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ABSTRACT

The results of various implementations of Gaussian elimination on full matrices on a
single processor Cray Y-MP are presented and discussed. It is shown that when the
manufacturer supplied BLAS kernels are used, the difference hetween the best versions
of level 2 BLas and level 3 BLas (blocked) implementations is almost negligible. It is
suggested that to improve the performance of blocked Gaussian elimination it
is possible to utilize Strassen’s matrix multiplication algorithm.

INTRODUCTION

We shall consider the solution of a system of linear equations
Ax = b,

where A is an N X N real dense matrix, using Gaussian elimination with
partial pivoting. A number of recent publications studied the use of BLAs |8, 9,
15] primitives and blocked algorithms [2, 3, 11) on a variety of single processor
(6, 7, 14] and parallel [12, 14] computer architectures to solve this problem. In
most cases, however, the discussion has been related to FORTRAN BLAS. Since
manufacturer provided BrLas kernels can be much more efficient [5, 17], the
aim of this paper is to compare the performance of different versions of
Gaussian elimination on a one-processor Cray Y-MP using these kernels.

The BLAs {Basic Linear Algebra Subprograms) standard was designed with
two goals in mind: first, to allow portability of codes between different
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machines, and second, to assure the best available quality of performance on a
given system. BLAS routines were designed as standard rFo®TRAN subroutines
with a specified order of parameters and a precise description of the opera-
tions performed. Recently, computer manufacturers have come to provide
BLAS kernels tuned up specifically for their machines. They can be optimized
on many levels—from loop unrolling and/or employment of blocked algo-
rithms (both implemented in FORTRAN) to exclusive coding in assembly lan-
guage. In each case, the calling sequence and the operation performed remain
unchanged, assuring full portability. The optimized versions of BLAS routines
are much more eflicient than therr rFORTRAN counterparts, as indicated by
recent research (e.g. [5, 16, 17]). For example, using FORTRAN BLAS and
optimizing features of the *ORTRAN compiler yields up to 66% of the theoreti-
cal peak performance on a single processor Cray Y-MP, sLas kernels coded in
Cray Assembly Language, on the other hand, can allow one to obtain up to
93% of the theoretical peak performance [16].

We compared the performance of different versions of Gaussian elimina-
tion on a single processor Cray Y-MP using manufacturer provided sLas
kernels. Since we used rorTraN as the programming language, we considered
only three (column oriented) implementations out of the six possible versions
of Gaussian elimination [10]. We investigated the performance of poT, Gaxey,
and saxpy versions of Gaussian elimination as described in [2, 5, 17]. We
compared the performance of unblocked (level 2 Bras based) and blocked
(level 3 Bi.as based) versions of these algorithms. Our aim was to find out
which of the versions is most efficient for the computer architecture in
question.

2. COLUMN ORIENTED VARIANTS OF BLOCK LU
DECOMPOSITION

Our discussion of the three possible column oriented variants of Gaussian
elimination is based on [5]. We also follow the authors in the use of notation
and figures. We omit pivoting and ebvious considerations related to it.

Since the considered variants of Gaussian elimination are column oriented,
in each step of the process a block of columns will be decomposed, resulting in
the calculation of factors L}, L%, and U! are presented in Figure 1.

We will start the presentation with the pDoT version, which is a variant of
Crout’s decomposition. In the ith step, a block of columns of L and a block
of rows of U is computed. Considering the partition presented in Figure 2,
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Fii;. 1. Decomposition of the block of columns.

one step of the pot method consists of:

(1) Update of the diagonal and subdiagonal blocks:
(:i - Ci - AiBi'

(2) Factorization of a block of columns C; to obtain factors L!, 2, and U/
(see Figure 1).

(3) Update of a block of rows of U:
U« U? ~ ALE,.

(4) Computation of a block of rows of U:

U2~ (L) U2,

In each step of the caxpy version, a block of columns of matrices I and U
is calculated. The ith step consists of the following operations (see Figure 3):

(1) Computation of a superdiagonal block of U:

U? « (L) " 'U3.
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Fi;. 2. Partitioning for the poTt variant of Gaussian elimination.

(2) Update of a block to be decomposed:
C.—C - AU
(3) Factorization of a block of columns C, to obtain factors L, L%, and U}
(see Figure 1).

Finally, in the saxpy variant of the Gaussian elimination, a block of columns
of L and a block of rows of U are calculated, and the update is performed on
the remaining reduced matrix. In the ith step the following operations are
performed (see Figure 4):

(1) Factorization of a block of columns C, to obtain factors L}, L%, and U/
(see Figure 1).

(2) Computation of a block of rows of U:

U2~ (L) U2,
(3) Update of the reduced matrix:
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Fii;. 3. Partitioning for the Gaxpy variant of Gaussian elimination.

F1G. 4. Partitioning for the saxpy variant of Gaussian elimination.

6]
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3. STRASSEN’'S ALGORITHM

In 1969 Strassen [18] showed that it is possible to multiply two matrices of
size¢ N X N with less than 4.7N'%:7 arithmetic operations. Since log, 7 =
2.807 < 3, this method improves asymptotically over the standard matrix
multiplication algerithm, which requires O(N”) operations. Strassen’s algo-
rithm is based on the recursive division of matrices into blocks and subsequent
performance of block additions, subtractions, and multiplications.

When implemented, Strassen’s algorithm involves a tradeoff between a
gain in speed and an increase in required storage. In the Cray implementation,
the additional work array required by the program was of size 2.34N 2.

There is one more important consideration, concerning the stability prop-
erties of Strassen’s algorithm: they are less favorable than those of the
conventional matrix multiplication algorithm [13]. The error bounds presented
by the author suggest, however, that the expected error growth should not be
too serious in computational practice. This conclusion is also backed up by the
results of our experiments.

4. LEVEL 3 BLAS BASED ALGORITHMS; IMPLEMENTATION
DETAILS

Each of the blocked versions of the Gaussian elimination utilizes three
basic block matrix operations: block triangular solve, matrix-matrix product,
and reduction of a block of columns. In order to achieve the most effective
performance of the blocked code, the most efficient version of each of the
three block matrix operations must be used.

For a triangular solve, the existing level 3 BLAS routine STRsM was used.
There are, however, three different matrix update routines available on the
Cray [4]): the standard, level 3 BLAs sGEMM, the Strassen algorithm based
sGEMMS, and the “early Cray” routine mxm. It was shown in [16] that MxM is
inferior to both scemM and sceEMMS routines for all matrix sizes. SCEMM
outperforms sGeEmms for small matrices, but scemms is faster for matrix size
larger than 200. We will utilize both routines in the update step of blocked
Gaussian elimination and compare their performance.

To reduce a block of columns each of the three unblocked versions of the
column oriented elimination can be used. The choice of the most eflicient one
for a Cray Y-MP was made on experimental basis. All three unblocked versions
of Gaussian elimination were coded using calls to appropriate level 1 and level
2 BLAS routines. Since blocks of columns to be reduced in each step of blocked
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Gaussian elimination resemble a long strip, we performed our experiments on
such long and narrow matrices. Table 1 summarizes the results for matrices
with 1024 and 1025 rows when the number of columns (M) varies from 32 to
320. Since memory bank conflicts can cause severe performance deficiencies
[16], we have chosen our matrix sizes appropriately. On a Cray Y-MP there are
256 memory banks grouped into 32 memory sections. The matrix size 1024
represents the worst case scenario.

Table 1 shows clearly that there are two versions of unblocked code worth
considering. The caxpy version is most efficient when severe memory section
conflicts occur. As Table 1 and other experiments unreported here suggest,
the Dot version outperforms the others in the remaining cases.

The poT version of the unblocked Gaussian elimination was chosen to
decompose blocks of columns inside level 3 Bras implementations. We also
performed some experiments with the unblocked Gaxpy version, especially for
the matrix sizes that caused memory related conflicts (see Section 5 below).

3. NUMERICAL RESULTS

The first series of experiments was designed to compare the performance
of the level 2 BLas and level 3 B1.as based implementations. We ran all three
blocked and unblocked versions of Gaussian elimination for N = 300,
400, . .., 1900. For all experiments the coefficient matrix was generated using
the Cray random number generator. To assure accuracy of the presented
results each experiment was repeated 50 times: the performance was moni-
tored and averaged by the perftrace utility. The blocked codes used SGEMM

TABLE 1
LEVEL 2 BLaS version of Gaussian elimination on matrices of size
1024 x M and 1025 x M

Performance (Mflops)

N =1024 N = 1025
M DOT GAXPY SAXPY NOT GAXPY SAXPY
32 225,25 226.86 227.15 231.58 231.58 238.52
64 249.07 253.94 247 .42 261.91 258.80 264.18
128 256.01 272.26 259.09 282 .87 278.05 278.36
192 253.92 274.77 258.65 290.65 285.10 283.27
256 250.92 280.85 264.02 294.86 288.88 286.05
320 247.07 286.25 268.15 29750 291.20 287.88
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in block updates and unblocked pot for the decomposition of the block of
columns. For blocked codes, a varicty of blocksizes was tried, and the best
results are presented. The Euclidean norm of error varied from 107 for
small systems to about 107% for large matrices, which is what one would
expect for the Cray single precision arithmetics (the estimated unit roundoff
for a Cray Y-MP, established using Moler's algorithm [I; p. 26], is 1.421 x
107 '), Figure 5 summarizes the results.

It is clear from the results (Figure 5 and Table 1) that the unblocked por
code is highly sensitive to the memory section conflicts, whereas the perfor-
mance of the caxpy version, while not as efficient, is almost unaffected in such
situations,

In order to determine precisely the dependency between matrix size and
the performance of the unblocked versions of Gaussian elimination, we ran all
three unblocked codes for matrix sizes 1025, 1024, . ..,991. A significant
reduction in performance of the unblocked por code was observed for
matrices of sizes 1024 and 992 when the megaflop rate dropped by approx-
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imately 50%. Much smaller performance reduction was observed for N =
1008 — the: rate fell approximately 35%. It should be also mentioned that in all
cases the Gaxey version outperforined saxrey. These results mateh the results
from Figure 5. The big dips in performance of the boT version were observed
for N =800 and N = 1600; much smaller drops occurred for N = 400
- and N = 1200. In general, due to the memory section conflicts, the unblocked
boT version of Gaussian elimination should be avoided for matrices of sizes
divisible by 16. For all remaining cases, the level 2 sras based pot algorithm
is superior to the others.

It can also be noticed that the memory related deficiency of pot affects the
performance of the level 3 pias codes. Our experiments with the unblocked
Gaxry version of block decomposition inside the level 3 Br.as codes show that
the best performance rises to about 274 Mflops for N = 800 and to about 292
Mtlops for N = 1600,

The performance of the level 3 sras codes is omly marginally better than
the performance of level 2 sras. The overall performance for matrices of sizes
bigger than 500 reaches 87-92% of the theoretical prak pertormance (equal to
333 Milops). If we assume that the assembly language coded matrix multipli-
cation (level 3 BLAS routine scrmm) establishes the practical peak performance
(approximately 312 Mflops [16]), the Gaussian elimination reaches 81-99% of
this realistic peak.

In addition, the performance of all three versions of the level 3 Bras codes
is almost identical (the differcnce is not bigger than 1 Mflop) for the best
blocksizes. Such blocksizes varied for different versions of the level 3 BLas
based codes and for different matrix sizes.

This leads us to the question what the optimal blocksize is. There have
been some attempts by researchers from the Larack project [3, 14] to provide
a theoretical basis for an automatic blocksize selection. For the time being,
however, only the mcthod of trial and error is available. Figure 6 presents the
effect of the change in blocksize on the performance of the blocked algorithm
for the matrix of size 1951. We obtained similar results for a variety of matrix
sizes. Figure 6 also compares the performance of the level 3 B1.as codes with
SGEMM and sGkMMs (Strassen’s algorithm) in the update step. In order to
compare the performance of codes using scemm and scemms properly, the
time (not the megaflop rate) was measured. For the matrix size N = 1951
the best result obtained using level 2 p1.As (DOT version) is 16.1 seconds.

Our results confirm the well known fact that once the blocksize is large
enough, a change in the blocksize does not generate substantial changes in the
effectiveness of the code. It is easy to see that when the blocksize is
sufficiently large, the codes using scEmMs become much more efficient than
those using sGEMM. For an appropriately large blocksize, all three versions
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using sGEMM behave in a similar way. (The performance of poT and GaxPpy is
very close, and both slightly outperform the saxpy version.) In the case of
codes using Strassen’s algorithm, poT(S) and saxry(S) outperform caxpy(S) in a
whole range of large blocksizes.

One more point is worth mentioning. The best overall performance was
achieved for blocksize 320. This situation was also observed tor other large
matrices. It can be explained by the fact that when the matrix size increases
the amount of time spent in matrix updates increases in comparison with other
operations [19]. Since the effects of Strassen’s algorithm become more and
more visible when the matrix size increases, we observe a tradeoff. Slight
deficiencies in the decomposition step caused by the somewhat too large
blocksize are overcome by the speed of Strassen’s update. It can be predicted
(see Table 2) that as the matrix size increases the optimal blocksize for the
codes using Strassen’s update will slowly increase. (For matrices of sizes 1950,
1951, and 1952 —~the largest matrices we experimented with—the optimal
blocksize was 320.)
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In Table 2 we compare the performance of the best versions of Gaussian
elimination that do not use Strassen’s algorithm (poT or caxry inside the level
3 BLAS) with the blocked algorithm that does. For each matrix size, the version
with the best performance is specified together with its blocksize. When the
same result was obtained for different blocksizes, the smallest one is specified.

The resalts in Table 2 are in agreement with those presented in Figure 6
for large matrices. The port version is the best among the codes using
Strassen’s update, whereas the poT and the caxpy versions are clear winners
for codes not using it. The optimal blocksize for codes using the scEmm update
is equal to 128, As predicted above, a slow increase in the optimal blocksize
for codes using the scemms update is observed.

The crossover point when using scemMs becomes significant is somewhere
around N = 300. For practical purposes, however, it should be assumed that
the effect of using scemms in Gaussian elimination will become apparent for
systems larger than N = 400.

TABLE 2
COMPARISON BETWEEN CODES USING 5GEMMS and those not using it
No Strassen Strassen
Time Time
N (sec) Version® Blocksize (se¢) Version® Blocksize
300 ).0681 1>/G/S 124 0.0673 5 128
4030 0.168 D/G/S 128 (0.166 5 192
500 (0.289 G 128 0.277 . 256
600 0(0.497 D/G 128 0.465 S 192
700 0.771 G 128 0.716 S 192
800 1.22 BI.2 1.17 SG 320
300 1.63 G 192 1.47 5 206
1600 2.21 /G 128 1.98 D 256
1100 2.94 D/ 128 2.63 D 192
1200 3.88 D 64 3.46 D 192
1300 4.80 G 128 4.24 D 192
1400 5.98 G 128 5.23 D 192
1500 7.34 G 128 6.33 D 256
1600 9.21 BL.2 8.08 5G 320
1700 10.6 G 128 9.12 D 256
1800 12.7 D/G 128 16.7 5 320
1900 14.8 bB/G 64 12.5 D 320

"BL2: level 2 BLAS code (Gaxpy), D: poT G: GAXPY; S: saxpy; SG: level 3 BLAS SAXPY
with level 2 BLAS cAXPY.
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CONCLUSIONS

We have shown that for the assembly coded versions of level 1, 2, and 3

BlLAas routines provided by the Cray Research, Inc., it makes very little
difference if the blocked or unblocked versions of the Gaussian elimination
are used. It was also suggested that the Strassen’s algorithm can be success-
fully used in the update step to increase the overall performance of the code.
For large matrices, the gain in speed caused by scEmms is about 15%. As the
matrix size becomes larger the impact of scEmms is expected to increase.,

The author wishes to cxpress his gratitude to Cliff Cyphers, who imple-

mented a large part of the experiments on the Cray.
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