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Abstract

When a Chebyshev spectral collocation method is applied to a flow problem in a rectangularly decomposable domain
it leads to the solution of a structured linear system. Since the linear system 1s solved at each step of a Newton-type
iterative process an efficient method to solve it needs to be provided. A level 3 BLAS-based algorithm is presented and its
efficiency is studied.
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1. Introduction

Chebyshev spectral collocation methods are often applied to the solution of partial differential
equations (PDE) on rectangular domains [9—11]. These methods require the repeated solution of
a structured linear system, which becomes the most costly part of the solution process. This system
has a generalized almost block diagonal (ABD) form (for a precise description of such a system, see
e.g. [3,20]). There exists a variety of approaches to the solution of ABD systems. The parallel
solution was studied by Wright [21,22], Paprzycki and Gladwell [18], Ascher and Chan [2]. All
these authors assume that an ABD system is characterized by a large number of relatively small
blocks. In [8,19] a different algorithm was proposed, which achieved relatively good performance
for a small number of large blocks. This algorithm was a level 3 BLAS [5]-based extension of the
alternate row and column elimination algorithm proposed by Varah [20] and later modified by
Diaz et al. [4]. Recently, a generalized version of this algorithm was implemented by Cyphers et al.
[3]. The aim of this paper is to study the performance characteristics of the newly developed code
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when applied to a laminar flow problem in a re-entrant tube geometry. Section 2 describes the
mathematical problem. Section 3 outlines the proposed algorithm. Section 4 contains the results of
experiments performed on an IBM 6000 workstation and on an 8-processor Cray Y-MP.

2. The problem and the numerical method

We consider the flow of an incompressible fluid through a re-entrant tube. Only a short
description of the problem and the method is presented here (for more details, see [9]). Because the
problem is symmetrical we only consider the upper half of the flow region. The flow is assumed to
be steady and laminar and is governed by the Navier—Stokes equations which in the stream
function formulation become
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dy dx
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where Re is the Reynolds number. The flow region and the boundary conditions are depicted in
Fig. 1.

Eq. (2.1) is linearized using a Newton-type method [9]. If /* is the solution at the kth iterative step,
the solution at step k + 1 18 given by s, where
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As in [9] the flow region is divided into four elements (see Fig. 1) and in region i, i = I, I1, Il or
IV, the solution is approximated by
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Fig. 1. The flow region and the boundary conditions.



C. Cyphers et al. [Journal of Computational and Applied Mathematics 69 (1996) 7180 3

where T, and T, are linear combinations of Chebyshev polynomials chosen so that some of the
boundary conditions are satisfied identically on the boundary. The functions g'(y) are Poiseuille
stream functions corresponding to each element. Interelement continuity is achieved by matching
the approximation to v and its normal derivatives at a finite number of collocation points on the
element interfaces. Careful selection of the number of collocation points ensures that the approxi-
mation is C' continuous everywhere on these interfaces [9]. The unknown coefficients a',, in (2.3)
may be found at each iteration by solving the linear system resulting from the satisfaction of (2.2)
and the boundary and interface conditions, which is of the form shown in Fig. 2. In general, not all
domain decompositions lead to ABD systems. For a decomposition to lead to such a system it
must have the following properties: (a) Exactly two elements must have only one common
interface with another element and (b) All other elements must have two common interfaces with
other elements. If these criteria are not met the global matrix does not possess an ABD structure
and the algorithm is not applicable (see also [11]).

Matrices P, R, T and V result from the collocation of the governing equation and boundary
conditions whereas Q, S and U result from the imposition of the interelement continuity conditions.
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1g. 2. The linear system resulting from the discretization.
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Fig. 3. Example of an almost block diagonal system to be solved in each step of the algorithm.
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Clearly, the structure of the system is independent of the type of boundary conditions of the
problem. It should be observed that the transpose of this system has a generalized ABD form
(Fig. 3) and can solved using standard ABD solvers (the original matrix is characterized by too
much overlap between the nonadjacent blocks).

3. Algorithm description

The proposed algorithm is a level 3 BLAS-based extension of the work of Diaz et al. [4]. We will
describe it only briefly as a more detailed description can be found in [3,8,19]. For our purposes
we will rewrite the ABD system as

Ay A 4y \
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where A4, ; are square and A; ; are rectangular blocks of varying sizes.
The ith step of the algorithm consists of two phases. In phase I the rectangular block
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is decomposed using Gaussian elimination with partial pivoting and row interchanges into
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where P is the permutation matrix. After this factorization, block
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In phase II, the block
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will be decomposed using Gaussian elimination with partial pivoting and column interchanges into

LEI, EE(UEE.EE Uli. 2i+ 1 }Qr

where Q 1s the permutation matrix. After this factorization, block
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The decomposition will be performed in a block fashion using the LAPACK [1] provided routine
SGETRF (which uses appropriate level 1 and 2 BLAS kernels [6, 12]). The update steps consist of
calls to the level 3 BLAS routines STRSM and SGEMM.

4. Numerical experiments

The system described above is a 4-block ABD system where the size of the first block depends on
d. We experimented with four different values of d = 0.2, 0.5, 1.0 and 1.5. Table 1 summarizes the
sizes of the first block corresponding to different values of d (the sizes of the remaining blocks are as
presented in Fig. 3); OVRL represents the overlap between the first and the second block; the total
system size varies between 1547 x 1547 and 1851 x 1851.

The experiments were performed using the level 3 BLAS-based code proposed in [3] and its
performance was compared to the best existing code FOILHF/FO4LHF (decomposition/back
substitution) pair from NAG [13]. All results presented here are averages of multiple (minimum of
three) runs.

4.1. Experiments on an IBM RS/6000 workstation

We performed experiments on an 24 ns IBM RS/6000 station model 550. All experiments were
performed on an empty machine. The IBM provided optimized BLAS kernels were used in both
the proposed code and NAG routines. Timings were obtained using the system timer (routine
times(3)).

Table |
Sizes of the first block of an ABD system depending on the
value of d

d =102 d=05 d = 1.0 d=15
Rows 380 475 646 684
Columns 414 509 680 718

OVRL 68 68 68 68
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The first series of experiments was executed for the solution of a linear system of a given size. In
the decomposition step we experimented with a variety of blocksizes and we found that the
blocksizes 32 and 64 lead to the best performance (which is consistent with [7]). The results for
blocksize 32 are summarized in Table 2.

The performance of the new code in the decomposition is approximately 46 MFlops and about
30 MFlops for back substitution. Since the practical peak performance for this model of RS/6000
station is about 75 MFlops [ 7], the new code was running at approximately 61% of this practical
peak in the decomposition and approximately 40% in the back substitution steps.

The second series of experiments was performed with the solution of the whole problem. The
results reported in Table 3 are for the (the most efficient) blocksize 32, for the largest system
(d = 1.5), for varying Re; ITER specifies how many iterations (solutions of the linear system) were
performed before an acceptable solution was reached (for Re > 100 the solution was found in steps
of 100 using the converged solution at the end of each step as a starting point for the next step).

Assuming that most of the work is done in the solution of the linear system (which is true
especlally for the largest problems with multiple iterations), the whole application is running at
40 MFlops, which constitutes approximately 53% of the practical peak performance. It can be also
observed that the time reduction is approximately 56% and is independent of the value of Re.

4.2. Experiments on a Cray Y-MP

The second series of experiments was performed on an 8-processor Cray Y-MP 8/864. The
experiments were performed in both single processor and parallel modes. Cray Assembly Language

Table 2
Solution of the linear system; time in seconds

d Decomposition Back substitution
New code FOILHF New code FO4LHF
0.2 3470 £.100 0.040 0.065
0.5 4,200 9.785 0.050 0,070
1.0 6.335 14,775 0.055 0.090
1.5 7.030 [7.730 0.065 0.100
Table 3

Solution of the whole problem; time in seconds

Re ITER New code NAG
5 4 34.95 8089
100 8 65,56 153.00
200 13 99.00 229.50
300 21 139.47 32548

400 22 180.58 420.75
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coded BLAS kernels were used. For the multi-processor runs, the parallelization was introduced
within the BLAS kernels. For the single-processor experiments the code efficiency was measured
using the Cray provided routine perfirace. The multi-processor runs were performed on an empty
machine and the timef routine was used to measure execution time.

The first series of experiments was performed in one-processor mode for the solution of a linear
system of a given size only. After experimenting with a variety of blocksizes we found that when
only one processor is used the blocksize 128 leads to the best performance (which is consistent with
the results presented in [14]). The results for this blocksize are summarized in Table 4.

As Table 4 clearly shows, the new code outperforms the old one by 12—-15 MFlops (approxim-
ately 5% performance gain) in the decomposition step. If we assume that the practical peak
performance of a single processor of the Cray Y-MP is approximately 315 MFlops [15,17] then
the new code obtains approximately 91% of this peak. The performance of the back substitution
routine must be much lower, since each time only one right-hand side is considered. This effectively
reduces the performance from what we would expect for a level 3 BLAS-based code to the level
2 BLAS (matrix—vector operations instead of matrix—matrix operations). The back substitution
results of the NAG routine represent a known problem with the transpose version of the FO4LHF
solver [19].

Table 4
Solution of the linear system; one-processor performance in MFlops

d Decomposition Back substitution

New code FOILHF New code FO4LHF
0.2 279.0 266.7 80.0 11.4
0.5 281.9 269.0 83.6 11.0
1.0 285.5 268.3 91.6 10.3
1.5 288.7 272.8 93.9 10.2
Table 5

Solution of the whole problem; one processor; results in MFlops

i Re =35 Re = 400
New code FOILHF New code FO4LHF
0.2 2277 199.3 2274 198.6
0.5 2204 200.0 228.6 198.2
1.0 258.5 2225 257.1 220.1

1.5 260.8 225.5 259.7 2225
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Secondly, we experimented with a one-processor solution of the whole problem. Table 5 presents
the results for Re = 5 and Re = 400, for varying d (blocksize 128 was used inside the decomposition
step).

It can be observed that the value of Re has a minimal effect for the MFlop rate of the solver(s).
The performance gains from the use of the new code are 18-35 MFlops (between 12% and 14%)
and grow slightly as the size of the system increases. For the large system the performance is
approximately 82% of the practical peak.

The last series of experiments was performed using the 8-processor Cray Y-MP as a parallel
computer. The results in Table 6 present the times for a varying number of processors for the
solution of the whole problem for Re =400, for d = 0.5 and d = 1.5. In this case, it took 28
iterations to solve the small problem and 22 iterations to solve the large one. As the number of
processors increases the optimal blocksize increases as well (which is consistent with results
reported in [16]). A number of blocksizes were tested and the best 8-processor performance of the
new code was obtained for the blocksize 256; these results are reported in Table 6.

The performance of the new code is significantly better than that of NAG for any number of
processors. The performance gains for the large number of processors are 16% for the smaller and
23% for the larger system. It should be mentioned that even though NAG routines are not
designed with parallel computations in mind, the parallelization is introduced by calls to level
| and level 2 BLAS kernels.

Finally, in Fig. 4 the speed-up for the solution of the whole problem by the new code is presented
for the largest system size (d = 1.5) and for varying values of Re. The result for NAG is presented
for Re = 400.

The speed-up for the largest problem on 8 processors is approx. 2.7. This result is much worse
than the speed-up of 4.5 reported in [8] for an ABD system with smaller blocks. This can be
explained by the fact that although the individual blocks of the system are large enough, the
overlaps between them are much too small. The solution process in the overlaps constitutes the
serial bottleneck for this problem.

Table 6
Solution of the whole problem; for varying number of processors

NoO. d =105 d =15

New code NAG New code NAG
l 31.10 35.08 35,40 401,59
2 22.22 25.55 22 81 27.09
3 18.81 22.20 18,35 22.51
4 17.07 20.47 16.05 20.22
5 16.23 19.71 14.93 19.05
O 15,758 18.95 14.04 [8.22
7 15.32 18.61 13.54 17.67
8 15.03 [8.25 13.15 17.35
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PERFORMANCE COMPARISON; WHOLE PROBLEM
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Fig. 4. Speed-ups for the solution of the whole problem.

5. Conclusions

A new code for the solution of ABD systems arising from the application of a Chebyshev spectral
collocation method to a flow problem in a rectangularly decomposable domain is presented. This
problem is an excellent representative of the class of problems leading to ABD systems. It
represents a complex physical phenomenon the numerical solution of which reveals features of the
flow apparently not previously observed. The natural decomposition of the domain leads to
a global system with an ABD structure. The example is general enough as the algorithm proposed
in this study depends on the structure of the global matrix and not on the number of elements.
The performance of the new code is compared with the best existing code. It is shown that
application of level 3 BLAS leads to considerable performance gains on high end workstations as
well as on a vector computer. The relatively small number of elements hampers the parallel
performance of the proposed code. Since there are only four blocks in the discretization the
problem will also be “too small” for other parallelizing techniques based on divide and conquer
strategies. The relatively small number of elements is, however, inevitable, because of the nature of
the numerical method.
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