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PARALLEL ALGORITHMS FOR FINDING TRIGONOMETRIC
SUMS *

PRZEMYSLAW STPICZYNSK] ' AND MARCIN PAPRZYCKI *

Abstract. Parallel versions of Goertzel and Reinsch algorithms for finding trigonometric sums
are introduced as a special case of effcient parallel algorithms for solving linear recurrence systeins.
The results of the experiments performed an a 20-processors Sequent Symmetry are presented and
discussed.
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1. Introduction. In several mathematical problems such as trigonometric inter-
polation we need to compute sums

(1) Clx) = Z by, cos har, S{a) = Z by sin k.
k=0 k=1

There are two well-known algoritluns for finding solutions of (1): Reinsch's aigorithm
[3], which works for any value of 2, and Goertzel’s algorithm [3), which can be applied
for ] not too close to zero, These algorithms transform the original problem (1) to
the solution of a linear recurrence system of order 2:

0 k<0
(2) n = { >

Je + @ep-22k2 ¥ appi—y F1<k< N,

Such a recurrence system can bhe efficiently solved on parallel computers using slight
modifications of the recently proposed parallel algorithms [2, 4, 5, 6].

2. Parallel algorithms. In case of the Goertzel algorithm we need to compute
the following lincar recurrence system with constant coefficients:
(3) ¢ - 0 fork=n+1,n+ 2,
KT U bk + 28k410087 — Spyp fork=mmn—1,...1,

and then we compute C(x) = by + Sycosx — S and S(z) = Sy sinz.
In Reinsch algorithm we set 8,49 = D,y = 0 and if cosx > ( then we solve

(4) {Sk+l = Diy1 + Sky2

Dy = by + €Sk 1 + Diq,
for k =n,n—1,...,0, where e = —4sin? 5. If cosx < 0 then we solve
(5) {Sk+l = Diypr — Seaz

D =by +eSgy) — Diya,

where e = 4 cos” §. Finally, we compute C(z) = Dy — §51 and §(z) = Sysinz.
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The proposed methods for solving (3), (4) and (5) are based on the fact that
these linear recurrence systems can be represented as lower triangular banded linear
systems of equations. Such linear systems can be solved using modifications of the
divide-and-conguer algorithms proposed in (2, 4, 6]. First, several linear systems of
smaller size must be solved in parallel. Then, instead of the full solutions of systems
(3}, (4) and (5), we need to calculate only the last two terms.

Let p be the number of available parallel processors. For the parallel version
of Goertzel algorithm, we have to solve p linear recurrence systems with constant
coeflicients for ¢ equations (it is assumed that ¢ = n/pis an integer) in parallel, and
compute the last two terms of the final solution using a recursive doubling scheme [1].
For the parallel Reinsch algorithm we have to solve p + 2 linear recurrence systems
for ¢ equations (where 2n = pq) in parallel, and then find the last two terms of the
solution of system (4) or (5) using a similar recursive doubling scheme. (We solve (4)
or (3) depending on the sign of the function cosz.)

3. Results. The experiments were performed on a 20-processor Sequent Symrme-
try shared-memory parallel computer. The code was implemented using Fortran 77
and Sequent-provided parallelization primitives (DOACROSS). The speedup of the
parallel algorithms was calculated against the sequential algorithms. The following
table shows an example of the computed speedup for n = 6930.

# proc. 2 3 ] 6 7 9 10 11 14 15 18
Goertzel | (.88 21312541293 (353379417 [489]53415.75
Reinsch | 1.01 247 1292|337 [430]4.70 | 5.05 | 6.26 | 6.48 | 7.38
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Parallel Reinsch algorithm achieves better speedup. than parallel Goertzel algo-
rithin.  This is typical example of Amdahl’s Effeet as Reisch algorithm solves 2n
equations whereas Goertzel algorithm solves only n cquations. For both parallel al-
gorithins the speedup increases as the size of the problem (n) increases. Numerical
tests show that the rounding errors of parallel algorithins are of the same order as the
rounding errors of the corresponding sequential algorithms.
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