Proceedings of the Mardi Gras '94 Conference

TOWARD TERAFLOP COMPUTING AND NEW
GRAND CHALLENGE APPLICATIONS

February 10 - 12, 1994 Louisiana State University

Editors

RAJIV K. KALIA AND PRIYA VASHISHTA
Louisiana State University

NOVA SCIENCE PUBLISHERS, INC.

Toward Teraflop Computing Copyright © 1995 by Nova Science Publishers, Inc.
and New Grand All nghts of reproduction in any form reserved.
Challenge Applications ISBN-1-56072-247-9

SOLVING LINEAR RECURRENCE SYSTEMS ON
PARALLEL COMPUTERS

Maran Paprzycki? Przemyslaw Stpiczynski®

1 Depariment of Mathematics and Computer Scdence, University of Texas of the Permian
Basin, Odessa, TX T9782, e-mail: paprzycki mOgusher.pb.utexas.edu

? Numerical Analysis Depariment, Marie Curie-Skiodowska University, Pl. Marii Curie-
Sklodowskiej 1, 20-031 Lublin, POLAND, e-mail: przem@golem.umcs.lublin.pl

Abstract. Two divide and conquer algorithms for the sclution of a Linear
tecurtence system of order m of n equations are introduced. The prithmetical
complexity of the proposed algorithms is discussed. It is shown that for large n
the optimal aumber of processors is O(,/n) and that for the optimal number of
processors the time complexity of the proposed algorithms is O /n). It is also
shown that for fixed n and fixed number of processors p the theoretical speed-up
decreanes as the order of the sysiem m increases. The resulis of experiments on
s 20-processor Sequent are presented.

Keywords. Linear recurrence systems, parallel algorithms, divide-and-
conquer, shared—-memory multiprocessors, speedup.

1. INTRODUCTION

The final phase of several numerical algorithms reduces to the solution of a linear
recarrence system of order m for n equations. Many parallel algorithms for sclving
this problem have been proposed (14, 6-9, 11, 12]. In [12] two medium grain efficient
divide and conquer parallel algdrithms were presented and their theoretical implemen-
tation on a linear array of processors with message passing facilities was discussed. It
has been recently shown that both algerithms have very good numerical properties

13§.

|]Thr. major purpose of this paper is to show that these algorithms can be efficiently
implemented on shared memory MIMD multiprocessors. Section 2 contains a short
description of the proposed algorithms. Their arithmetical complexity functions are
presented and discussed in Section 3. In Section 4 the results of the experiments on
a 20-processor Sequent Symmetry are presented and analyszed.

379

2. PARALLEL ALGORITHMS

Let us define a linear recurrence system of order m for n equations, where m < n:

0 if k <0,
T = — : (1)
fu + E gz, ifl1<k<n
j=k-m

Computation of values zx reduces to the system of linear equations
(I~ A)x=f where], A€ R**® and x,f € R", (2}

where x = (::1,.”.:")1‘, f - (f;,...,fn)T and A = (a,—t'] with a3, = 0for: < k or
t—k>m

Without loss of generality we can assume that n is divisible by p (where ‘p’ is
the namber of processors) and ¢ = n/p > m. The system (2) can be written in the
following block form

L1 \‘ X1 \ (f1 b
U: L: X4 fj
Uy I, : = . . [3)
R Xp--1 fp_ 1
Up L, } Xp) \ £

where L; € RY*? x; f; c Riforj=1,...,pand U; € R¥*%for j = 2,...,p. Vecton
x; satisfy the foliowing recurrence relation

X = Lrlfh (4)
X; = L;li} - L;Iijj,.l fory=2,...,p

Let U; denote the kth column of the matrix I/;. Since UJ-" ~9forj=2,...pand
k—1,...,4— m we obtain the following formula for Algonthm 1I:

X1 = Ll_lfh
™m-—1
. (5)
Xy = By — Z :U-lh—ir,: for } = 2,..*,p,
k=0

where L;s; — {; and L,—yf U fork=0,...,m- 1.
To develop the second algorithm let us observe that each matrix U, can be wntten

U; = — Z Z ﬁ;'e.er_m“ , (6)

k=11=k

where ﬁ:-" = @(j—1)g+k.(j- 1}g—m+i a0d €3 denotes the kth unit vector of R9. Substi-
tuting into (5) we obtain the following formula for Algorithm 2 (for more detailed
description of both algorithms see [12])

X1 — L; lfl,

(7)

X, = 8 +Zn:‘y;‘ for5=2,...,p
k=1

380

where o} = 71, el pXi-u Liy¥=eyfork=1,...,m, and L;s; = {;.

M:thodl (5), (7} are examples of d:mde—nnd-canquer algorithms. First, several
linear recurrence systems of order m for g equations are to be solved separately (in
parallel). Second, a set of values needs to be calculated in eaeh block and com-
municated to the next block effectively decoupling the original system. This is the
scquential part of all three algorithms. Finally, the solution to the original problem
is calculated independently in each block (in parallel).

3. COMPLEXITY OF THE ALGORITHMS

Let us first modify for the shared memory computer the arithmetical complexity
formulas for (1) formally developed in [12]. Let 7, denote the time of the execution
of the basic arithmetic operation multiply and add. The complexity of a sequential
algonithm for solving (1) can be expressed by the following formula

N(n)=m(n- 2}, (8)
The complexity of Algorithm 1 is represented by:
T,a{n)=m [mp+ (m + 2) ~ 3(m? + 6m + l)] Tes | (9)
whercas the complexity of Algorithm 2 is defined by:

Ty2(n) = m [(3m + })p + (m+2)3 — (m? + Em+ })] ., (10)
A number of observations can be made about the above complexity functions.

1. The anithmetical complexity functions for the parallel algorithms have the same
overall structure as the functions for other divide and conquer algorithms (see
for instance {5, 10]).

2. Algorithm 2 gives better time complexity results for a small number of proces-
SOTS.

3. For small m and large n the optimal number of processors for. both parallel
algorithms is of order O{,/n).

4. For small m, large n and an optimal number of processors p.ye = O(1/n) both
paralle] algorithms perform in time O{ /n).

5. For fixed p and m the increase in n does not increase the speedup.

6. For fixed n and p the increase of m decreases the speedup.

The last two propertjes are illustrated on Figure 1 which represents the predicted
speedup for various values of m, optimal and fixed p and for n = 1000, .. .,10,000. [t
shoald be noted that for n = 10,000 the optimal number of processors pope = 100.

381

SPEEDUP

THEORETICAL SPEED—UP

28
26
24 >
24
20 -
18 -
16 -
14
12 -
10+ >
'E - . ., -] i i, .-—v—"‘#—‘-p—-‘-v
Eh-_.:::szae—a—-{:
4 B - - - - -
v a o g o L Yoly— 04, ol 4 S ot It i =
2 = T i 1 r ' T 1 T T |
1000 | 2000 | 3000 4000 5000 €000 000 1 EDDG_} Q000 10500
1 500 2500 A500 A500 5500 8500 7TE00 8500 9500
MATRIX SIZE -
Q mal FP=a18 +* =1 Pgpt O m=T, Fa 1M A o= F’D‘pt . = =5 P=1A

7 m=5 Fapt

Figure 1: Effects of changes 1n p, m and n on the theoretical speedup.

4. RESULTS

The experiments were performed on a 20 processor Sequent Symmetry. The code
was implemented using Fortran 77 and Sequent provided parallelisation primitives
(DOACROSS). Each result presented here 13 an average of multiple runs on an empty
machine. For programming simplicity it was assumed that n is divisible by p. Since
one of the processors is running the operating system and since 19 is not an optimal
divisor, the largest number of processors used was 18.

Figure 2 presents the companson between speedups of the two proposed algorithms
for n = 6930 (which was the biggest sise we were able to fit into the memory for
m =8}, m=1, 4 and 8, and p = 2,...,18. Speedup of both algorithms was
calcnlated against the same sequential algonthm.

It should be pointed out that the wavy shape of the curves is partially caused by
the fact that the experiments were not carried out when the number of processors p
was not a divisor of the system size n. As predicied, for increasing m the practical
speedup decreases. There is no performance improvement for p = 2 as the overhead
of the parallel solution is bigger than the gains from parallelisation. As m increases
it takes more and more processors to obtain any speedup. It can -be also observed
that, in all cases, Algorithm 2 gives better performance than Algonthm 1. This 15 &
general result that we have observed in all experiments with large n and for which we
do not bave a complete explanation. From now on we will report the performance of
Algorithm 2 only.

Figure 3 compares the performance of Algotithm 2 for rn = 1 for various matrix
sises. A couple of observations can be made. First, the system overhead can be
observed for p > 12 for matrix sises up to n = 5040. Only for the largest system sise

382

SPEEDUP

SPEEDUR

FeRFORMANCE COMPARISON

Al va A2, n = B30, varying m

I, 3 5 2 7 9 10 11 14 15 18
NIUWMBER OF PROCESSORS
oM om + A2 - m = 1 S Al m = 4 F.S AZ: m = 4 . Al m = A
vy oA m= B
Figute 2: Comparison between the two algorithms for various m.
PERFORMANCE COMPARISON
ALGORITHM 2. m o=
|
i
I f
1 1 d 1 I 1 A 1 L | . 1
Z X 4 -t & A 9 10 12 14 15 18

NUMBER OF PROCESSORS
O 2520 + 3600 ¢ 5040 &4 10800 =

Figure 3. Performance of Algorithm 2 for various n.

THEORETICAL

383

the levelling-off effect disappears. Second, as it was predicted theoretically, for a given
number of processors the increase in n does not produce speedup increase. Third,
the theoretical functions developed in Section 3 provide surprisingly good speedup
predictions (the difference between the actual and predicted speedup is smaller than

5%).

ACKNOWLEDGEMENT

Computer time grant from the Department of Computer Science Engireering of the
Southern Methodist University is kindly acknowledged.

10.

11.

12,

13.

REFERENCES

A. Borodin and I. Munzo, The computational complezity of algebraic and nu-
merical problems, New York: American Elsevier, 1975.

. D.A. Carlson, "Solving linear recurrence systems on mesh—connected computers

with multiple global buses”, J. Pargllel Dist. Comput. Vol.8, 1990, pp. 89-95.

. 5.-C. Chen, Speedup of itcrative programs in multiprocessing systems, Univer-

sity of lllinois at Urbana, 1975.

. 35.-C. Chen and D.J. Kuck, "Time and paralle] processor bounds for linear re-

currence systems”, JEEE Trans. Comput. Vol. 24, 1975, pp. T01-T17.

J. Dongarra and L. Johnsson, "Solving Banded Systems on Parallel Processor”,
Parallel Compuf. Vol. 5, 1987, pp. 219-246.

. D. Heller, " A survey of paraliel algorithms in numerical linear algebra”, SIAM

Review Vol. 20, 1878, pp. T40-777,

. A.C. Greenberg, R.E.Lander, M.S. Paterson and Z. Galil, "Efficient parallel

algorithms for linear recurrence computation™, Inf. Proc. Letters Vol. 15, 1982,
pp. 31-35.

D.J. Kuck, Struciure of Computers and Compulations, New York: Wiley, 1978.

. J. Modi, Parailel Algorithms and Mairmz Computations, Oxford: Oxford Uni-

versity Press, 1988,

M. Paprsycki and 1. Gladwell, "Solving Almost Block Diagonal Systems on
Parallel Computers”, Parallel Comput. Vol. 17, 1991, pp. 133-153.

A.H. Samek and R.P. Brent, "Solving triangular systems on a parallel com-
pater”, SIAM J. Numer. Anal. Vol. 14, 1977, pp. 1101-1113.

P. Stpicsynski, "Parallel algorithms for solving linear recurrence systems”, in:
L. Bougé et al. eds., Lecture Noles in Compuler Science Vol. 634, Berlin:
Springer—Verlag, 1992, pp. 343-348.

P. Stpicsyiski, "Error analysis of two parallel algorithms for solving linear re-
currence systems”, Paralie! Comput. Vol. 19, 1993, pp. 917-923.

384

	big0001 copy.gif
	big0002 copy.gif
	big0003 copy.gif
	big0004 copy.gif
	big0005 copy.gif
	big0006 copy.gif
	big0007 copy.gif

