Informatica 19 {1995) 235-240 235

Parallel Gaussian Elimination Algorithms on a Cray Y-MP

Marcin Paprzycki

Pdepartment of Mathematics and Computer Science
University of Texas of the Permian Basin

Odessa, TX 79762-0001, USA

Phone: 4915 552 2258, Fax: +915 552 2374
paprzycki m@gusher.pb.utexas.edu

Keywords: performance, parallel Gaussiau elimination, Strassen’s algorithm

Edited by: Jerzy R. Nawrocki

Received: September 18, 1994 Revised: January 24, 1995 Accepted: February 27, 1995

Various 1mplementatious of Gaussian elimination of dense matrices on an 8-processor
Cray Y-MP are discussed. It is shown that when the manufacturer provided BLAS
kernels are used the difference in performance between the best blocked implementations
and Cray’s routine SGETRE is almost negligible. It is shown that for large matrices
Strassen’s matrix multiplication algorithm can lead to substantial performance gains.

1 Introduction

Wa shall consider the solution of a system of linear
equations

Ax =6,

where A is an N X N rcal dense matrix, using
(aussian elimination with partial pivoting. We
arc interested in a parallel solution based on the
use of BLAS [9, 10, 15] primitives and blocked
algorithms [1, 3, 6, 8, 12]. Since the release of
Unicos 6.0 Cray provides a set of assembly co-
ded parallel BLAS kernels as well as some addi-
tional routines; one of them is SGETRE which
perlorms parallel Gaussian elimination with row
interchanges. There exist situations [19, 23] in
which Gaussian elimination with column inter-
changes is necessary, so it becomes important to
know how much worse is the performance of the
"home made” codes in comparison to SGETRF.
It was shown [2, 14, 16] that using Strassen’s ma-
trix multiplication algorithm in the update step of
the Gaussian climination on a one-processor Cray
Y-MP can lead to substantial time savings. We
shall presently address the possibility of using pa-
rallel Strassen’s matrix multiplication algorithm
in the update step ol parallel Gaussian elimina-
tiom.

2 Level 3 BLAS based
algorithms — implementation
details

We compared the performance of different ver-
sions of (Gaussian elimination on an 8-procgssor
Cray Y-MP using manufacturer provided /7LAS
kernels. Since we used FORTRAN as the pro-
gramming language we considered only three (co-
lumn oriented) implementations out of the six
possible versions of Gaussian elimination. We
mvestigated the performance of DOT, GAX PY
and S AX PY versions of Gaussian climination as
described in [6, 11, 16]. Each consists of three
operations performed on submatrices {blocks) of
A: (1) the solution ol a linear system for the
multiple right hand sides {level 3 BLAS routinc
I'RSM), (2) the block update (level 3 BLAS ro-
utine _GEM M), and (3) the decomposition of a
block of columns. Since Cray provides assembly
coded routines, STRSM and SGEMM , only the
last operation needs to be implemented indepen-
dently.

To decompose a block of columns each of the
three unblocked versions of the column oriented
elimination can be used. I[n [16] it was shown
that for the one-processor Cray Y-MD, for the
long blocks of columns, the unblocked GAX PY

and DOT versions are the most efficient. At the

236 loformatica 19 {1995) 235-240

same time for larger numbers of processors the
unblocked GAXPY performs poorly [20]. Our
cxperiments sugeest that for multiple processors
and for blocks of columns shorter than 1500 the
nnblocked § AX PY based routine is more cfhicient
than the unblocked DOT whereas as the number
of rows in the block increases the DOT routine
seems Lo become more efficient. For thal reason
we have selected the SAXTPY based decompo-
ser for the blocked codes. To conlirm this cho-
ice we have performed some experiments with the
implementations using the unblocked DOT ver-
sion of the decomposition step.
sizes up to 2600 {(which was the largest size we
have experimented with), all blocked codes with
the SAXPY bascd decomposer have outperfor-
med the codes with the DOT based decomposer.
[t should be added as the matrix size increased
that the difference in performance tended to de-

crease. as the matrix size increases the percent of

the time spent in the decomposition step relative
to the time spent in other steps decreases [22);
thus for very large maltrices, even if the DOT' ba-
sed decomposer would be slightly more efficient
ils eflect would be negligible. Tt is ouly for smal-
ler matrices thal the cfficiency of a decomposer
really maltlers and in those situations SAX FPY is
the fastest.

3 Numerical results

Since in [16, 20] it was shown that when the as-
sembly coded BLAS kernels are used the dille-
rence between the performance ol the best versi-
ons of blocked aud unblocked codes is almost ne-
ligible, in the first serics of experiments we have
investigated the parallel performance of the level
2 BLAS based codes. Tigure | smmmarizes the
8-processor perlformance.

The effect of the system bus being saturated
with data communication can be clearly obser-
ved. The SAX PY variant is competitive only [or
very small matrices, whereas the JOT version is
the leader for medium size matrices. Interestin-
oly, the GAX PY variant, which is slower than the
others for most of the matrix sizes, becomes the
performance leader for very large matrices. This
gain, however, is only relative to the unsatisfac-
oty performance of the other variants. A severe
effect of memory bank conflicts can be observed

'or matrices of

M. Paprzyckl

PERFORMANCE COMPART G0N

BLAS 3! WaRT MG MATHIX SIIES

2
1,9 |
1.8
1.7
.6 |
1.5 |
1.4
o 1.2}
w2 1.2]
%; 1.4 - '
%2 1L
-
e L.8
ool u
0o.7 p- . wl
Q.€ (-
a.5
0.4 b
0.3
b2

. qau IL]EI!.U?L ato LL;DEHZI :'nn 4uu:| 15|:|u | 1abo :u'uﬂ

-E'-H:IEIID
|.'.I 700 190 E'II:I 23
HATFEII EiIIE

Q 0OT + AEST G GAXPY

Figure 1: Comparison between the level 2 FLAS
based codes; 8 pracessors; results in MFlops.

for matrices of size 800, 1600 and 2400.

The seconc series of experiments was designed
to investigale the effect of change in the block-
size on the performance of tlie blocked algorithms.
There are some attempts by researchers from the
LAPACK project [4] Lo provide a theoretical ba-
sis for an automalic blocksize selection. I'or the
time being, however, only the method of trial and
error is available. l'able 1 compares the perfor-
mance ol all three versions of the blocked algoni-
thm for a variety of blocksizes when all 8 proces-
sors arc used; the matrix size is 1600.

Blocksize | SAXPY | DOT | GAXPY
6l 1.559 1.541 1.689
128 1.551 [.549 1.530)
192 1.530 1.544 1.559
256 1.545 [.531 1.564
320} L.570) L.546 1.946
354 1.645 1.612 1.609

Table 1; Blocksize elfect on the performance; 3
processors; time in seconds.

The best performance is obtained for blocksi-
zes 102 and 256. In general, for large matrices
the performance gain from blocking (over level 2
BLAS based codes) was approximately 30%; the
performance gain from using the best blocksize
was additional 3-4%. 'These results conform to
what was presented in [20] for smaller matrix si-
ze5. Al the same lime our experiments indicate
that {1):as the number of processors increases (for

PABALLEL GAUSSTAN ELIMINATION. ..

a lixed matrix size) the optimal blocksize increa-
ses and (2) as the matrix size increascs (for a fi-
xed number of processors) the optimal blocksize

decreases. These results are illustrated in Tables
2 and 3,

1’his may be explained by the fact that as the
number of processors increases greater amounts
of data need to be translerred to keep them busy,
and so a larger blocksize is required. As the
malrlx size increagses a smaller number of colu-
rmuns needs to be transierred to provide the §i-
xed number of processors with the same amo-
unt of data to work with. This effect is, ol co-

urse, mediated by the communication capacity of

the system bus. Thus, contrary to what is com-
mon in practice, for blocked algorithims poerformed
on parallel computers, there seems to exists an
optimal blocksize per processor (raiher than a
[ftzed optimal blocksize). Unfortunately the op-
timal blocksize per processor will vary from archi-
tecture to architecture and needs to be established
experimentally.

T'he final set of experiments was directed at the
possibility ol using Strassen’s matrix multiplica-
tion algorithm in the update step of parallel (Fa-
ussian elimination. In 1969, Strassen [21] showed
that it is possible to multiply two malrices of sizes
N x N in less than 4.7N9%27 arithmetic operatl-
ons. Since {og,7 =~ 2.807 < 3, this method impro-
ves asymptotically over the standard matrix mul-
liplication algorithm which requires O(N?) ope-
rations. Strassen’s algorithm is based on the re-
cursive division of matrices into blocks and sub-
sequent performance ol block additions, subtrac-
tions and multiplications.

When implementod, Strassen’s algorithon invoel-
ves certain trade-offs, The [irst onc is hetween a
gain 1n specd and an increasc in vequired storage.
[n Cray’s implementation (routine .GEM M),
the additional work array of size 2.34 + N2 is re-
quired [5]. The second is between the depth of
recursion and parallelization. T'he decper the le-
vel of recursion the greater is the one-processor
perlormance gain. At the same time, however, in
Cray’s implementation where recursion is applied
only up to block ol size of approximaltely 64 (and
parallel SGEM M is used to calculate the result),
the effects of recursion are reduced [17].

There 1s one further important consideration
concerning the stability properties of Strassen's

Informatica 19 (1995) 235-240 237

algorithm since they ara less favorable than those
ol the convenlional matrix multiplication algo-
rithm [7, 14]. In [14] lligham showed that for
square matrices (where N = 2%), il € is the com-
puted approximation to C ({:T = AB + A('), then

IAC

< e(N, N, N)u

AYI 31+ Ou2)

wliere ¢ 18 a unt roundoft, and
. r dogal2 o L |
N N, NY= (5)™7°((25)? + 5+ 2%) - BN,

(For non-sgmare matrices the function ¢ becomes
more complicated, but the overall resull remains
the same.) Observe that the errar bound for stan-
dard matrix multiplication is N u[JA[|| 53]+ O(#*).
Therefore, the expected error growth should not
be too scrious in computational practice. This
conclusion is also backed up by the results of our
cxperiments.

Iigure 2 presents the results of our experi-
ments with Strassen’s matrix multiplicalion in the
update step of the Gaussian elimination [or ma-
irix sizes ¥ = 600, ..., 2600, Following [2], the
results arc presented in calculated MFlops. (Ihis
allows [or a clearer expression of the perlormance
gains of the new algorithm cven though Strassen’s
algorithm uses fewer operalions.) We have deci-
ded to present only the SAX PY and DOT based
implementations since when maultiple processors
wore used (for the Strassen as well as non-Strassen
based implementations) the (' AX PY variant was
much slower than the other two for all matrix si-
zes (this is primarily caused by the fact that the
matrices involved in the updale step are long and
"thin”; see also [20]). We also present the per-
lormance of the Cray provided routine SGFTRE
and the practical peak perlormance. For both
Strassen as well as non-Strassen implementations
the blocksize 265 was used.

A number ol observations can be made. There
1s no additional gain from using the Cray provided
routine SGMTRE, This is very linportant whene-
ver (zaussian climination with column interchan-
ges needs Lo be employed (c.g. in algorithms using
alternale row and column elimination strategy
(19, 23]). In [17], it was argued thal the prac-
tical peak performance for the 8-processor Cray

238 Informatica 19 (1995) 235 240

M. Paprzycki

Matrix size 200 | GOO | 1000 | 1400

1800

2200 | 2600

Optimal blocksize | 512 | 320 | 256 | 320

256

206 | 192

Table 2: Optimal blocksize for a fixed number ol processors {(8) and increasing matrix size.

Number of Processors | 1 2 3 4

2 () 7 3

Optimal blocksize 64 | 256 | 256 | 256

384 | 2506 | 384 | 256

Table 3: Optimal blocksize far a fixed matrix size (2500) and increasing numnber of processors.

P=ArORMANCE COMPAR' SCN

8- PRCCESS0RS
2 g
=
24
23|
-

2.1
2 F
-

mﬁ .0 |

%E 1.8 F

ig 11k

L 16
11 |
1.4 1
1 3 F
1.2 |
1.1 F

1

) T T : T
ED0 Il BCa Il naua | T2LO | 14'0:;5]“ ‘IF.|[H'.IJD'1EIEII:I | zoio |D:'2'1':In L:am: 64y
TCO SO0 100 ~WI0 aA%an 370D 1mue 2a000 23000 2300
Mallia 51ZE

g SANPY + QT £ maxRBTCE] a DATCE] # GCGETRF Y PRACTICAL HEAK

Flgure 2: Perlormance comparison between Stras-
sen and non-Strassen-hased codes; 8 processors;
resulls in MI'lops; ’(5)" marks codes using Stras-
sen’s updalte,

Y-MP is approximately 2490 MI'lops. Therefore
the blocked (non-Strassen) Gaussian elimination
alporithms reach approximately 88% of this prac-
tical peak for large matrices. The tlme reduction
obtained due Lo Strassen’s matrix multiplication
used in the update step of Gaussian climination
increases with the matrix size and reaches 13%
for matrices of size 2600. Using Strassen’s ma-
trix multiplication is advantageous only [or malri-
cos ol sizes larger than 1000, Approximale mini-
mal matrix sizes for which the Strassen-based Cea-
ussian climination outperlorms the non-Strassen
verstans for | — 8 processors are summarized in
Table 4.

The results in Table 4 indicale clearly that the
cross-over point migrates toward larger matrix si-
zes as the number of processors increases. Finally,
the effect of memory bauk conflicts is much smal-
ler for the blocked codes than it is for the un-

blocked ones. This can be attributed to a more

cificient data transmission pattern.

4 Conclusions

In the paper we have studied the performance
characteristics of the BLAS based blocked Ga-
ussian climination for large dense matrices on
an S8-processor Cray Y-MTD. We have shown that
the "home made” implementations of SAXPY
and PDOT versions of GGaussian climination per-
form very closcly to the Cray provided routine
SGETRE. We have suggested that the standard
notion of blocksize used for single processor bloc-
ked algorithms should be replaced by the notion
of blocksize per processor for shared memory mul-
tiprocessor systems. We have also shown that if
stability is not a serlous cousideration theu, lor
large malrices, using paratlel Strassen’s matrix
multiplication algorithm in the update step leads
Lo substantial time savings.

5 Acknowledgement

The computer time grant Trom Cray Rescarch
Inc., is kindly acknowledpged. The author wishes
to express his gratitude to Chris Hempel (Cray
Research Inc., Austin} for his help in running the
cxperiments as well as in obtaining the computer
time grant, anonymous referees [or helping to pre-
pare a hetter paper and Lo Kalarzyna Paprzycka
lor the help with Linglish.

References

[1] Anderson, E., Dongarra, J., Evaluating Block
Algorithm Varianis in LAPACK, in: Dongarra,
T., Mossina, P.. Sorensen, D.C., Voigt, R.G.,
(eds.) Purallel Processing for Scientific Com-
pultng, SIAM, Philadelphia, 1959

PARALLEL GAUSSTAN ELIMINATION. ..

Informatica 19 (1995) 235-240

‘ Number of Processors 1 2 3 g 5 (3 7 &
‘ Cross-over point AGO | HO0 | GOO | 700 ¢ 800 900 | 1000 | 1100

Table 4: Approximate cross-over point between the Strassen-based and non-Strassen Caussian olimi-

nation [or increasing number of processors.

12] Bailey, DI, Lee, K., Simon, IL.1., Using
Strasscn’s Algorithm to Accelerate the Solution
of Linear Systems, The Journal of Supercompu-
fing, 4, 1990, 357-371

(3] Bischol, C.II., F'undamental Lincar Algehra
Computations on High-Performance Compu-
ters, Toechnical Report MOS-P150-0490, Ar-
gonne National Laboratory, 1990

[4] Bischof, C.II., Lacroute, P.G., Au Adaptive
Blocking Stratogy for Matrix Factorizalion, To-
chnical Report MCS- P151-0490, Argonne Na-
tional Laboratory, 1990

[5] Cray Researcl, Tne., Math and Scientilic Re-
[erence Manual, SR-2081 5.0.

[6] Dayde, M.J., Duft, [.S., Level 3 BLAS in LU
Factorization on Cray-2, ETA-10P and IBM
3090-200/VY, The International Journal of Su-
percomputer Applications, 3 (2), 1989, 40-70

[7] Demmel, J.W., lligham, N.J., Stability ol
Block Algorithms with Fast Level 3 BLAS, Nu-
merical Analysis Report No. 188, Universily of
Manchester, 1991

8] Demmel, JJW., Higham, N.J., Schreiber, R.S..
Block LU Jactorization, Numerical Analysis
Report No. 207, University of Mancliester, 19992

9] Dongarra,J.)., Du Croz, J., Dull, L., ilammar-
ling, 5., A Set of Level 3 Basic Linear Algehra
Subprograms, Technical Report ANL-MCS-
TM57, Argonne National Laboratory, 1988

[L0] Dangarra, J.J., Du Croz, J., Hammarling, S.,
and Hanson, R.J., An Extended Set of FOR-
TRAN DBasic Lincar Algebra Subprograms,
ACM Transactions on Mathematical Software.
14 (1), 1988, 1-17

[11] Dongatra, I.J., Gustavson, I.(i., and Karp,
A., Implementing Lincar Algebra Algorithims
for Dense Matrices on a Vector Pipeline Ma-
chine, SIAM Review, 26, 1984, 51-112

[12] Gallivan, K., Jalby, W., Meier, U., Samel,
AL, hinpact of Hicrarchical Memory Systems on
Linear Algebra Algorithm Design, The Interna-
fional Jowrnal of Supercomputer Applications,
2 (1), 1088, 12-46

[13] Galiivan, K., Plemmons, J.R., Sameh, H.A.,
Parallel Algorithms for Dense Linear Algebra
Computations, STAM Review, 32 (1), 1990, 54-
135

[14] Higham, N.)., I'xploiting Fast Matrix Mul-
tiplication Within thte Level 3 BLAS, ACM
Transaclions on Mathematical Software, 16 (4),
1990, 352-368

[15] Lawson, C.L., Hanson, R.)., Kincaid, D.R..
and krogh, IV, Basic Lincar Algebra Snbpro-
graws (or FORTRAN Usapge, ACM Transacli-
ons an Mathemalical Software, 5 (3), 1979, 306-
323

[16] Paprzycki, M., Comparison of Gaussian INli-
mination Algorithms on a Cray Y-MD, Lincar
Algebra and s Applications, 172, 1992, 57-60

[17] Paprzyeki, M., Parallel Matrix Multiplica-
tion — Can We Learn Anything New?, CHPC
Newsleller, 7 (1), 1992, 55-59

[18] Paprzycki, M., Cyphers, C., Multiplying Ma-
trices on the Cray — Practical Considerations,

CHPC Newsletter, 6 (6), 1991, 77-82

[19] Paprzycki, M., Giladwell, 1., Using Level 3
BLAS to Solve Almost Block Diagonal Sy-
stems, In: Dongarra, J., Kennedy, K., Messina,
I’., Sorensen, D.C., Voigl, R.V., (eds.}, Procee-
dings of The Fifth SIAM Conference on Paral-
lel Processing for Scienlific Computing, STAM,
Philadelphia, 1992, 52-(2

120] Sheikh, Q., Performance of Block Matrix
Factorization Algorithms and LAPACK on
CRAY Y-MP and CRAY 2, in: Dongarra, J.,
Messina, I., Sorensen, D.C., Voigt, R.C., (eds.)
Parallel Processing for Scientific Computing,
SIAM, Philadelphia, 1989

240 luformatica 19 {1995) 235 240 M. Paprzyck:

21] Strassen, V., Gaussian Elimination s not
Optimal, Numecricel M athemalics, 13, 1969,

354-356

[22] van de Geijn, R.AL, LINPACK Benchunark
on tLe Tntel Touchstone GAMMA and DELTA
Machines, Preliminary Report, University ol
Texas, 1991

(23] Varah, J.M., Alternate Row and Column
Flimination [or Solving Certain Linear bSy-
stems, STAM Journal on Numerical Analysis,

13, 1976, 71-75

	siam copy.gif
	siam0001 copy.gif
	siam0002 copy.gif
	siam0003 copy.gif
	siam0004 copy.gif
	siam0005 copy.gif

