Journal of Computational and Applied Mathematics 45 (1993) 181-189 181
North-Holland

CAM 1254

Parallel solution of almost block diagonal
systems on the CRAY Y-MP using
level 3 BLAS *

Ian Gladwell ** and Marcin Paprzycki ***
Department of Mathematics, Southern Methodist University, Dallas, TX, United States

Rececived 18 QOctober 1991
Revesed 24 April 1992

Abstract

Gladwell, 1. and M. Paprzycki, raranei soluuon ot almost bjock diagonal systems on the CRAY Y-MP using
level 3 BLAS, Journal of Computational and Applied Mathematics 45 (1993) 181-189.

In a recent publication (1992), the authors showed how efficient a new level 3 BLAS algorithm for almost
block diagonal systems could be using just one processor of a CRAY Y-MP. Here they compare the

corresponding results for up to eight processors using standard CRAY Library paraliel implementations of the
level 3 BLAS.

Keywords: Parallel lincar algebra; boundary vatue problems; level 3 BLAS.

1. Introduction

The aim of this paper is to discuss experiments on a CRAY Y-MP with an algorithm for the
parallel solution of almost block diagonal (ABD) linear systems arising when a two-point
boundary value problem (BVP) for ordinary differential equations (ODEs) is discretized along
with its boundary conditions (BCs) using box-type difference schemes. There are two general
approaches to the solution of this problem. The first is based on “tearing-type” strategies. The
1dea behind these methods is to divide the system into smaller parts and decompose each of
them scparately (the price is the fill-in generated). In the next step the smaller (reduced)
system, of structure similar to the original one, is set up and decomposed (typically on one

Correspondence to: Prof. 1. Gladwell, Department of Mathematics, Southern Methodist University, Dallas, TX
75275-0156, United States.
* This work was supported by a grant of computer time from CRAY Research Inc., which is gratefully
acknowledged.

** This author wishes to acknowiedge the support of NATO grant CRG 920037.
T¥* Current address: Department of Mathematics and Computer Science, University of Texas of the Permian
Basin, Odessa, TX 79762, United States.

0377-0427 /93 /§06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved

182 l. Gladwell, M. Paprzycki / Solution of almost block diagonal systems

processor but possibly recursively). There exist a variety of such methods which differ by the
particular division and decomposition strategies (see [1,13,16]). The performance of the tearing
algorithm improves when the number of internal blocks % in the ABD increases, whereas it is
cssentially unaffected when the size of these internal blocks # increases.

When using current BVP algorithms (for example PASVA 3 [B)), k, representing the number
of meshpoints in the discretization of the BVP, may be large but will not grow unrestrictedly,
Al the same time, n, the number of diffcrential equations, may also be large. The arithmetic
cost functions for ABD solvers are dominated by terms in & and n”. (The total cost is affected
more by increascs in the number of equations than the number of meshpoints.) The approach
here is designed to be efficient in the case when # is large.

In [12] an algorithm is proposed based on level 3 BLAS {5]. It is a version of block Gaussian
elimination similar to that proposed in [9]. To assure stability and, at the same time, to avoid
fill-in, it uses alternating row and column prvoting, similar to that proposed in [15], In [14]
results of experiments on a one-processor CRAY Y-MP are reported. It is shown that, even on
one processor, for large enough blocksizes #n, code taking full advantage of the hierarchical
memory of the CRAY and using highly efficient assembly coded level 3 BLAS kernels can be
morc efficient than corresponding level 2 BLAS implementations. This paper presents results
of experiments performed on a CRAY Y-MP in a multiprocessor environment using parallel
BLAS kernels.

2. Algorithm description

2.1, Block Gaussian elimination

The algorithm is described for the ABD system which arises when a two-point BVP is solved
using a box-type difference scheme [7). The size of each internal block is n X 2n and the
BC-type blocks have sizes ¢ X n and (n —g) X n respectively. (The BCs are assumed to be
separated and g is the number of left BCs.) For systems which arise from collocation methods
[2], the algorithm is similar. Figure 1 presents a typical ABD structure with five internal blocks

(which corresponds to four internal meshpoints).

Fig. 1. ABD system corresponding to four meshpoints.,

. Gladwell, M. Paprzycki / Solution of almost block diagonal svstems 183

[—

Ay, A A [l U, U, Us.]
A=Ay Axy Apa|=|Lay Las Uz Uss|= LU,
| Asy Ara Asy] | Lay L Las] Usa
LU Ly U, L, Uy, 1
LU= LU Ly U4 LyoUs LoaUiat Lyl
aaUny LU+ LapUs Ly Uyt L pUy 3 + Laalss]

Fig. 2. Block LU decompostion.

A short description of the algorithm is given. For further discussion sec [14] (dctails of the
implementation are presented in [12]). The algorithm calls the lcvel 3 BLAS routines _TRSM
(to solve a triangular system of equations with multiple right-hand sides B=T"'"A or 8 = AT 1)
and _GEMM (to form a matrix-matrix product C=waAB + BC). The decomposition step
requires both row and column interchanges. Since the level 3 BLAS routine GERTF [9]
provides only row interchanges, it has been supcrseded. The sizes of the matrices to be
decomposed in every step of the algorithm are rather small, so unblocked codes are used for
the decomposition. Out of the three possible, column-oriented, versions of unblocked code (4],
the SAXPY version was implemented. This version was shown to be most efficient in CRAY's
parallel cnvironment [11]. Parallelization is introduced inside the BLAS, its quality depends on
the machine implementation.

In the algorithm an extended version of block 1.U decomposition, shown in Fig. 2, 1s utilized.
Using this cxtended block structure, a two-phase per step algorithm for the decomposition of
the ABD system is defined. At cach step (except the last) Phase | decomposes a part of the
matrix cquivalent to a BC-type block, then Phase 11 decomposes the part of the internal block
which occurs before the next BC-type block enters. Phase | uses column mterchanges and
decomposes a rectangular block of size ¢ X 7. Phase [I uses row intcrchanges and decomposes
a rectangular block of size n X (n — g).

Phase I. Figure 3 shows the block placed inside the system for execution of Phase 1. There is
the following correspondence between Figs. 2 and 3:

(a} blocks £ and F were calculated in previous steps;

(b) D=[A4,, A,,] R,

(¢} A4,,=0e R lies outside the ABD structure:

(d) C= Azt] & e
_A3-|J |

(E) U= FAE*E- EH;EH}L’[H—G’];
Aj
-A _

(f) 7 = 2.3 e Rr<4.
Az

184 I Gladwell, M. Paprzycki / Solution of almaost block diagonal systems

ready from

previous step

|

Fig. 3. Block struciure in Phase 1.

In Phase I,

(1) block D is decomposed; column intcrchanges arc applicd internally in D;

(2) these column interchanges are applicd blockwise in C and U “below” and in F “above”
D,

(3) values of C are calculated;

(4) block U is updated.

Phase 1. Figurc 4 presents the parts of the system already in place and the location of the
block to be decomposed in Phase I1. There is the following correspondence between Figs. 2 and
4:

(a) block E was calculated in Phase I;

ready from
Phase |
C
E D
D
0 Z

Fig. 4. Block structure in Phase 1.

I Gladwell, M. Paproycki / Solution of almost block diagonal systems 185

ready from
Phase I

ready from
Phase 11

Fig. 5. System after one step of decomposition.

Al,l

(b) D =
Az

Al -
]ER” " ‘”,

(c) 4,, =0e R lies outside the ABD structure;
(d) C=[A,, A,,] € R"-*,

(e) U=[A,, A4,,]€ R"™",

() Z=[A,, A;;]€ R"79>7,

In Phasc 11,
(1} block D is decomposed; row interchanges are applied internally in D;
(2) these row interchanges are applied blockwise in C and U on the “right” and in £ on the
“left’’;

(3) values of C are calculated;

(4) block U/ is updated.

This completes Phase II and one step of the algorithm. Figure 5 presents the system after
one step of decomposition. Observe that the undecomposed (but updated) part of the ABD has
preciscly the same structure as the original system.

In the last step both phases are performed on a reduced block. A standard two-block
decomposition is used.

2.2. Block back substitution

The dccomposition described above leads to the system of the form

A =PLUQ,

{ RGO L Gladwell, M. Paprzycki / Solution of almost block diagonal svstemsy

where L is unit lower triangular, U is upper triangular and £ and (} arc row and column
permutation matrices respectively. The solution of a system Ax =5 will be calculated by
implementing the sequence of steps (a) Pr=»5,(b) Ls=r, (c) Ut =5 and (d) Ox =¢.

Steps (a) and (d) permute the right-hand side (RHS) and the final solution of the system
respectively (using level 1 BLAS). Steps (b) and (¢) represent forward and back substitution,
The implementation of these operations uses level 3 BLAS routines. However, only for
multiple right-hand sides is this a blocked algorithm. For a single right-hand side it is
cquivalent to using level 2 BLAS. Given this decomposition, onc can also solve

Alx=b,
vid
Q'UTL'P e =5,

tor any & using a similar scquence of steps. This enables estimation of the condition number of
A using the algorithm of [6]. This is necessary adjunct since the code, like GETREF, only exits
with an crror indication when exact {(zero pivot) numerical singularity is encountered. The
calculation using 4 and A', respectively, in the error estimation can, of course, be carricd out
in parallel.

3. Numerical results

Expcriments were performed on an 8-processor CRAY Y-MP 8 /128 at the CRAY Research
Inc. facility in Eagan, in single-job stream mode. The system ran Unicos 6.1 and provided
paralicl assembly coded level 1, 2 and 3 BLAS kernels. Each result presented is an average of
several runs. These results should be treated rather as predictors of a general tendency than as
absolutely precise runtimes. Timings of particular runs varied from 2% in large cascs up to 5%
in small cases. The results are compared with those from the decomposition step from the
current release (available on the CRAY in Eagan) of the NAG library (level 2 BLAS based)
decomposition routine FOILHF [3,17]. The NAG library routine FO4LHF (back substitution)
docs not paralielize, so there are no comparisons of back substitution to report.

Three scries of experiments were run for # = 50, 200 and 400, respectively, and for & = 25.
n the decomposition for 7 =350 no spcedup was observed. Figure 6 presents speedups
obtained by the new code DGEABD and by FO1LHF for n = 200 and for the number of “top”
BCs ITBC =100 and for n =400 and ITBC = 200, respectively. Clearly for systems with
internal block size 200 and a rather small number of such blocks (25) it is possible to obtain
speedups of about 2.5. With internal block size 400 and the number of such blocks unchanged,
the speedup increases to about 4.5, For small numbers of processors (below 4) the level 2 BLAS
based code outperforms thc level 3 BLAS based code. Such behavior can be observed more
generally in the case of dense square lincar systems, where for small system sizes and for small
numbers of processors unblocked codes often outperform blocked ones [11).

Experiments with blocked code were performed in the decomposition step. In [14] it was
reported that blocking can lead to performance improvement. However, here no improvement
in performance was obscrved. This can be explained by the quality of the 2 BLAS kernels and
by the rather small size of the matrices decomposed at cvery step.

I Gladwell, M. Paprzycki 7 Solution of almaost block diagonal systems 187

5 e e e . . e e e e ¥ O
A
45 | /“’f’ |
.-"'--F--;?"
4 - a__.-i_,f//
- ‘ﬂ-’;
15 1- R
N
@ - ——m—
25 |- _ W
' T s
2 !
|
15 -
| Lo | : L U U
5 6 7 a
NUMBER OF PROCESSORS
11 DGEABD 1200 FOILHF 12601 DGEABD (4001 +. FOILHF | 400}

< LIKEAR SPEEDLLP

Fig. 6. Performance comparison for decomposition.

The number of “top™ BCs was varied. Table 1 summarizes the timings obtained for eight
processors when the number of “top” BCs (ITBC) varics between 1 and 7 — 1. In all cases but
onc, the level 3 BLAS based code outperforms the level 2 BLAS based one. More important,
the 8-processor performance improvement is greater for larger internal block sizes.

Another series of experiments were performed to establish the possibility of parallelizing the
back substitution step in both standard and transposed modes. For one right-hand side and for
all cases (n = 50), 200}, 400)) increasing thec number of processors from one to two cut the time by
about halt, but a further increase in processors did not improve performance. The situation was
diffcrent for multiple right-hand sides. Figure 7 summarizes the speedups obtained for the
cqually split boundary conditions; in cach case twenty right-hand sides were used and (T)
specihes “transposed’ back substitution. Results for other values of ITBC were similar.

Even tor #n = 50 a speedup of about 2.5 is observed. Also, for only twenty RHSs the speedup
obtained for back substitution is greater than that for decomposition. Note the effect of
diffcrent divisions of the workload for larger numbers of processors. It is clear that the specdup
obtained for seven processors is relatively much greater than for six and eight processors. This

Table |

Timing variations with size of top block, ITBC
ITBC | 34 67 100 133 166 199

=200 DGE {1.456 0.462 0.503 (1495 0.494 .476 0.456
FOl 0.447 {1482 {0528 0.55% {1.565 0.577 (0.588
ITBC | 68 134 200 266 332 399

n = 400 DGE 2.104 2.173 2.232 2.255 2.234 2.270 2.221
FO1 2170 2.281 2.351 2.425 2.410 2.345 2.287"

188 . Gladwell, M. Paprzycki / Solution of almaost block diagonal systems

7

i
% sl _%1
5 K

1 ; - - e Ly B I
1 rd 3 4 5 8 T 8
NUMBER OF PROCESSORS
1 N=50 + N=B0IT! o N=200 & N=200(T) % W=400 v N-4DQ 1T}

Fig. 7. Speedups for multiple right-hand side back substitution,

can be explained by the CRAY memory organisation’s sensitivity to vectors of length divisible
by powers of two. Here n = 400; hence the vector length is divisible by sixteen which may cause
memory conflicts. This may also explain the superlinear speedup observed for two processors.
Splitting the work equally can reduce memory conflicts and cause an additional performance
increase. This was confirmed by running the code with n = 461 where no superlinear speedup
was observed.

A suite of codes 3ABDSOL [11] realizing the algorithm described above is avatlable from the
second author. It has the functionality of the level 2 BLAS ABD code described in [3) and
implemented in the NAG Library [17].

4. Conclusions

A parallel algorithm for almost block diagonal systems with large internal blocks has been
developed. This algorithm is based on block linear algebra and is implemented using level 1, 2
and 3 BLAS kernels providing internal parallelization. It maximizes exploitation of the
underlying structure of the system and has the same stability properties as other Gaussian
climination algorithms with row and column interchanges for ABDs. The results presented
suggest that the proposed algorithm should be a standard solution for problems with very large
block sizes.

References

[1] U.M. Ascher and S.Y.P. Chan, On parailel methods for boundary value ODE’s, Computing 46 (1991} 1--17.
{2} U. Ascher, J. Christiansen and R.D. Russell, Collocation software for boundary value ODEs, ACM Trans.
Math. Software 7 (1981) 209-229.

I Gladwell, M. Paprzycki / Sohution of almaost block diagonal systems 189

{3) R.W. Brankin and [. Gladwell, Codes for almost block diagonal systems, Comput. Math. Appl. 19 (1990 1-6.

(4] M.J. Dayde and LS. Duff, Level 3 BLAS in LU factorization on Cray 2, ETA-10P and IBM 3090-200/VF,
fnternat. 1. Supercomput. Appl. 3 (1989) 4070,

[5] J. Dongarra, J.J. Du Croz, I. Duff and 5. Hammarling, A set of level 3 basic linear algebra subprograms, Report
ANL-MCS-PE8-1, Argonne National Laboratory, 1988.

[6] N.J. Higham, rorrran codes for estimating the onc-norm of a real or complex matrix, with applications to
condition estimation, ACM Trans. Math. Software 14 (1988) 381-396.

[7) H.B. Keller, Numerical Solution of Two Point Boundary Value Problems (S1AM, Philadelphia, PA, (1976).

8] M. Lentini and V. Pereyra, An adaptive finite-difference solver for nonlincar two-point boundary problems with

mild boundary layers, $IAM J Numer, Anal. 14 (1977) 91-111.

9] P. Mayes and G. Radicati, Banded Cholesky factorization using level 3 BLAS, LAPACK working note #12,

Report ANL-MCS-TM-134, Argonne National Laboratory, 1988,

[18] M. Paprzycki, Solving dense linear systems of Cray Y-MP multiprocessor using assembly codcd BLAS kernels,
N preparation.

[11] M. Paprzycki and C. Cyphers, 3ABDSOL — a level 3 BLAS based solver for almost block diagonal systems,
SMU Math Softreport 92-3, Dept. Math,, Southern Methodist Univ,, Dallas, TX, 1992.

[12) M. Paprzycki and 1. Gladwell, Solving almost block diagonal systems using tevel 3 BLAS, SMU Math Report
90-4, Dept. Math,, Southern Methodist Univ., Dallas, TX, 1990,

[13] M. Paprzycki and 1. Gladwell, Solving almost block diagonal systems on paralle] computers, Paraliel Comput. 17
(2&3) (1991) 133-153.

[14] M. Paprzycki and 1, Giadwell, Using level 3 BLAS to solve almost block diagonal systems, in: D). Sorcnsen et al.,
Eds., Proc. Fifth SIAM Conf. on Parallel Processing for Scientific Computing (SIAM, Philadelphia, PA, 1992)
52-62.

[15] J.M. Varah, Alternate row and column elimination for solving certain linear systems, SIAM J. Numer. Anal. 13
(19763 71-75.

[16] 8.J. Wright, Stable parallel climination for boundary value QDE's, preprint, ANL-MCS-P229-0491, Argonne
National Laboratory, 1991,

[17] The NAG Library Manual, Mark 15, 1991, NAG Ltd., Oxford.

	big copy.gif
	big0001 copy.gif
	big0002 copy.gif
	big0003 copy.gif
	big0004 copy.gif
	big0005 copy.gif
	big0006 copy.gif
	big0007 copy.gif
	big0008 copy.gif

