 

Decision trees are well-known algorithm for 

classification problems. The Classification and 

Regression Trees (CART) model consists of a hierarchy 

of univariate binary decisions. Each internal node in the 

tree specifies a binary test on a single variable, branch 

represents an outcome of the test, each leaf node 

represent class labels or class distribution. CART 

operates by choosing the best variable for splitting the 

data into two groups at the root node, partitioning the 

data into two disjoint branches in such a way that the 

class labels in each branch are as homogeneous as 

possible, and then splitting is recursively applied to each 

branch, and so forth.  

If a dataset T contains examples from n classes, 

gini index, gini(T) is defined as: gini (T) = 1 - ∑j=1 to n 

pj^2, where pj is the relative frequency of class j in T 

[31]. If dataset T is split into two subsets T1 and T2 with 

sizes N1 and N2, the gini index of the split data contains 

examples from n classes, the gini index gini(T) is defined 

as: 

gini split (T) = N1/N gini(T1) + N2/N gini(T2).  

CART exhaustively searches for univariate 

splits. The attribute provides the smallest gini split (T) is 

chosen to split the node. CART recursively expands the 

tree from a root node, and then gradually prunes back the 

large tree. The advantage of a decision tree is the 

extraction of classification rules from trees that is very 

straightforward. More precisely, a decision tree can 

represent the knowledge in the form of if-then rules; one 

rule is created for each path from the root to a leaf node. 

C. Support Vector Machines 

Support Vector Machine (SVM) is based on statistical 

learning theory [28] . SVMs have been successfully 

applied to a number of applications ranging from 

handwriting recognition, intrusion detection in computer 

networks, and text categorization to image classification, 

breast cancer diagnosis and prognosis and 

bioinformatics. SVM involves two key techniques, one is 

the mathematical programming and the other is kernel 

functions. Here, parameters are found by solving a 

quadratic programming problem with linear equality and 

inequality constraints; rather than by solving a non-

convex, unconstrained optimization problem. SVMs are 

kernel-based learning algorithms in which only a fraction 

of the training examples are used in the solution (these 

are called the support vectors), and where the objective 

of learning is to maximize a margin around the decision 

surface. The flexibility of kernel functions allows the 

SVM to search a wide variety of hypothesis spaces. The 

basic idea of applying SVMs to pattern classification can 

be stated briefly as: first map the input vectors into one 

feature space (possible with a higher dimension), either 

linearly or nonlinearly, whichever is relevant to the 

selection of the kernel function; then within the feature 

space, seek an optimized linear division, i.e. construct a 

hyperplane which separates two classes.  

For a set of n training examples (xi, yi), where xi 

∈ Rd and yi ∈{-1, +1}, suppose there is a hyperplane, 

which separates the positive from the negative examples. 

The points x which lie on the hyperplane (H0) satisfy w · 

x + b = 0, the algorithm finds this hyperplane (H0) and 

other two hyperplanes (H1, H2) parallel and equidistant to 

H0, 

H1: w · xi + b = 1, H2: w · xi + b = -1,  
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H1 and H2 are parallel and no training points fall between 

them. Support vector algorithm looks for the separating 

hyperplane and maximizes the distance between H1 and 

H2. So there will be some positive examples on H1 and 

some negative examples on H2. These examples are 

called support vectors. The distance between H1 and H2 

is 2/||w||, in order to maximize the distance, we should 

minimize ||w|| = wTw, subject to constraints yi (w · xi + b) 

>= 1, ∀i 

Introducing Lagrangian multipliers α1, α2, …, αn>=0, 

the learning task becomes  

L (w, b, α) = ½ w
T
w - ∑i=1 to n αI[yi(w · xi + b) – 1] 

The above equation is for two classes that are linearly 

separable. When the two classes are non-linearly 

separable, SVM can transform the data points to another 

high dimensional space. Detailed description to the 

theory of SVMs for pattern recognition can be found in 

[32]. 

 

Fig. 1. Hybrid concurrent decision tree-ANN model for 

accident data 

 

Fig. 2. Decision tree structure 

D. Hybrid Decision Tree-ANN (DTANN) 

A hybrid intelligent system uses the approach of 

integrating different learning or decision-making models. 

Each learning model works in a different manner and 

exploits different set of features. Integrating different 

learning models gives better performance than the 

individual learning or decision-making models by 

reducing their individual limitations and exploiting their 

different mechanisms. In a hierarchical hybrid intelligent 

system each layer provides some new information to the 

higher level [33]. The overall functioning of the 

system depends on the correct functionality of all the 

layers. Figure 1 illustrates the hybrid decision tree-ANN 

(DTANN) model for predicting drivers’ injury severity. 

We used a concurrent hybrid model where traffic 

accidents data are fed to the decision tree to generate the 

node information. Terminal nodes were numbered left to 

right starting with 1. All the data set records were 

assigned to one of the terminal nodes, which represented 

the particular class or subset. The training data together 

with the node information were supplied for training the 

ANN. Figure 2 illustrates a decision tree structure with 

the node numbering. For the hybrid decision tree–ANN, 

we used the same hybrid learning algorithms and 

parameters setting as we used for ANN (except for the 

number of hidden neurons). Experiments were performed 

with different number of hidden neurons and models 

were selected with the highest classification accuracy for 

the output class.  

4. Performance Analysis 

A. Neural Networks 

In the case of neural network based modeling, the 

hyperbolic activation function was used in the hidden 

layer and the logistic activation function in the output 

layer. Models were trained with BP (100 epochs, 

learning rate 0.01) and SCGA (500 epochs) to minimize 

the Mean Squared Error (MSE). For each output class, 

we experimented with different number of hidden 

neurons, and report the model with highest classification 

accuracy for the class. From the experiment results, for 

the no injury class the best model had 65 hidden neurons, 

and achieved training and testing performance of 63.86% 

and 60.45% respectively. For the possible injury class, 

the best model had 65 hidden neurons achieving it’s 

training and testing performance of 59.34% and 57.58% 

respectively. For the non-incapacitating injury class, the 

best model had 75 hidden neurons achieving training and 

testing performance of 58.71% and 56.8% respectively. 

For the incapacitating injury class, the best model had 60 

hidden neurons achieving training and testing 

performance of 63.40% and 63.36% respectively. 

Finally, for the fatal injury class, the best model had 45 

hidden neurons achieving training and testing 

performance of 78.61% and 78.17% respectively. These 

results are the summary of multiple experiments (for 

variable no of hidden neurons and for a number of 

attempts with random initial weight distributions 

resulting in almost exact performance of the trained 

network) and are presented in Table 2. 

B. Decision Trees 

We have experimented with a number of setups of 

decision tree parameters and report the best results 

obtained for our dataset. We trained each class with Gini 

goodness of fit measure, the prior class probabilities 

parameter was set to equal, the stopping option for 

pruning was misclassification error, the minimum n per 

node was set to 5, the fraction of objects was 0.05, the 
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maximum number of nodes was 1000, the maximum 

number of levels in the tree was 32, the number of 

surrogates was 5, we used 10 fold cross-validation, and 

generated comprehensive results. The cross-validation 

testing ensured that the patterns found will hold up when 

applied to new data. 

 

 

Table 2. Neural network performance 

Table 2. Neural 

network performance 

No Injury 

Possible Injury Non-incapacitating Incapacitating Fatal Injury 

Accuracy % Accuracy % Accuracy % Accuracy % Accuracy % # 

neuron

s Train Test 

# 

neuron

s Train Test 

# 

neuron

s Train Test 

# 

neuron

s Train Test 

# 

neuron

s Train Test 

60 63.57 59.67 65 59.34 57.58 60 57.88 55.25 60 63.4 63.36 45 77.26 75.17 

65 63.86 60.45 70 59.56 55.15 65 57.69 54.66 65 62.23 61.32 57 74.78 70.65 

70 63.93 60.25 75 58.88 57.29 75 58.71 56.80 75 61.06 61.52 65 69.81 69.73 

75 64.38 57.43 80 58.39 56.22 80 57.78 54.13 84 63.23 58.41 75 60.19 59.62 

80 63.64 58.89 95 60.07 55.93 85 57.83 55.59 90 59.32 59.08 80 74.33 71.77 

Table 3: Performance of SVM using radial basis function kernel 

 
g=0.0001 

c=42.8758 

g=0.001 

c=4.6594 

g=0.5 

c=0.5 

g=1.2 

c=0.5 

g=1.5 

c=2 

g=2 

c=10 

g=0.00001 

c=100 

g=0.0001 

c=100 

g=0.001 

c=100 

No injury  

Class 0 59.76 59.80 57.95 57.65 53.62 54.12 57.34 59.76 60.46 

Class 1 60.14 60.14 60.82 55.63 55.73 55.53 62.88 60.14 60.14 

Possible injury 

Class 0 100.00 100.00 100.00 99.88 95.33 95.58 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 3.67 3.42 0.00 0.00 0.00 

Non-incapacitating 

Class 0 100.00 100.00 100.00 100.00 97.43 97.49 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 3.21 2.92 0.00 0.00 0.00 

Incapacitating 

Class 0 100.00 100.00 100.00 99.89 98.06 98.11 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 2.83 2.83 0.00 0.00 0.00 

Fatal Injury 

Class 0 100.00 100.00 100.00 100.00 99.95 99.95 100.00 100.00 100.00 

Class 1 0.00 0.00 0.00 0.00 3.33 3.33 0.00 0.00 0.00 



8 Informatica 23 (1999) xxx–yyy  Informatica 

Table 4. Decision tree performance 

Injury Class Accuracy (%) 

No Injury 67.54 

Possible Injury 64.40 

Non-incapacitating Injury 60.37 

Incapacitating Injury 71.38 

Fatal Injury 89.46 

 

The performance for no injury, possible injury, non-

incapacitating injury, incapacitating injury and fatal 

injury models was 67.54%, 64.39%, 60.37%, 71.38%, 

and 89.46% respectively. Empirical results including 

classification matrix are illustrated in Table 4. The 

developed decision trees are depicted in Figures 3-7. 

Each of these trees has a completely different structure 

and number of nodes and leaves. Note, that information 

stored in leaves of exactly these decision trees has been 

used in developing the hybrid decision tree – neural 

network model. 

 

 

Fig. 3: No injury tree structure 

 
Fig. 4: Possible injury tree structure 

 
Fig. 5: Non-incapacitating injury tree structure 

 
Fig. 6: Incapacitating injury tree structure 

 
Fig. 7: Fatal injury tree structure 

C. Support Vector Machines 

In our experiments we used the SVM
light

 [27] and 

selected the polynomial and radial basis function kernels. 

For an unknown reason, the polynomial kernel was not 

successful and hence we only focused on the radial basis 

function (RBF) kernels. Table 3 illustrates the SVM 

performance for the different parameter settings and the 

obtained accuracies for each class. 

D. Hybrid DT-ANN Approach 

In the case of the hybrid approach, for the no injury class 

the best model had 70 hidden neurons, with training and 

testing performance of 83.02% and 65.12% respectively. 
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For the possible injury class, the best model had 98 

hidden neurons with training and testing performance of 

74.93% and 63.10% respectively. For the non-

incapacitating injury class, the best model had 109 

hidden neurons with training and testing performance of 

71.88% and 62.24% respectively. For the incapacitating 

injury class, the best model had 102 hidden neurons, with 

training and testing performance of 77.95% and 72.63% 

respectively. Finally, for the fatal injury class, the best 

model had 76 hidden neurons with training and testing 

performance of 91.53% and 90.00% respectively. These 

are the best models out of multiple experiments varying 

various parameters of the ANN and the decision tree. 

Empirical results are presented in Table 5 and the final 

comparison between ANN, DT and DTANN is 

graphically illustrated in Figure 8. For all the output 

classes, the hybrid DTANN outperformed the ANN. For 

non-incapacitating injury, incapacitating injury, and fatal 

injury classes, the hybrid DTANN outperformed both 

ANN and DT. 

 
 
Fig. 8. Performance comparison of the different learning 

paradigms 

Table 5. Test performance of DTANN 

Injury type % Accuracy 

No injury 65.12 

Possible injury 63.10 

Non-incapacitating injury 62.24 

Incapacitating injury 72.63 

Fatal injury 90.00 

 

5. Concluding Remarks 

In this paper, we analyzed the GES automobile accident 

data from 1995 to 2000 and investigated the performance 

of neural network, decision tree, support vector machines 

and a hybrid decision tree – neural network based 

approaches to predicting drivers’ injury severity in head-

on front impact point collisions. The classification 

accuracy obtained in our experiments reveals that, for the 

non-incapacitating injury, the incapacitating injury, and 

the fatal injury classes, the hybrid approach performed 

better than neural network, decision trees and support 

vector machines. For the no injury and the possible 

injury classes, the hybrid approach performed better than 

neural network. The no injury and the possible injury 

classes could be best modeled directly by decision trees. 

Past research focused mainly on distinguishing 

between no-injury and injury (including fatality) classes. 

We extended the research to possible injury, non-

incapacitating injury, incapacitating injury, and fatal 

injury classes. Our experiments showed that the model 

for fatal and non-fatal injury performed better than other 

classes. The ability of predicting fatal and non-fatal 

injury is very important since drivers’ fatality has the 

highest cost to society economically and socially.  

It is well known that one of the very important 

factors causing different injury level is the actual speed 

that the vehicle was going when the accident happened. 

Unfortunately, our dataset doesn’t provide enough 

information on the actual speed since speed for 67.68% 

of the data records’ was unknown. If the speed was 

available, it is extremely likely that it could have helped 

to improve the performance of models studied in this 

paper. 
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