PROCEEDINGS OF THE SEVENTH SIAM CONFERENCE ON

PARALLEL
PROCESSING FOR
SCIENTIFIC

COMPUTING

Edited by David H. Bailey
NASA Ames Research Center

Petter E. Bjarstad
University of Bergen

John R. Gilbert
Xerox Palo Alto Research Center

Michael V. Mascagni
Supercomputing Research Center,
Institute for Defense Analyses

Robert S. Schreiber
Research institute for Advanced
Computer Science

Horst D. Simon
NASA Ames Research Center
Center for Supercomputing

Virginia J. Torczon
Rice Univeristy

Layne T. Watson
Virginia Polytechnic Institute and
State University

SIAIM. Philadelphia
Society for Industrial and Applied Mathematics

PARALLEL ALGORITHMS FOR FINDING TRIGONOMETRIC
SUMS *

PRZEMYSLAW STPICZYNSK] ' AND MARCIN PAPRZYCKI *

Abstract. Parallel versions of Goertzel and Reinsch algorithms for finding trigonometric sums
are introduced as a special case of effcient parallel algorithms for solving linear recurrence systeins.
The results of the experiments performed an a 20-processors Sequent Symmetry are presented and
discussed.

Key words. Trigonometric sums, linear recurrence systems, parallel algorithms, shared-memory
parallel computers, speedup.

1. Introduction. In several mathematical problems such as trigonometric inter-
polation we need to compute sums

(1) Clx) = Z by, cos har, S{a) = Z by sin k.
k=0 k=1

There are two well-known algoritluns for finding solutions of (1): Reinsch's aigorithm
[3], which works for any value of 2, and Goertzel’s algorithm [3), which can be applied
for] not too close to zero, These algorithms transform the original problem (1) to
the solution of a linear recurrence system of order 2:

0 k<0
(2) n = { >

Je + @ep-22k2 ¥ appi—y F1<k< N,

Such a recurrence system can bhe efficiently solved on parallel computers using slight
modifications of the recently proposed parallel algorithms [2, 4, 5, 6].

2. Parallel algorithms. In case of the Goertzel algorithm we need to compute
the following lincar recurrence system with constant coefficients:
(3) ¢ - 0 fork=n+1,n+ 2,
KT U bk + 28k410087 — Spyp fork=mmn—1,...1,

and then we compute C(x) = by + Sycosx — S and S(z) = Sy sinz.
In Reinsch algorithm we set 8,49 = D,y = 0 and if cosx > (then we solve

(4) {Sk+l = Diy1 + Sky2

Dy = by + €Sk 1 + Diq,
for k =n,n—1,...,0, where e = —4sin? 5. If cosx < 0 then we solve
(5) {Sk+l = Diypr — Seaz

D =by +eSgy) — Diya,

where e = 4 cos” §. Finally, we compute C(z) = Dy — §51 and §(z) = Sysinz.

* This paper is an extended abstract.

t Department of Numarical Analysis, Marie Curie-Skiodowska University, Pl Marii Curie-
Sklodowskiej 1, 20-031 Lublin, POLAND {przem¢hektor .umcs.lublin.pl).

: Department of Mathematics and Computer Science, University of Texas of the Permian Basin,
Odessa, TX 79762 (paprzycki m@gusher.pb.utexas.edu).

291

The proposed methods for solving (3), (4) and (5) are based on the fact that
these linear recurrence systems can be represented as lower triangular banded linear
systems of equations. Such linear systems can be solved using modifications of the
divide-and-conguer algorithms proposed in (2, 4, 6]. First, several linear systems of
smaller size must be solved in parallel. Then, instead of the full solutions of systems
(3}, (4) and (5), we need to calculate only the last two terms.

Let p be the number of available parallel processors. For the parallel version
of Goertzel algorithm, we have to solve p linear recurrence systems with constant
coeflicients for ¢ equations (it is assumed that ¢ = n/pis an integer) in parallel, and
compute the last two terms of the final solution using a recursive doubling scheme [1].
For the parallel Reinsch algorithm we have to solve p + 2 linear recurrence systems
for ¢ equations (where 2n = pq) in parallel, and then find the last two terms of the
solution of system (4) or (5) using a similar recursive doubling scheme. (We solve (4)
or (3) depending on the sign of the function cosz.)

3. Results. The experiments were performed on a 20-processor Sequent Symrme-
try shared-memory parallel computer. The code was implemented using Fortran 77
and Sequent-provided parallelization primitives (DOACROSS). The speedup of the
parallel algorithms was calculated against the sequential algorithms. The following
table shows an example of the computed speedup for n = 6930.

proc. 2 3] 6 7 9 10 11 14 15 18
Goertzel | (.88 21312541293 (353379417 [489]53415.75
Reinsch | 1.01 247 1292|337 [430]4.70 | 5.05 | 6.26 | 6.48 | 7.38

—
[
—

[e—
fals |
[aay

Parallel Reinsch algorithm achieves better speedup. than parallel Goertzel algo-
rithin. This is typical example of Amdahl’s Effeet as Reisch algorithm solves 2n
equations whereas Goertzel algorithm solves only n cquations. For both parallel al-
gorithins the speedup increases as the size of the problem (n) increases. Numerical
tests show that the rounding errors of parallel algorithins are of the same order as the
rounding errors of the corresponding sequential algorithms.

Acknowledgments. Computer time grant from the Department of Computer
Science Engincering of the Southern Methodist University is kindly acknowledged.

REFERENCES

(1] J. Mo, Parulfel Algarithms and Matriz Computations, Qxford University Press, Oxford, 1988,

(2] M. ParRzYCRL AND I STPICZVNSKI, Sofving hnear recurrence syslems on parallel computers,
Proceedings of the Mardi Gras 94 Conference, Baton Rouge, Nova Seience Puhlishers, New
York, 1994, Lo appear.

[3] J. STorr aND R. Burirscn, Introduciton to Numerical Analysis, Springer Verlag, New York,
1950,

[4] T STiczyvNskr, Parallel algorithms for sobang hnear recurrence sysfemes, in Loeeture Notes
Computer Science 634, L. Bongé et al. eds., Springer Verlug, Berlin, 1992, pp. 343-148,

(6] P. SreczyNsKI, Error analysis of two paratiel algorithms for solving brear vecurrence systemns,
Parallel Comnput., 19 (1993), pp. 917-921,

[6] P.STPiczYNsKI, M. Paprzyckl aND R, DANIEL, Paraflef algorithm for solving tinear recurrence
systems with constant coefficients, submited for publication.

	aig.BMP
	aig0001.BMP
	aig0002.BMP

