| en

PaprzYCKL M.; STPICZVNSKIL. P,

Parallel Solution of Linear Recurrence Systems

Uhe paper describes some recently proposed divide-and-conquer parallel algorithms for solving linear recurrence sys-
jems. Such systems arise in wmeny computetional prodiems. A special case — solving linear systems with constant
coefficients — is also discussed. As on ezample of an application of such linear systems. paraliel algorithins for finding
trigonometric sums are presented.

1. Introduction

Let us consider a linear recurrence system of order i for n equations:

(if &£ <0,

k=1
T = fi + Z @y L; if]l <<k <n ()

F=k=—1

Many paralle! algorithms for solving this problem have been proposed [1-9]. In [14] two efficient medium-grain
divide-and-conquer paraliel algotithms were introduced and later implemented on a Sequent [11]. These algorithms
have very good numerical properties {15]. Recently, a modified algorithm has been proposed to handle the special
case of the system (1} - a system with constant coefficients [12]:

0 for & <10,

Ik = fr + Zuju:g_.-} for] <k < n, (2)

1=1 ; T

2. Parallel Algorithms

First. let us consider the general linear recurrence system (1), Computation of values r; can be represented as a
solution of a system of linear eqnations:

(I ~Ax =1 where 7. A € R"™" and x.{ € R?, {3)

where x = {xy,...,2,} , f = (fl,....f”}f"p and A = {4} with gy =0fori<kori—-Kk>m.

Without loss of generality we can assume that n i3 divisible by p (where p’ is the number of processors) and
g = n/p > m. The system (3) can be written in the following bleck form

L I
/ U-z Lo \ (i \ (f-l \‘
{3 Iy | — (4)

KXn— fp—-— H

\ AT A N R N

where L, e RV, x; e RY, fje R for j=1..... pand IU; € R77 for j = 2,....p. Vectors x, in (4) satisfy the
following recurrence relation

-1
{xl = .n.r..]_ fl, [:5:}

X; = Lj_lfj- ~ L;llr_-’;qu forp=2.....p

L]

6 ZAMM - Z. angew. Math. Mech. 76 (1996) 52

Let L';‘ denote the kth column of the matrix &7,. Since L-";-: =0forjg=2...., pand k =1,....9 — m we obtain the -
following formula for Algorithm 1:

—1
X = Ll fl.,

Ty |
| . (6
}Ej‘:Ej— ZI”_HQ*';CY? f{::-r_;r=?,...,p, }
=TI}

) - sk pro—k - .
where L,z, =f; and Ly} =U"fork=0..... m~ 1L
Let us now obscrve that each matrix {/, can be rewritten as:

P
LI_I_
k

mm
ki T
Z'ﬁj E.*:Eq—j-n.p_h {?}
=1i=k

where ﬁ;*" = A-t)gtk(s-1)g-m+t and e denotes the &th unit vector of R?. Substituting into (6} we obtain the
following formula for Algorithm 2 {for a more detailed description of both algorithms see [14]):

r}'.'.1 = Ll_'lfl,
m

(8)

xj=zj+2ctf}rj‘ for 1 =2,...,p,
o]

]

e 5 gkl T Kk — - — f.
where of = 57,0, 87 e, 1%, Liyj=e,fork=1...,mn, and L,z, =1,

In the constant coefficient system (2} observe that blocks L; and {; simplify to L and U respectively and the
recurrence relation (3) can be thus rewritten as:

X1 = L“Iflr
R T N S E o . (9)
X; =L - L7 Uy forj=2,.. p
Note also that to compute vectors y*, k= 1,.. .. ne, we necd to find only the solution of the system
- T e
Ly! = ey, where
1 _ 4y ¥4
A g -{lpng----,ﬂq} ' {1':]}
and
J"rk'-:EU?'"![]rlly'..;."'I*":yr.l—.iu."-l-[}T' {11]
k1
The method {8) can be now modified to define Alporithm 3:
Hx = 2y,
LT
Xy =2y +Z{ri‘yk for 3 = 2,...,p, (12)
b=
where Lz; =f; for j = 1,...,p, and y* is given by (11) and
ﬂij = ”m‘rfj—l:lq—ﬂll'-l +I.’lm_|l-'“_..|:|q__m+j + ...+ﬂ|iﬂ{j_”q
ﬂ;': = El‘.m;FU_”q—.nH—E + ...+ Elj;ﬂ1__|,'_”q [13}
r'i'::a = FL”,IU'_[]E],

Methods (6], (8) and (12) are examples of divide-and-conquer algorithms. First, several linear recurrence
systems of order m for ¢ equations are solved scparately (in parallel}). Second, a set of values is calcuiated in each

——

block and communicated to the next block thus effectively decoupling the original system. This is the sequential part
of the algorithms. Finally, the solution to the original problem is calculated independently in each block (in parallel}.
Let us also observe that when Algorithm 3 is applied to the constant coefficient problem only p + 1 subsystems of
order m for g equations must be solved in parallel, so the number of subsystems does not depend on the order of

the recurrence system.

For all these algorithms the optimal number of processors is Popr = O(y/n} and the solution to the problem
can be obtained in O{y/n} steps. Algorithm 3 is much less sensitive to changes in the value of m.

3. Application of Algorithms

A slight modification of the proposed parallel algorithms can be easily applied to the problem of computing trigono-
metric sums

Clz) =Y becoskn, S(z) =) besinkx. {14)
k=0 k=1

There are two well-known sequential algorithms for finding solutions of (14); Reinsch’s algorithm [13], which works
for any value of z, and Goertzel’s algorithm [13], which can be applied for |z| not too close to zero. These algorithms
transform the original problem (14) to the solution of a linear recurrence system of order 2:

- [} itk <D (15)
k= fk + Qg g —2Fk 2+ e k—1.Lk—1 i1 <k <N

For Goertzel’s algorithm we need to compute the following linear recurrence system with constant coefficients (thus
we apply Algorithm 3):

51;2{{] for k=mn41.n+2, 16)

b + 28k 10082 — Sy forh=nn-1,...,1,

and then we compute C{z) = by + 5, corz — 52 and S{x) = Sy sinz. In Reinsch’s algorithm, we set Sz =Dpy1 =0
and if cosz > 0 then we solve

{ SJH—] = -'Dﬁ:+l + Skaz L {1?-}
Dy =br +e5p + Dy,
fork=mn,n—1,...,0, where ¢ = —d4sin? 5. If cosr < 0 then we solve
Ske1 = Dy — Skt
. 18
{ﬂk:bk+ﬂf’ﬁ:+1 = Dy, e

where e = 4 cos® £. Finally, we compute C(r) = Dy ~ 5§51 and S(z) = 5y sinz,

r
z.

Let p be the number of available parallel processors. For the parallel version of Goertzel's algorithm, we have
to solve p linear recurrence systems with constant coefficients for ¢ equations (it is assumed that ¢ = n{p is an
integer) in parallel, and compute the last two terms of the final solution using a recursive doubling scheme [9]. For
the parallel version of Reinsch’s algorithin we have to solve p + 2 linear recurrence systems for g equations {where
21 = pq) in parallel, and then find the last two terms of the solution of system (17) or (18) using a similar recursive
doubling scheme.

Although the parallel version of Goertzel's algorithin reaches the solution faster than the parallel version of
Reisch’s algorithin, Goertzel's algorithm has a smaller speedup. This is a typical example of Amdahl's Effect as
Reisch’s algorithm solves 2n equations whereas Goertzel's algorithm solves only » equations. For both paralle!
algorithms the spesdup increases as the size of the problem (n) increases [16]. The following table {16] presents the
speedup computed for n = 6390.

proc. 3 3 3 f f 0 10 11 1.1 15 18
Gaertzel | 0.8% 1 1.31 | 213 [254 | 2931 353 | 3.70 | 417 | 4.80 { 5.38 | 5.70
Reinsch | 1.01 | L.31 | 247 | 2.92 | 337 14301470 53.05 | 6.26 | 6.48 | V.38

8 ZAMM - Z. angew. Math. Mech, 76 {1996) 82

—

It was also observed that both algorithms scale weil for more than 100 equations per processor. Finally, numerical
tests {17] show that the rounding errors of paraliel algorithms are of the same order as the rounding errors of the

corresponding sequential algorithms.

4, Concluding remarks

Two parallel algorithms for solving linear recurrence systems were presented and their modification for the case
of recurrence systems with constant coefficients was discussed. The latter algorithm can be easily applied to the
problem of finding trigonometric sums. The experiments performed so far suggest that the presented algorithms
behave well on shared memory computers with limited number of processors. In the next step we plan to experiment
with these algorithms on message passing computers.

5. Heferences

| Boropin, A, MUNRO, 1.: The comnputational complexity of algebraic and nurerical preblems, American Elsevier, New

York 1975,
2 CarLsoN, D.A.: Solving linear recurrence systems on mesh—cotnected compuiers with multiple global buses, J. Parallel

and Distrib. Comput. 8 (1980) 89-95.

3 CHEN, 5.-C.: Speedup of iterative programs in tnultiprocessing systems, University of Illincis at Urbana 1975,

4 Cuen, 5.-C., Kuck, 12.J.: Time and parallel processor bounds for linear recurrence systems, IEEE Trans. on Computers,
24 (1975) 701-T17.

3 DoNGARRA, J., JoHNssoN, L.: Solving Danded Systems on Parallel Processor, Parallel Comput. 5 (1987) 219-246.

§ HELLER, D.: A survey of parallel algorithms in numerical lnear algebra, SIAM Review 20 (1978) T40-777.

7 GREENBERG, A., LANDER, K., PATERSON, M., GaLL, Z.: Efficient parailel algorithms for linear recurrence computation,
Inf. Proc. Letters 15 {1582} 31-35.

8 huek, D3 Stoveture of Computers and Computations, Wiley, New York 1978,

¥ Monr, J.: Parallel Algorithms and Matrix Computations, Oxford University Press, Oxford 1988,

10 Parrzvekl, M., GLaDpweL, 1. Solving Almost Block Diagonal Systems on Parallel Computers, Parallel Comput. 17
(1991) 133 -153,

11 Paprzyckn, M., SretczynNskr, P Solving linear recurrence systems on parallel computers, Proceedings of the Mardi
Gras '94 Conference, Baton Rouge, Feb. 10-12, 1994, Nova Science FPublishers, New York 1995, {in press).

12 Parnrzyckl, M., STPIGZYNSKI, P.: Solving lincar recurrence systems on a Cray Y-MP, in: J.DDongarra, J. Wasdniewski eds.,
Lecture Notes in Computer Science 879, Springer-Verlag, Berlin 1994, 416-424.

13 SToER, J., BULIRSCH, R.: Introduciton to Numerical Analysis, Springer Verfag, New York 1980.

4 STeiczyNski, P.: Parallel algorithms for solving linear recurrence systems, in: L. Bougé et al. eds., Lecture Notes in
Computer Science 634, Springer-Verlag, Berlin 1992, 343-148.

15 5Triczyaskl, P.: Error analysis of two parallel algorithms for solving linear recurrence systems, Parallel Comput. 18
(1993) 917-923.

16 STPIozyNsKl, P., PAPRZYCKE, M.: Parallcl algorithms for finding trignnometric sums, in: D, H. Bailey et al. eds., Parallel
Processing for Scientific Computing, SIAM. I’hiladclphia 1995, 291-292.

1T Srriczynskn: Efficient parallel algorithis for solving linear algebra prablems, PhDD dissertation (in Polish}, MCS Univer-
sity, Lublin 1944,

Addresses: DR, MARCIN PAPRZYCK!, Department of Mathematics and Computer Science, University of Texas of
the Permian Basin, Odessa, TN 79762
Dr. PRZEMYSLAW STPICZYNSKI, Institute of Mathematics, Numerical Analysis Department, Marie
Curie-Sklodowska University, PI. Marii Curie-Sklodowskiej 1, 20-031 Lublin, POLAND

	aig copy.gif
	aig0001 copy.gif
	aig0002 copy.gif
	aig0003 copy.gif

