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ABSTRACT

A new tearing-type approach toward the solution of Almost Block Diagonal
Systems on distributed memory parallel computers is presented. Its arithmetical
complexity is examined and compared with other existing approaches.

1. INTRODUCTION

Recent years have witnessed rapid growth of knowledge about the high-
performance direct solution to almost block diagonal (ABD) linear systems
(see Fig. 1). Such systems arise in a variety of mathematical problems: dis-
cretization of boundary value ordinary differential equations (BVP ODEs),
Chebyshev spectral decomposition on rectangular domains, orthogonal
spline collocation for elliptic problems and others.

Two parameters influence the parallel solution methods for ABD sys-
tems: the size of each block and the number of internal blocks m. For large
blocks and a limited number of processors it is possible to use BLAS ker-
nels [6, 7, 12| and introduce parallelism inside each block. On a shared

*BE-mail: 001105700vm. csata. it.
' E-mail: paprzycki _mdutpb.eadu.
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Fic. 1. Structure of an ABD matrnx.

memory parallel computer (8-processor Cray Y-MP) a speedup of about
4 was reported for blocksizes 400 x 800 [10]. This approach will not be
successful for larger number of processors, as there would not be enough
work inside each block to keep them busy. This is even more true for the
distributed memory computers where partitioning the blocks among the
processors would lead to a very large number of data transmissions. For a
large number of small to medium size blocks, tearing-type methods may
be applied. Examples of such methods, applied to the linear systems orig-
inating from the discretization of BVP ODEs, are discussed in {4, 13-15].
Some of these algorithms {4, 14} are suitable primarily for shared memory
computers. The algorithms introduced in [13, 15] are suitable also for dis-
tributed memory computers. S. Wright in [15} derives a stable algorithm
assuming that the matrix is block bidiagonal and considering the top and
bottom blocks (introduced by the boundary conditions of the BVP ODE;
see Fig. 1} only at the last step of the reduction. Paprzycki and Gladwell
in [13] try to take advantage of the structure of the coefficient matrix and
develop a method similar to that proposed in [8, 9] for banded systems.
In this article we propose a slightly different variant of this last algorithm,
which allows us to save half of the fill-in vectors and to reduce the number
of arithmetical operations.

Section 2 introduces the new tearing-type algorithm. Section 3 discusses
the details of the parallel implementation of the proposed algorithm on
a hypercube. Section 4 introduces the arithmetic complexity and mem-

oty requirements of the new algorithm and compares it with the original
algorithm from (13].
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2. THE PARALLEL ABD SOLVER FOR DISTRIBUTED MEMORY
COMPUTERS

For the purposes of presentation we represent the ABD matrix M (Fig. 1)

IR
(AE,D DE,D \

Dy Ay By Cyg
Co1 DBap Aqy Dy
Dya A1 Bya Cio |
ﬂJ:l Cao Bagy Asop Dyo
I Dl,m A],m Bl,m Cl,m
Com Bym Azm Dy
\ Dl,m+1 Al,m+1
(1)

Without loss of generality we also assume that the ABD system originates
from a fnite difference discretization of a system of n BVP ODEs with g
initial and n - ¢ final separated boundary conditions. Now, for each i the
blocks Ay, and C; are of size ¢ x g, the blocks Ay ; and C) ; are of size
(n —¢) x (n—q), and By, Dy, Bg:i, and DzT,w are of size (n — ¢q) x gq.

Morcover, we treat
Dy, Ay By, Cpj
Coi Boy Aa: Dy

as one block of the matrix M (see Fig. 1). We thus say that M has m blocks
(we do not count here the top and the bottom half-blocks originated by
the boundary conditions).

In [13] Paprzycki and Gladwell suggest a decomposition of the original
matrix M (1) in a block tridiagonal form and a parallel factorization, which
is suitable on shared memory as well as distributed memory parallel com-
puters. This factorization also corresponds to that in [11] or to the LUD
factorization in [1|. The parallel phase of the algorithm generates four fill-
n block vectors with a total number of 2n?m nonnull elements, which are
obtained by means of the solution of six block triangular systems of size
(m + 2)/p, where p is the number of processors available. As a result of
this phase a reduced system is created, which is then solved sequentially on
one processor. The reduced system has p — 2 internal blocks and the same

ABD block structure as M (1)}.



88 P, AMODIO AND M. PAPRZYCKI

L A e ¢ shvear = wramely v olffesgeh b EELEES- 4 EEEEEE - B Y R L] — — — —
-u—_ ' ' = = r * 1

processor §

"""""""""""""""""""""""""""""""""""""""""""""""""""

Fig. 2. Division of the coefficient matrix among the processors. The dotted lines rep-
resent the division into blocks inside each processor.

This approach can be improved first, by considering a different parti-
tioning of M among the processors and, second, by introducing a modihed
algorithm for the solution of the reduced system.

2.1. Parallel Factorization

Assume for simplicity that m = kp — 2, and associate each processor i
(i =2,..., p—1) with the following k£ block rows of M (see also Fig. 2):

: ) T
DY) Al = \
N V(G SENC I O (2)

where M is an ABD matrix with £ — 2 blocks, Ef!? = B (i_1yk4; for
F=ABC D, and

a7 1) T i) 7T
ry) = Bi{lel +Cliel.
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()7 (i) T i) T
S5y = CETI:-IEJ:-E + thk—lek-la

A
I'?} = €181 k-1, I‘éﬂ = er-1C1 k-1

In the previous formulas e;, for i = 1,2,k — 2,k — 1, denotes a block
unit vector, that is, a block vector with only one nonnull block equal to
an identity matrix; e, is of size (k — 1)n x ¢ and consists of an identity
matrix of size ¢ followed by a ((k — 1)n - ¢) x g block of zeroes; e; is of size
(k—1)nx (n—gq) and consists of a g X (n — q) block of zeroes followed by an
identity matrix of size n — ¢ and a (k — 2)n x (n — ¢) block of zeroes; eg_»
is of size (k — 1)n x ¢ and consists of a (k — 2)n x g block of zeroes followed
by an identity matrix of size ¢ and a (n — q} x g block of zeroes; and, e;_;
is of size (k — 1)n x (n — q) and consists of a ((k — 2)n + q) x (n — ¢) block
of zeroes followed by an identity matrix of size n — q.

Moreover, associate processors 1 and p with the & — 1 block rows of M,

MO D

(1) {1) (1)
Sa A?,k—l DE,k-l

(p} (P} {p)
Dyy Ay 1y
( ’ | , (4)

s,gp} sgp) M)

(3)

arnd

where each block is dehned as previously.

Each processor performs the following factorization (it is assumed that
an appropriately modified factorization is applied to the blocks stored by
the first and the last processor):

[T
0 o W g0 N[ o
I sé‘] 5{11'] Ly rgt} r{;) , (5)
) 1 T ] (1)
S C SR AC A G d
I
where

v =g 0T W7 = g (6)
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Fi1G. 3. Fill-in generated by each processor. The dotted lines represent the block parti-
tioning of M. The shaded areas represent the fill-in. The doubie shaded blocks constitute
the reduced matrix.

are the fill-in block vectors, and

(‘551}{1[1i)) = (DitéAEth) —wi’ (Sn 5 )

(@f8) = (A% DfL ) — v (r{el?), .
(B7n") = —wt (r]"ry"),

(1276y7) = v (sys1”).

T'his decomposition requires only three block triangular system solutions
and involves no communication among the processors. It results in fill-in
as represented in Fig. 3 that is half-size (a total number of n*m nonnull
elements) of the fill-in resulting from other known algorithms [4, 13, 15].
The reduced matrix R maintains the same ABD structure and dimensions
of internal blocks as the original matrix M (and the same structure and
dimensions as the reduced system in [13]), that is,

/a{;) (5“}
2 2 2 2
(5{ } 1{1 ) ﬁ( } ,.TE )

2 2) -(2
B o

-1 -1 — 1 -]
(S{F ) riF' ) ﬁEP } ,.YEP )

{p—1) (p—1) {p=1) (p—1)
ﬁ (.fg (52

T2
\ Y
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2.2, Parallel Solution of the Reduced System

On distributed memory parallel computers it is important to select an
algorithm that minimizes the number of data transmissions rather than
the numlber of opcrations. Let us analyze the solution of the reduced ABD
system (8) with p — 2 internal blocks resulting from the factorization pre-
sented in Section 2.1. We assume that p = 2™ and use a recursive approach
based on the algorithm proposed in the previous section applied to ABD
matrices with p — 2, p/2 — 2, ..., internal blocks.

To niinimize data transmission, instead of sending all the elements of
the reduced system to one processor as it was performed in [13], or using
a reduced number of processors at each step of the algorithm (similarly
to typical cyclic reduction algorithms), we use a method similar to that
introduced in (2], which utilizes all available processors in every step and
performs the same operations on each. This approach implemented on a
hypercube requires communication only among the neighbor processors.

The first step of the factorization phase consists of p/2 bidirectional com-
munications between processors i — 1 and ¢, for 7 = 2,4,6, ..., p. Processor
¢ sends to processor i — 1 blocks with superindex (i) whereas processor i — 1
sends to the processor @ blocks with the superindex (i — 1) in order to have
the same ABD matrix on both processors

fi—1 11 - -1

/tﬁi ) ﬂfg ) ﬁil D ’TEt ) \
i—1 i—1 ! — 1

i '}’é ] ﬁ.{z } ﬂ'g } égl }

» _ . 1_ if1=4,68p—2, (9
5O ol g

\ 'Téi} ﬁéx') &éﬂ 65:-;)/

/{Iél} l5:(21}

57 o pg» LB if ¢ = 2, (10)

2 2
AP o 8

and

~1 -1 -1 -1
55? ) (p—1) {p—1) ,T(;u )

Qy 1 1
Tép—l) ép*l) ﬂ,gp—l) éép—ll if i = p. (11)

égﬂj {IEP}
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In accordance with the notation used in {2)-(4), we may now define

D{l—l 1) 6{1—1} A{:—l 1] {1—1] A.(;gl ;.] _ (t] D;;llﬂ 5(1)

&(1-1) 5““”

M(i—l:i} _ 2 2
(i) (1) ’
01 X
(i—1) (i—1)
(i—1:1) Ys (i—1:4) 5 (i—1:4)7T ( (4) {i})
5 = y S — y B = ;
1) O 1 O 2 72 ﬁZ
@, &,
(i-1:8)7 ( (i—1) [1—1}) (i=1:%) (i-1:4) _
r — ﬁ 1 r - 1 : r o }
0 1 Y1 1 ’35 ) 2 ’Tl ()

where the superindex (¢ — 1 : i) means that the elements are stored in
processors © — 1 and 1. Then each processor @ applies factorization (5) to
its corresponding block (with one obvious difference for the factorization
applied by processors 1, 2, p — 1 and p).

Similarly to Section 2.1 where the corner blocks in factorization (5)
constituted the reduced system (8), the corner blocks of factorizations of
the matrices (9)--(11) create a new reduced system with p/2 — 2 blocks.

In the second step, each processor t exchanges its corner blocks with
processor ¢ — 2, for i = 3,4,7,8 11, 12,...,p — 1, p. Then each processor ¢
decomposes a 4 X 6 block matrix of the form (9) if 1 > 5 and 1 < p — 3,
and a 3 x 4 block matrix of the form {10} or (11) otherwise. After r — 1
steps of this process each processor decomnposes a 3 x 4 block matrix of
the form (10} or {11}, and finally, after r steps, each processor contains
the same 2 x 2 block matrix M) that gives the first block components
of the solution. Overall, in the proposed factorization algorithm for the
reduced system after j steps of reduction, processors from 7 + 1 to ¢ + 27,
for i = 0,27, 27% | contain the same components of the reduced systern
and perform the same operations. This choice reduces the total amount of
data communications.

The solution of the reduced system needs the same transmissions as
the factorization of the reduced system (where appropriate parts of the
right-t and side are updated). Each processor communicates with all its
neighbors in the hypercube structure. After r steps, when the 2 x 2 linear
system with the coefficient matrix M{'™) is solved, the first two components
of the reduced system (corresponding to the central rows of R in (8)) are
obtained. From this point on, each processor may calculate its components
of the reduced systemn and its blocks of the solution without any other
communication (see Scction 3 for further details).
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3. THE PARALLEL ALGORITHM FOR A HYPERCUBE

The following presents the algorithms for all steps of solving the linear
system Mx = b, where M is the ABD matrix in (1) with m = kp — 2 inter-
nal blocks on a hypercube with p = 2" processors. It is also assumed that

T

b4 (Xg![} xl,l J{Q‘l xljm XQ,m X1,m+1)

=(b2o b1y bzi ... bim bem bims1)

Algorithms are presented in a pscudo-programming language, where all
the block operations should be substituted by calls to BLAS subroutines.
We distinguish the parallel factorization phase from the linear system so-
lution phase. We also present separately akgorithms for matrix M and for
the reduced system.

1

3.1 Algorithms for Matriz M

In the parallel factorization phase the coefficient matrix is partitioned
as suggested in {2). For simplicity, the superindex (7) is neglected for all
elernents (obviously for ¢ = 1 and i = p certain operations are not per-
formed}. The instructions inside the “forall” cycle are executed in parallel
on different processors.

forall : =1:p
for g =1: %k — 2 {suppose Ay 9 = Agp and Do g = Dsg)

!

Lo i1 (As; 1 D2y
f-"lj fz[lj (UZ,JI ng-l) Q;=| D, A

, + ,J 3
Czjj Bz,j \ Cﬂ.j BZJ

p [ L1 Uy By G
J BEJ ! ‘;flj 523

Vikcili g1 = Vi

(V. V. P “Lk-2
1 k-2 Vorp_2)1Pr_2 sz » Lok

= (O VEA-: 2~ V1 k- 1le 1)
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for ) =k—-3:-1:1

(Vi Vi, )P, [ 2
1,3 2,7 /4 3 §2,j LE,j

={(0 ~Vi;+1D1 41— Vo ,;41Ca,41)

end

Vaoloo = -Vi1Dh 1 — V5,09,

~ ~ U D
(Wi Wi1) ( 24 Uf’lﬂ) Q1 ={(Bio Cip)
for 3 =2:2:k—1 |

- - o i v Do - - "
(WE,J'-I Wl,j) ( o o I)Qj - _Wl'j_l(Ble"—l ClJ“l)
end

Wik-1Lig-1 =Wi s
for j =k —2:-1:1 (suppose Wy, = O)

Ly
Wi ; Wa )P, J )
( 1,7 2.}‘) (sz L'Z,j

= (0 Wy — Wiy 1Dy 4 - Woit1Coiit)
end

Waalao —WEU - W, IDl ] — WJIC.ZI

(61 ﬂf1) (Dio Aro)—Wao(Cao Bap)

(v d2) =(A2k-1 Dox—y) = Vi 1(Brx-1 Crr_1)
(v2 B2)= —Vo0(Cz0 Byg)

(Bhm)= Wik 1(Big-1 Crir_1)

end
< factorization of the reduced system——see Section 3.2 >

The following is the algorithm for the solution Df the previously fac-

torized ABD linear system. Again we have posed b - = by (i-nk4; and

x}j = X{(i~1)k+;, and neglected the superindex (7). Flrht, appropriate parts

of b are updated, then the reduced system is solved, and finally the solution
to the original problem is calculated.

forallt =1:p

for g =1: k-1
D10 = bi,[} — WZ,J—lb’E,j—l = Wl,jbld
02, k-1 = bok-1 = Vyj_1by ;-1 — V| ;b

€271¢]
end
< solution of the reduced system-—see Section 3.2 >
= X2, -1+ X1,00X2,k-1y X1k
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foralli1=1:p
Lygxag = by — CroXa, 1 — DBaoxio
for 3 =1:k -2

LE : X1 - b . 5 |
P' - 2 11} — - l,j _ .--"--.11"? o
2 (BE,_]' L'Z,j ) (KZJ ) (bEJ) (C‘EJ ) X2 .5-1

o1l
LikarXik-1=byi1 - Biyo1Xok-1 — Cppa1X1 &

Us ko Do Qs Xo k-2 ) _ [ X2.k-2
Ui,k—] X1,k-1 X1 k-1

for g =k —-2:-1:1

(U‘z,j—l Uﬂ,j—l)Qj (X:a,;‘—l) _ ( _ X2,7-1 N )
UIJ' X]J ij — Bi.sz,j — Cl,jx;{,ﬁl

cnd
end

7.2, Algorithms for the Reduced Systern

As we already observed in Section 2.2, in the factorization phase, and
in the solution of the reduced system phase, all processors always have the
same workload and, for j = 1,... log, p, at the jth step processors from
i-2+1tot, fori=27,27%1 2742 perform the same operations. In the
following algorithm we assume that r =7 -27, s ={-27"! and t = 5. Each
processor { performs an operation if and only if the index [ is contained in
the range r + 1 : ¢. If r = 0 and/or t = p, then appropriate operations are
not performed.

The following is the algorithm for the factorization of the reduced system:

tor 3 = 1:logy,p
forall i = 27 : 27 : p
forall { =7 ~27"1 4+ 1.,
send/receive operations between processors { and [ — 27! in
order to obtain the same matrix on both processors

/6ir+1:3) EEET+1:5) {r-{-l:.ﬂ} ,-},“1:"*{”1:3}

{r+1:s) ﬁ£r+1:3) &{;-{-1:3} é(r+1:s}

Y2 5
553+1:t) I':.5{1.5+1:t} ﬁiS-H:t»} T£3+1:t}
k ,résﬂl—l:ﬂ és-}-l:t) a£3+l:t) éés-{-l:t}

end
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(r+1:t) (r4+1:8)  (r+1:t
{r+1:¢) 1,1 '”*17,11 ’“*1?2 }
P | (r41:t) (r+1:1) {r+1:t)
{21 (2.2 Ug 9
_ ag-&-l:s} 63%—1:3)
653+1:t] Elf£3+1:t}

(r+1:5) 5{?‘-!—1:3}

( (ri1:t) (r+1:£}) . 2 _( (r+1:3) {r-’f-l:s))

Wi W2 sttty (srra) | A7 b
i 0y

(r+1:s) §(T+1:S]
(U{r-l—l:t) ﬂ{r—!—l:t]) y 2 :( (s+1:1} ﬁ(S-i-l:t})
1 2 slaH1) (s+1:t) Y2 2
1 Xy

(6£r+l:t] &5r+1:£})

_ (6?—}—1:3} {IET+1:S} ) B ‘LUET+1:” (’}’ér+l:3) ér-i-l:s})

(ﬁ{;ﬂ;t} éér+l:t}

o +1:¢ s41:2 (r+1:1) s+ 1:t +1:¢
= (gt g0 ) — oY (gt et )

( (r+1:1) ﬁér+1:1)) _hU[T‘-’rl:t}('_F{r-{-l:s} {r—}-l‘.s})

2 1 2 2
1:¢ r+1:t _ [r+1:t) + 1:i s+1:¢
(rohe i) = a0 (g0 )
end
end

At the beginning of the reduced system solution phase, each processor
i contains two blocks of the right-hand side b(i% = by (;-1)k and b;i_l =
b, ix—1. At the end the same processor obtains the following blocks of the

solution:

—

(1) (2

£3 (i) _ d o
10~ X1,(-Dkr Xppo1 T X2ak-1, Xy

_ )
Xg,-1 = X, (i-Dk—-1t, X e = X1,k

Again it is supposed that x2 _1, X100, X2.m+1, and x; 42 are null vectors
and that operations involving these blocks are not performed. The solution
of the reduced system is obtained as follows:

for j=1:log,p—1
foralli=27:27:p
forall { =4 - 27"t 419
send /receive operations between processors [ and { — 277! to
obtain the same blocks on both processors
b1 rks b2 sk—1, Brak, b2 tk-1
end
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. (r+1:t) r+1:1
bl,rk = bl.rk = uh bz,sk—l - wé }bl.sk
- {(r+1:t) (r41:¢)
bo k-1 = byk-1 —v; b2 sk—1 ~ Ug by sk
end

end
(1:p/2)

(1:p/2)
¥y 653 (KZ,(p,’E}ﬁ:—-l) _ (bE,{p,’E}kul)
s{p/2+ 1) o (p/2+1:p) X1,(p/2)k b1 (p/2)k
for j =logap—1:—1:1
forall t =27 : 27 . p

(r+1:3) (r+1:8)
(Y 0, (Xz,sk—1 )
6{5+1:t} ﬂiiaﬂ:r.] X1, gk
r+1: T+ 1:
_ (bz,sk_l — 9 gk - By ”xm)

o (s+1:t) (s+1:t)
bl,s.‘«: — ﬁ; X2thk-1""T1 X1tk
endd
endd

4. ARITHMETIC COMPLEXITY

In this section we analyze the arithmetic complexity functions associ-
ated with the ABD algorithm of the previous section and compare the
obtained results with those reported in [13]|. For simplicity, we assume that
we want to solve a system of n first-order BVPs with ¢ initial and n — ¢ fi-
nal conditions on a parallel computer with p processors. The discretization
leads to the ABD system with m internal blocks (an interval is divided into

m + 1 subintervals). The computational cost thus depends on the following
parameters:

e n, number of first-order ODEs:
e ¢, number of initial conditions;
¢« m, number of internal blocks;

e p, number of processors.

Finally, assume that m = kp—2; that is, in each processor k = (m+2)/p
blocks are stored.

4.1. Arithmetic Operation Count

The factorization M = LOH (Section 2.1) requires (§n3 + gn? —
¢*n — 3n* + qn — gn)(m + 2)/p - §n® - 2¢n? + 2¢°n + 3n° — 2qn + gn
arithmetical operations, the construction of the fill-in vectors v{¥) and w'*
in (6) requires (4n® — 3gn® + 2¢°n — 2n2)(m + 2)/p — 6n° + 6gn® — dg°n +
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TABLE 1
SIZE OF THE REDUCED SYSTEM ON 16 PROCESSORS AFTER j STEPS
OF REDUCTIONS, FOR 1 =1,...,4
Block torm Slze 3=1 31=2 3=3 =4
3 x 4 (see (10)) (n +q) x 2n 1:2 1:4 1:8
4 x 6 (see (9)) 2n x In 3:14 5:12
3x4(see(ll)) (2n-g)x2n 1516 13:16 9:16
2 x 2 nxn 1:16
TABLE 2
ARITHMET!ICAL COMPLEXITY OF THE ABD PARALLEL ALGORITHM
[ |
Factorization (%n:} - 2qn? + g4n — %ﬂz + gn — Elirn)(m + 2)/p
14 5 2 1
Fact. red. system (—j-n - Fne -~ E”) log, p
Solution (612 — n){m + 2)/p
Sol. red. system (6n° — n)log, p

3n? arithmetical operations, and the calculation of the elements that will
constitute the reduced system requires 2n3 — n* arithmetical operations.
The number of operations of one generic step of the factorization of
the reduced matrix is easily obtained by setting (m + 2)/p = 2. The last
two steps of factorization requiire a smnaller number of operations since the
matrices involved are smaller (sce Table 1). The (log, p — 1)th step requires

8.3 3.2 1 ot - f . 2,,3 _ 1.2 1
5n° — yn — en operations, while the final step requires §n° — 3n° — en
operatlions.

The solution step of the algorithin requtires the solution of the linear sys-
tem with coefficient matrices L and U™ ({(4n? —n)(m + 2)/p —6n° + n
operations) and the updating of the right-hand side (2n%{(m + 2)/p oper-
ations). For 7 = 1,... log,p — 2, a generic step 7 of the solution of the
reduced system requires 6n° —n operations, the (log, p — 1}th step requires
4n? — n operations, and the final step 2n? — n operations. Table 2 summa-
rizes the computational cost of the four phases of the algorithm. The total
computational cost is

17 5

, , . 7
(-3—11 — 2(;1’12 + f?‘lﬁ + §ﬂz +qn - Eﬂ) (m +2)/p

14 7 7 38 : . 9 . 7
+( 3 ﬂ3 _ 5”2 —_ Eﬂ) ](}gzp — -33—113 -+ 4{;“2 — 2:’;2?1 — 5?12 — 2:}'?’1 + Eﬂ.
(12)

Observe that the two extreme cases of the arithmetical complexity occur
forg =n—1and g = n/2 (if ¢ < n/2 the ABD system can be reversed,
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observe also that the arithmetical complexity function (12) is asymmetric
with respect to ¢). Assuming now that n is large enough that n® term
dominates the remaining terms, the arithmetical complexity functions for
the two extreme cascs are

14 14 . 32 .
(E—n:}) (m+2}/p+ (—g—n‘j) logy p — '3—’”31 for g =n -1 (13)

and

' 14 67 .
(%”d) (m+2)/p+ (—{;Tlg) log, p - _G_ﬂ’d for ¢ = n/2. (14)

As already mentioned, data transmissions are required only in the phases
involving the reduced system. In the factorization step a n x 2n block is
transmitted in all but the last step, when a block of size ¢ x n is transmitted
by half of the processors and a block of size (n — q) x n by the others. In
the solution step a vector of size n is transmitted at each step, except for
the last where a block of size ¢ or n — ¢ is transmitted.

Hence the total cost of transmission is (assuming that ¢t{m) is the time
needed tor one transmission of m elements):

(log, p — 1}(t{2n%) + t(n)) + max{t{nq) + t{q), at('n,:3 -ng) + H{n — q)).

4.2.  Comparisons with Other Algorithms

We compare the arithmetical complexity of the algorithm presented
above with the original algorithm by Paprzycki and Gladwell [13] and the
best existing sequential algorithm by Varah {16]). The notation remains the
same as above and only the highest order terms are included. The arithmeti-
cal complexity functions for the two extreme cases of the parallel algorithm
proposed in {13| are respectively:

29 . 17 D2 .
(;nj)(m-l-?}/er <?n3)p—u ; n tor g =n — 1

and

119 71 38
(~1—2~n3) (m +2)/p + (i—jng)p — %ng for ¢ = n/2.

Assuming {as is most often the case in the computational practice) that
m 1s large, p is fixed, and m >> p, the first term in the above functions
dominates the remaining two terms. In this case the advantage of the new
algorithm is 5n3(m + 2}/p arithmetical operations.
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Ficg. 4. 'Theoretical speed-up of the proposed algorithm (solid lines) and of the algo-
rithm in [13] {dotted lines) for p = 8 and p = 32 and for increasing number of internal
blocks m.

Moreover, the algorithm in [13]| requires the transmission to a single
processor of approximately 2pn? elements in order to set up the reduced

system.
The arithmetical complexity of the two extreme cases of the sequential

solver are:

5 2
(Ena)m*l—EHS forqg =n — 1

and
23 2 .
(Ena)m + gﬂd for g =n/2.
Using these functions a theoretical speed-up of the proposed algorithm

for ¢ = n - 1 has the following form (for the other extreme case only the
appropriate constants change):

om + 2
14(m + 2)/p+ 14log,p — 32

Figure 4 shows the theoretical speed-up of the proposed algorithm and of
the algorithm in [13] for ¢ = n — 1, for p = 8 and p = 32 processors for
increasing number of internal blocks stored per processor. A number of
observations can be made:
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* speed-up does not depend on n {at least when the communication costs
are negligible),

e the optimal number of processors (the number of processors for which
the maximum speed-up is achieved) is O(m),

e if the optimal number of processors is used the proposed algorithm has
a theoretical speed-up O(m/log(m)),

e the increase in m leads to speed-up increase,

e for a fixed p and large m the maximal speed-up is slightly higher than
p/3, whercas for the original algorithm the maximal theoretical speed-
up was approximately p/6.

4.9. Memory Requirement

Let us suppose that the factorization step and the linear system so-
lution are performed separately (in this case the memory requirement is
larger). Each processor requires to store its portion of the ABD matrix
(2(m+2)n?/p elements) and the fill-in vectors (({m+2)/p—1)n? elements).
Moreover, at each step, each processor must store matrices obtained from
the reduction (each matrix has 3n? elements). Hence the per-processor
Inemory requirement is

(3(m +2)/p+ 3log,p — 1)n°
and the total memory requirement is
(3m + 3plog, p - pin’.

In comparison the per-processor memory requirement of the original
algorithm is

(4(m + 2)/p + 2)n°

and its total memory requirement {including the memory for the reduced
system which is treated separately) is

(4m + 4p + 5)n?,
whereas the total memory requirement of the sequential algorithm is
(2m + 1)n?.

Assuming again that p is fixed, m is large, and m > p the per-processor
gain from using the new algorithm is approximately (m + 2)n2/p elements.
At the same time the total memory requirements of the three algorithms
are approximately 2mn? for the sequential algorithm, 3mn? for the new
algorithm, and 4mn?® for the original parallel algorithm.
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o. CONCLUSIONS

A new algorithm for the solution of almost block diagonal systems has
been introduced, jvs implementation on a hypercube has been proposed,
and its arithmetical complexity has been presented and compared with that
of other algorithms. It was shown that the new algorithm is well suited
for distributed memory parallel computers and should outperform other
algorithms proposed for the solution of the ABD system. In the near future
we plan to implement the proposed algorithm to confirm the theoretical
results presented here.
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