
Control plane systems tracing and debugging –
towards implementation

Gleb Peregud, Maria Ganzha
Department of Mathematics and Information Sciences

Warsaw University of Technology
Warsaw, Poland

gleb.peregud@gmail.com, M.Ganzha@mini.pw.edu.pl

Marcin Paprzycki
Systems Research Institute

Polish Academy of Sciences
Warsaw, Poland

marcin.paprzycki@ibspan.waw.pl

Abstract—Reasoning about, and debugging, hierarchical control
plane systems is hard. Moreover, OpenTracing, the industry
adopted tracing model, has problems with tracing activities in
presence of coalescing effects, which materialize, among others, in
cloud platforms and build systems. In our earlier work we have
proposed a novel approach to distributed systems tracing, based
on an extension of OpenTracing. The aim of this contribution is
to outline how the proposed approach can be implemented.

Index Terms—control plane systems, OpenTracing, coalescing
effects, distributed systems

I. INTRODUCTION

In earlier work [1], the persistent problem of debugging
hierarchical control plane systems, employing intent-driven
actuation, was introduced and an outline of a solution presented.
As discussed, understanding behaviour of such systems requires
observing their actions and associated state changes across all
layers, comprising of thousands of services, running across
hundreds of machines. Moreover, control plane systems employ
intent-driven actuation and exhibit coalescing effects, resulting
in arbitrary relationships between incoming requests and
individual actuations, performed by the system. Hence, such
systems are extremely difficult to debug. In this context, a
widely adopted approach to debugging is distributed systems
tracing, and the most popular tools follow the OpenTracing
model [2], based on Google’s Dapper. However, it is also
known that Dapper does not handle coalescing effects [2].

As a result of comprehensive analysis of state-of-the-art of
academic research and of industrial practices, reported in [1],
it was proposed that an innovative mix of distributed systems
tracking and provenance tracking may facilitate debugging
modern automation systems, and hierarchical control plane
systems, in particular. Moreover, a set of requirements, leading
to a meta-level architecture, named Provenance-Enhanced
Distributed Systems Tracing; PEDST, has been formulated.

The aim of this contribution is to go to the next step and
outline how the proposed PEDST approach can be implemented.
Here, it should be stressed that, due to space limitation, we omit
discussion of the state-of-the-art. Interested reader is referred
to [1]. However, to the best of our knowledge, no noteworthy
contribution has been published in the meantime.

II. REQUIREMENTS

Let us start with definitions of main concepts and follow with
the refined set of requirements for the system that will support
debugging control plane systems. For extended definitions of
terms, see [1], and references collected there.

∙ Hierarchical Control Plane Systems (HCPS) are API-level
systems, which accept requests, manage entities states, and
translate those into a series of requests sent to “lower-level
systems”, which are often HCPS themselves.

∙ Coalescing effect is any form of batching of work units.
∙ Intent-based actuation is an execution of a scheduling pol-

icy to reach an intended state, which performs appropriate
imperative steps individually.

Based on conducted research, we believe that system
satisfying summarized below requirements will be able to
trace HCPS that employ intent-based actuation.

1) Coalescing effects support – required to support tracing
of intent-based actuation logic in control plane systems;

2) Support for abstract entities – essential to align with
cloud APIs, which support entities at multiple levels of
abstractions (clusters, deployments, VMs, etc.);

3) Support for composite entities – required to deal with
objects like archives, VM images, container images, etc.,
prevalent in cloud APIs;

4) Low storage overhead – necessary for large-scale systems,
deployed as control plane systems, in the cloud;

5) Full coverage – to ensure that all activities will be tracked
and resource state mutations will be recorded (modulo
presence of unavoidable infrastructure faults);

6) Gradual fidelity execution tracing – to allow developers
to selectively apply execution tracing, to trade off tracing
accuracy and implementation effort;

7) Gradual fidelity provenance tracking – to allow developers
to selectively apply provenance tracking, to trade off
provenance tracking accuracy and implementation effort;

8) Low mental burden – to support adoption in industry;
9) Cross-host tracking – for distributed systems tracing;

10) Multi-layer systems support – to allow tracking across
layers in hierarchical systems;

11) Asynchronous data intake – to support data ingestion
from traced distributed systems, in presence of unreliable

978-1-6654-3281-8/21/$31.00 ©2021 IEEE

network, unpredictable latencies, and lack of ordering
guarantees, in multi-host network communication;

12) Event-based data production – to deal with compute nodes
and/or processes faults, and to avoid buffering in tracing
mechanisms;

13) Flexible control flow support – for tracing of systems
evolving over time and to deal with preexisting complex
control flows in control plane systems.

Note that existing solutions, like Dapper or CamFlow [3],
satisfy only (different) subsets of these requirements, but none
of them satisfies all of them at once (see, [1]).

III. PROVENANCE-ENHANCED DISTRIBUTED SYSTEMS
TRACING MODEL

In [1], we have proposed a Provenance-Enhanced Distributed
Systems Tracing (PEDST) model, which supports both ex-
ecution tracing and provenance tracking. Overall, in this
model, actions are captured as executions, forming a tree, to
represent the control flow. Operations capture reads and writes
of incarnations, and each of them is a version of an entity.
Pairs of executions can interact. Recorded interactions consists
of messages. Incarnations can be nested with sub-incarnations.
A message may carry an incarnation as a payload. Here, use
of OpenTracing model as a foundation addresses requirement
8, while support for sub-incarnations satisfies requirement 3.

To underpin the model, we use two schemas: (1) to capture
things as they happen – the local schema – used for online
logging; and (2) provenance-enhanced distributed tracing – the
global schema – for offline processing. In what follows we
define each of them.

A. Global schema

The global schema represents the concepts of PEDST, and
represents fully-processed data, ready for querying. Let us now
formulate all pertinent definitions.

Definition III.1 (Observed universe). Observed universe 𝑈
is a tuple (𝐸, 𝐼,𝑂,𝑋, 𝑃,𝑁), where 𝐸 is a set of all observed
executions, 𝐼 is a set of all observed incarnations, 𝑂 is a set
of all recorded operations performed by observed executions,
𝑋 is a set of all recorded interactions between participating
executions, 𝑃 is a set of all registered processes, 𝑁 is a set of
all registered entities.

Definition III.2 (Execution). An execution 𝑒 ∈ 𝐸 is a tuple
(𝑖𝑑𝑒, 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑, 𝑒𝑝, 𝑐, 𝑝, 𝑎), where:

∙ 𝑖𝑑𝑒 is its identifier
∙ 𝑡𝑠𝑡𝑎𝑟𝑡 is a timestamp of the beginning of this execution
∙ 𝑡𝑒𝑛𝑑 is an end of execution
∙ 𝑒𝑝 is a reference to the parent execution
∙ 𝑒𝑐 is a reference to the creator execution
∙ 𝑝 is an optional reference to the process this execution

instantiates.
∙ 𝑎 is a set of annotations associated with this execution.

Definition III.3 (Incarnation). An incarnation 𝑖 ∈ 𝐼 is a tuple
(𝑖𝑑𝑖, 𝑡, 𝑡𝑜𝑚𝑏𝑠𝑡𝑜𝑛𝑒, 𝑛), where:

∙ 𝑖𝑑𝑖 is its identifier of the incarnation
∙ 𝑡 is a timestamp of the incarnation creation
∙ 𝑖𝑝𝑎𝑟𝑒𝑛𝑡 is the incarnation’s parent identifier
∙ 𝑡𝑜𝑚𝑏𝑠𝑡𝑜𝑛𝑒 is a boolean flag if this incarnation records

end of the current lifetime of this entity
∙ 𝑛 is an optional reference to the entity of this incarnation.

An incarnation can represent a version of any type of object
managed in the system – regardless of its level abstraction –
hence contributing to requirement 2.

Definition III.4 (Operation). An operation 𝑜 ∈ 𝑂 is a tuple
(𝑡, 𝑖𝑑𝑜, 𝑒𝑜𝑝, 𝑡𝑜𝑝, 𝑖𝑠𝑢𝑏𝑗):

∙ 𝑡 is a timestamp of the operation
∙ 𝑒𝑜𝑝 is an execution represented by given tuple
∙ 𝑡𝑜𝑝 is an operation type (Write or Read)
∙ 𝑖𝑠𝑢𝑏𝑗 is a reference to incarnation (subject of operation).

Definition III.5 (Interaction). An interaction 𝑥 ∈ 𝑋 is a tuple
(𝑖𝑑𝑥, 𝑒𝑖𝑛𝑖𝑡, 𝑒𝑡𝑎𝑟𝑔𝑒𝑡,𝑀𝑥), where:

∙ 𝑒𝑖𝑛𝑖𝑡 is a reference to execution that initiated interaction
∙ 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 is a reference to execution interacted with
∙ 𝑀 is a set of messages exchanged between 𝐸𝑖𝑛𝑖𝑡

and 𝐸𝑡𝑎𝑟𝑔𝑒𝑡, where each message m is a tuple
(𝑡, 𝑒𝑖𝑛𝑖𝑡, 𝑒𝑡𝑎𝑟𝑔𝑒𝑡,Payload), where:

– 𝑡 is a timestamp of the message
– 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 is a payload of the message.

Definition III.6 (Process). A process 𝑝 ∈ 𝑃 is a tuple
(𝑖𝑑𝑝, description, 𝑒𝑑), where:

∙ 𝑖𝑑𝑝 is identifier of the process
∙ 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 is a human-readable process description
∙ 𝑒𝑑 is an entity reference where a given process is defined.

Definition III.7 (Entity). An entity 𝑛 ∈ 𝑁 is a tuple
(𝑖𝑑𝑛, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛), where:

∙ 𝑖𝑑𝑛 is its identifier of the entity
∙ 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 is a human-readable description of the entity

Definition III.8 (Annotation). An annotation is a tuple
(𝑡, 𝑃𝑎𝑦𝑙𝑜𝑎𝑑), where:

∙ 𝑡 is a timestamp of the message
∙ 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 is a payload value.

Graphs: Next, we define a set of graphs over information
captured in the observed universe. They will be used to extract
information from data, e.g. answer queries. They are also used
as a guide for the implementation of the model.

Definition III.9 (Execution graph). An execution graph of
𝑈 is a directed graph where nodes are elements of 𝐸 and if
𝑒𝑗 is a parent of 𝑒𝑖, there is an edge between 𝑒𝑖 and 𝑒𝑗 .

The execution graph captures the parent-child relationship
of executions. It is equivalent to the forest of trace trees in the
OpenTracing model. Let us now call 𝐸𝑑𝑔𝑒𝑠(𝑈), a multiset of
tuples (𝑒𝑖𝑛𝑖𝑡, 𝑒𝑡𝑎𝑟𝑔𝑒𝑡) for each element in 𝑋 of 𝑈 .

Definition III.10 (Interaction graph). An interaction graph,
in 𝑈 , is a multigraph, where nodes are elements of 𝐸 and
edges belong to 𝐸𝑑𝑔𝑒𝑠(𝑈) and connect elements of 𝐸.

Definition III.11 (Effects graph). An effects graph, in 𝑈 ,
is a bi-partite directed graph, where executions in 𝐸 form
partition in 𝑈 , and incarnations in 𝐼 form partition in 𝑉 , and
each element of 𝑂 gives rise of a directed edge either from 𝑈
partition to 𝑉 partition in case of Write, or from 𝑉 partition
to 𝑈 partition in case of Read.

Let us now call 𝑅𝑒𝑎𝑑𝑒𝑟𝑠(𝑖𝑖) a set of executions, which
read a given incarnation 𝑖𝑖: 𝑊𝑟𝑖𝑡𝑒𝑟𝑠(𝑖𝑖) = {𝑒𝑜𝑝 : ∀ 𝑜𝑖 =
(𝑒𝑜𝑝, 𝑡𝑜𝑝, 𝑖𝑠𝑢𝑏𝑗) : 𝑡𝑜𝑝 = READ ∧ 𝑖𝑖 = 𝑖𝑠𝑢𝑏𝑗}. Let us also
call 𝑊𝑟𝑖𝑡𝑒𝑟𝑠(𝑖𝑖) a set of executions which wrote a given
incarnation 𝑖𝑖: 𝑊𝑟𝑖𝑡𝑒𝑟𝑠(𝑖𝑖) = {𝑒𝑜𝑝 : ∀ 𝑜𝑖 = (𝑒𝑜𝑝, 𝑡𝑜𝑝, 𝑖𝑠𝑢𝑏𝑗) :
𝑡𝑜𝑝 = WRITE ∧ 𝑖𝑖 = 𝑖𝑠𝑢𝑏𝑗}. If the size of set 𝑊𝑟𝑖𝑡𝑒𝑟𝑠(𝑖𝑖) is
larger than 1, the observed dataset contains errors.

Definition III.12 (Direct provenance graph). A direct prove-
nance graph 𝑃 𝑑 of 𝑈 is a directed hypergraph, corresponding
to the effects graph (𝐸, 𝐼 , 𝑂) in 𝑈 , where each incarnation
𝑖 ∈ 𝐼 is a node in 𝑃 𝑑, and all executions 𝑒𝑖 ∈ 𝐸, incoming-
adjacent to 𝑖, form a directed hyperedge from corresponding
outgoing-adjacent incarnations to 𝑖.

Definition III.13 (Indirect provenance graph). An indirect
provenance graph 𝑃 𝑖 is a direct provenance graph 𝑃 𝑑, with
an additional edge between every two nodes representing
incarnations 𝑖1 and 𝑖2 ∈ 𝐼 when there is a path between
𝑅𝑒𝑎𝑑𝑒𝑟(𝑖1) and 𝑊𝑟𝑖𝑡𝑒𝑟(𝑖2) in the execution graph in 𝑈 .

Definition III.14 (Direct provenance set). A direct prove-
nance set 𝑆𝑑(𝑖) for an incarnation 𝑖 ∈ 𝐼 of 𝑈 , is a transitive
closure of incoming adjacent neighbours of 𝑖 ∈ 𝑃 𝑑 of 𝑈 .

Definition III.15 (Indirect provenance set). An indirect
provenance set 𝑆𝑖(𝑖), for incarnation 𝑖 ∈ 𝐼 of 𝑈 , is a transitive
closure of incoming adjacent neighbours of 𝑖 in 𝑃 𝑖 of 𝑈 .

Extensions: allow inferring additional information from the
observed dataset, and recovering additional information through
over-approximation. These extensions address requirements 6
and 7, by allowing to extract value from minimal tracing
instrumentation, by trading off accuracy of execution tracing
and provenance tracking.

Definition III.16 (Sub-incarnation provenance extension).
For a given universe 𝑈 , sub-incarnation provenance extension
is a universe 𝑈 ′ extended with imaginary executions: for each
sub-incarnation an execution is implied, which performs a read
operation on parent incarnation of a sub-incarnation, and a
write operation of the sub-incarnation itself.

Sub-incarnation provenance extension is an optimization
mechanism, which allows users to avoid explicitly recording
write operations on sub-incarnations while allowing to capture
provenance relationship between a writer of a parent incarna-
tion, and a reader of a sub-incarnation.

Definition III.17 (Sub-execution provenance extension). For
a given universe 𝑈 , sub-execution provenance extension is a
universe 𝑈 ′, extended with imaginary read operations for every
pair of execution and incarnation. If there exists a read operation
performed by any of execution ancestors on the incarnation, a
new read operation is implied between the execution and the
incarnation.

This inference mechanism captures a practically probable
provenance relationship between an object read by a parent
execution, and an object written by a child execution.

Definition III.18 (Message-passing provenance extension).
For a given universe 𝑈 , message-passing provenance extension
is a universe 𝑈 ′, extended with imaginary executions: for
each message sent from 𝑒1 to 𝑒2, in each interaction a unique
incarnation 𝑖, and two operations 𝑜𝑝𝑤 and 𝑜𝑝𝑟 are implied,
where 𝑒1 performs 𝑜𝑝𝑤 as a write on 𝑖 and 𝑒2 performs 𝑜𝑝𝑟
as a read on 𝑖.

This extension assumes that when (two) processes com-
municate, they exchange information relevant for provenance
tracking, hence implicitly linking their executions in the
provenance graph.

B. Local schema
The local schema enables incremental logging of events, and

is sufficient to recover provenance-enhanced traces. Events are
generated by traced components, and can be of the following
types: (1) execution begin, (2) execution end, (3) operation
performed, (4) message sent, (5) message received, and (6)
execution annotated. Processes and entities are recovered from
events implicitly by the system. Here, events logged by all
components form stream 𝐹 . We assume that a sequence of
events 𝐹 is causally ordered. Hence, to construct an observed
universe we need to perform a left-fold on the stream, by
starting using observe function with an initial empty universe1:

𝑈0 = (𝐸0, 𝐼0, 𝑂0, 𝑋0, 𝑃 0, 𝑁0)

𝑈 = leftFold(observe, 𝑈0, 𝐹)

where

𝐸0 = ∅, 𝐼0 = ∅, 𝑂0 = ∅, 𝑋0 = ∅, 𝑃 0 = ∅, 𝑁0 = ∅

The observe function needs to be embellished with a state,
allowing it to maintain the intermediate state information,
which is not representable in the global data model. The
observe is defined for each individual event type. For ex-
ample, Execution begins event 𝑓 is represented as a tuple
(𝑖𝑑𝑒, 𝑒𝑝𝑎𝑟𝑒𝑛𝑡, 𝑒𝑐𝑟𝑒𝑎𝑡𝑜𝑟, 𝑖𝑑𝑝) is processed in the following steps
(observing other event types is achieved analogously):

∙ Checks if parent execution has been observed so far.
∙ Checks if creator execution has been observed so far.
∙ Notes existence of process 𝑖𝑑𝑝.
∙ Stores this incomplete execution information, in the inter-

mediate state, with the event timestamp as the execution
start timestamp.

1In industry, this pattern is known as Event Sourcing [4].

C. Logging protocol

Use of the proposed model puts two requirements on event
producers. All identifiers need to be constructed consistently,
across all components of the traced system. It is the responsi-
bility of an application developer to maintain causal ordering
of events. A vast research body has been produced on this
topic [5], and it is out of the scope of this work.

IV. ARCHITECTURE

Let us now outline main aspects of the architecture that, to-
gether with the model, satisfies outlined requirements. We have
chosen a white-box tracing – allowing to satisfy requirements
6 and 7 - and disclosed provenance approaches for our initial
implementation. Overall, the PEDST architecture consists of:

∙ Logging protocol – for event production by traced systems
and ingestion by the PEDST solution;

∙ Logging data schema – defining events schema produced
by observed components (see, Section III-B);

∙ Ingestion pipeline – which ingests events from event
producers and stores them in the storage system;

∙ Storage system to store the events and traces;
∙ Events processor – it builds up traces in global schema

using incoming events, and stores it in the storage system;
∙ Global data schema – to capture the global view of

activities recorded from all systems (see, Section III-A);
∙ Set of queries, defined over global data;
∙ Visualization tool, to represent data to an engineer.

Data flow between these elements is represented in Figure 1.
Let us now describe in more detail the key components of the
architecture.

Storage

Events

processor

 receives

Traces

query

 queries

Traced system

Ingestion pipeline

 logs events

 collects events

 stores

 transforms

viewer

 shows results

Figure 1: Data flow in the PEDST architecture.

Ingestion pipeline: Events logged by a traced system are
received by an ingestion pipeline and stored in the storage
system. Depending on the scale of the traced system, the
ingestion pipeline might be as simple as a shared NFS directory,
a large Splunk deployment or, for large systems, pipeline
similar to Google’s Dapper. An asynchronous ingestion pipeline

satisfies the requirement 11, and contributes to the requirement
12. Ingestion pipeline gathers events from all components of
the traced systems. Hence, it contributes to requirement 5.
A distributed ingestion pipeline satisfies requirement 9, by
ingesting events from all hosts.

Storage system: Stores both events received from the
ingestion pipeline, and traces representing the observed universe
(defined in Section III-A). Additionally, for more efficient
querying, it may contain post-processed data, derived from the
observed universe.

Events processor: Receives events from the storage sys-
tem, processes and deletes them. Processing follows procedure
defined in Section III-B. Whenever event processing results in
a new (or updated) record, it is persisted in the storage system.
Events processor is optimizing provenance information, to a
representation suitable for efficient graph queries.

Queries: Queries executed against data in the storage
system allow constructing graph representations of the observed
universe and its extensions (see Section III-A).

V. IMPLEMENTATION

Let us now consider how the core aspects of the proposed
model and the architecture have been implemented as a Tenmo
framework 2. As far as the main technology stack is concerned,
the implementation consists of the following elements:

∙ A PostgreSQL database, used for the storage system.
∙ Go and C++ logging library, implementing structured

logging protocol and ingestion pipeline.
∙ Python based ingestion pipeline, for logs-based ingestion.
∙ Python processor, which listens to event notifications from

the storage system, constructs traces from events, and
stores them in the database.

∙ GraphViz for visualization of query results.
Overall, for each component, the developed solution follows

the standard industry implementation practices, and is similar
to the LogProv implementation [6]. Let us now describe in
some detail implementation of selected components.

A. Data definitions

Data models exist in three equivalent implementations (in
Python, Go and PostgreSQL schema). They follow the models
defined in Section III-A, with few additional fields needed
in each language. They are translated to a chosen language,
following standard engineering practices (see, Listing 1).

type eventExecutionBeginsJson struct {

EventUlid ulid.ULID `json:"event_ulid"`;

Timestamp time.Time `json:"timestamp"`;

ExecutionId string `json:"execution_id"`;

ParentId string `json:"parent_id,omitempty"`;

CreatorId string `json:"creator_id,omitempty"`;

ProcessId string `json:"process_id,omitempty"`;

Description string `json:"description,omitempty"`;

}

Listing 1: Execution begin event defined in Go. All fields are JSON-
serializable, so they can be stored as a payload jsonb field, in the
Storage system.

2The code is available at https://github.com/gleber/tenmo

B. Ingestion pipeline

Tenmo implements two ingestion mechanisms. (1) Tenmo
Go library connects directly to the Tenmo PostgreSQL instance
and appends data to the events table. (2) Nix integration
(see Section VI-A) uses a log tailing Python script, which
iterates over JSON-structured log lines, produced by Nix
binaries, and transforms them to Tenmo event schema and
inserts to the storage system.

Note that, in a production-grade implementation, Tenmo
would be powered by a high-performance log ingestion solution
like Syslog-ng, Apache Kafka, FluentD, or Loginson [7].

C. Logging library

Tenmo provides a Go client-side library (usage example
presented in Listing 2), which allows to register all events
in PEDST. For example, to track provenance, the traced
component has to record its read and write operations on
objects used in the system.

parentExecutionId := // Retrieve parent identifier, often from a Context

// Register an execution start.

executionId, ender :=

tenmo.ExecutionRegistration(tenmo.Execution{

tenmo.ExecIdRand("worker-step"),

parentExecutionId,

"worker step"})

// Make sure that the execution is ended .

defer ender()

// Perform own work.

PerformOwnWork();

// Pass own execution ID to a child goroutine.

go PerformChildWork(executionId);

Listing 2: Example of a typical hierarchical-aware execution tracing
using Tenmo Go client library.

D. Storage system

The Tenmo implements a basic non-distributed storage, based
on a single PostgreSQL database3. The database includes: (1)
an events table, and (2) a set of tables capturing the observed
universe. It directly implements local and global schemata
of PEDST model, using standard engineering practices (for
example, see Listing 3).

create table operations (

operation_id text primary key,

stored_at timestamptz not null default now(),

ts timestamptz not null,

execution_id text references executions (execution_id),

op_type char(1), -- operation type 'w' or 'r'

entity_id text not null references entities (entity_id),

incarnation_id text not null references incarnations (incarnation_id)

);

Listing 3: Example of a storage table definition in Tenmo, specifically
the operations table.

The events table is populated by the ingestion pipeline
(appended as is). The set of tables representing the observed
universe is populated by the events processor.

3This implementation ignores question of security. A production-grade
implementation would require an elaborate permissioning mechanism to protect
data stored in Tenmo database.

E. Events processor

The events processor consumes events from events table and
populates other tables in the storage system. The processor
subscribes to a notification channel, and gets notified about
every new event in events table, via PostgreSQL’s NOTIFY event,
sent by an appropriate database trigger. The processing logic
is as follows (represented as a pseudo-code):
for event in fetch_unprocessed_events(order_by=ingestion_timestamp):

with transaction:

mark_claimed(event) or continue

with transaction:

U = load_universe()

U’, success = observe(event, U)

if success == true:

mark_processed(event)

store_universe(U')

else:

mark_unclaimed(event)

To avoid event double-processing, events processor uses
atomic database transactions to mark an event as claimed,
followed by the processing logic. If successful, an event is
marked as processed. If an event exceeds a limit of processing
attempts, it is no longer considered during next processing
cycles. Processed events are regularly garbage collected.

F. Tenmo graph

Tenmo graph is stored in graph table, in the database, and
has fields source, verb and target. All PEDST relationships –
including PEDST extensions – are stored denormalized into the
triples, forming a composite graph. Table I lists the relationships
reflected in the table.

Source Verb Target
Operation affecting an incarnation

incarnation_id read_by execution_id

execution_id reads incarnation_id

execution_id writes incarnation_id

incarnation_id written_by execution_id

Child execution and its parent
execution_id child_of parent_id

parent_id parent_of execution_id

Executions
execution_id created_by creator_id

creator_id creator_of execution_id

Incarnation and its entity
incarnation_id instance_of entity_id

entity_id entity_of incarnation_id

Interaction and its messages
sender sent_to target

target received_from sender

Sub-incarnations and its parent
incarnation_id part_of parent_id

parent_id divides_into incarnation_id

Adjacent pair of incarnations in an entity
incarnation_id after incarnation_id

incarnation_id before incarnation_id

Table I: Tenmo graph relationships.

G. Queries

Given the triple form of storage, answering queries, with or
without graph extensions, is a matter of traversing the composite
graph and analysing found paths. Tenmo implementation uses
PostgreSQL’s recursive Common Table Expressions (CTE), as

a mechanism to recursively traverse the graph for all queries
(see Listing 4 for an example for query implementation).

CREATE OR REPLACE FUNCTION get_all_paths_from(start text)

RETURNS TABLE(depth integer, verbs text[], path text[]) AS $$

BEGIN

RETURN QUERY

WITH RECURSIVE search_step(id, link, verb, depth, route, verbs, cycle) AS

(→˓

SELECT r.source, r.target, r.verb, 1,

ARRAY[r.source],

ARRAY[r.verb]::text[],

false

FROM graph r where r.source=start

UNION ALL

SELECT r.source, r.target, r.verb, sp.depth+1,

sp.route || r.source,

sp.verbs || r.verb,

r.source = ANY(route)

FROM graph r, search_step sp

WHERE r.source = sp.link AND NOT cycle

)

SELECT sp.depth, array_append(sp.verbs, '<end>') AS verbs, sp.route ||

sp.link AS path→˓

FROM search_step AS sp

WHERE NOT cycle

ORDER BY depth ASC;

Listing 4: The get_all_paths_from function is the foundation for queries
implemented in Tenmo.

VI. EXPERIMENTAL RESULTS

To validate the proposed approach, we have applied Tenmo
to a software stack representative of typical HCPS. Specifically,
it (1) deploys of a service in a cloud environment, (2) contains
imperative-based processing of user requests, (3) contains at
least 2 distinct intent-based systems, in the control flow of a
typical request, and (3) is linguistically heterogeneous. The
complete stack is as follows:

∙ Nix [8] is a build system and a package manager, focused
on reliability, correctness and reproducibility.

∙ KubeNix [9] is a Kubernetes resource builder, that uses
NixOS module system [10, sec. 5] for resource definition,
and Nix as its build system.

∙ Kubectl is a command line tool to interact with a
Kuberentes cluster.

∙ Kuberentes automatizes deployment, scaling, and manage-
ment of containerized applications.

Figure 4 shows a Tenmo trace of a typical operation of the
stack. The top part, outlined with an indigo color rectangle, is
an extract from the KubeNix build process for a deployment.
The right part, outlined in light green color, is an extract of a
record of Kubectl execution. The bottom part is an extract of
a trace of the Kubernetes deployments controller performing
an intent-based actuation of a resource. Two red circles mark
locations where Tenmo traced executions, or data, flow across
layers in the system, hence satisfying requirement 10.

A. Build systems – Nix

We have integrated Tenmo into Nix, to show that Tenmo is
capable of dealing with build systems (an example of intent-
based actuation systems), hence satisfying requirement 1). Nix

build logic has been extended with comprehensive execution
and object-related logging, using existing JSON logs. Tenmo

N
SO

 /.
..r

3g
93

8v
ap

xp
3f

m
ia

c-
de

pe
nd

en
ci

es
-i

np
ut

-0
.d

rv

N
SO

 /.
..z

ji
jd

i3
cx

pl
70

z8
57

m
hb

q-
de

pe
nd

en
ci

es
-t

op
.d

rv

N
SO

 /.
..2

l8
a2

yy
71

5-
bu

il
de

r-
de

pe
nd

en
ci

es
-i

np
ut

-0
.s

h

N
SO

 /.
..y

4j
1q

13
fh

4m
jb

0w
kj

jv
dh

-d
ep

en
de

nc
ie

s-
in

pu
t-

0
N

SO
 /.

..1
7y

rl
bb

ag
ag

rj
2c

lz
xd

-s
im

pl
e.

de
ps

.b
ui

ld
er

.s
h

N
SO

 /.
..d

vf
ry

b4
27

0b
c4

fy
d1

r9
js

hd
9c

-d
ep

en
de

nc
ie

s-
to

p

ev
al

u.
..s

/d
er

iv
at

io
n.

ni
x'

ev
al

u.
..t

es
ts

/c
on

fi
g.

ni
x'

_m
ai

n.
ev

al

de
ri

v.
..t

-0
' b

ei
ng

 e
va

le
d

N
SO

 /.
..n

ci
es

-i
np

ut
-0

.d
rv

qu
er

y.
..o

ut
 m

is
si

ng
 p

at
hs

qu
er

y.
..o

ut
 m

is
si

ng
 p

at
hs

bu
ild

...
ci

es
-i

np
ut

-0
.d

rv
'

N
SO

 /.
..e

nd
en

ci
es

-i
np

ut
-0

bu
ild

...
nd

en
ci

es
-t

op
.d

rv
'

N
SO

 /.
..-

de
pe

nd
en

ci
es

-t
op

bu
ild

in
g

1
pa

th
s

pr
ep

a.
..

of
 1

 d
er

iv
at

io
ns

de
ri

v.
..t

op
' b

ei
ng

 e
va

le
d

_m
ai

n

N
SO

 /.
..e

nd
en

ci
es

-t
op

.d
rv

N
SO

 /.
..e

nc
ie

s-
in

pu
t-

0.
sh

N
SO

 /.
..e

.d
ep

s.
bu

ild
er

.s
h

Figure 2: Tenmo trace a Nix build of two derivations top and input0.

integration for Nix captures:
1) Top-level evaluation process as a whole.
2) Individual .nix file evaluations as children of Item 1.
3) Instantiation of derivations required for the build, as

children of an artificial execution node, representing
instantiation process as a whole.

4) The instantiation from Item 3 execution nodes record
writes of .drv files as incarnations.

5) Builds of individual derivations based on .drv files.
6) Executions capturing builds from Item 5 record their reads

of .drv incarnations from Item 4, reads of existing and
writes of new Nix store paths.

This allows to trace both the execution tree of Nix build
process4 and track provenance of Nix store paths.

Figure 2 shows a simplified Tenmo trace of a Nix build
execution using an empty Nix store without any external

4The visualized graph clearly shows that Nix is a suspending-type of build
system [11].

dependencies, where top derivation depends on input0 derivation
and other input files (see Listing 5).

tenmo=# select * from provenance_set('i:///.../3hknj...-dependencies-top');

depth | obj

-------+--

2 | i:///.../sh0p2...-dependencies-top.drv

2 | i:///.../q6ngy...-simple.deps.builder.sh

2 | i:///.../wfchb...-dependencies-input-0

(3 rows)

tenmo=# select * from provenance_set_indirect(

tenmo(# 'i:///.../3hknj...-dependencies-top');

depth | obj

-------+--

2 | i:///.../sh0p2...-dependencies-top.drv

2 | i:///.../q6ngy...-simple.deps.builder.sh

2 | i:///.../wfchb...-dependencies-input-0

4 | i:///.../40zj9...-dependencies-input-0.drv

4 | i:///.../a2k78...-builder-dependencies-input-0.sh

(5 rows)

Listing 5: The direct and indirect provenance sets of a Nix build
product dependencies-top captured and computed by Tenmo.

B. Cluster deployment
KubeNix: KubeNix produces a .json file, an input for

kubectl. Given that KubeNix is built using Nix, its Tenmo
integration is reused. Blue rectangle in Fig. 4 represents a
build of a deployment with 10 Nginx Kuberentes pod replicas.
It contains 958 operations, 877 incarnations, 877 entities, and
1729 executions (see, example in Listing 6).

tenmo=> select incarnation_id from incarnations where incarnation_id like

'%kubenix-generated.json' or incarnation_id like '%nginx-conf.json%';→˓
incarnation_id

--

i:///nix/store/ib4k4...-kubenix-generated.json

i:///nix/store/ryvdj...-nginx-conf.json.drv

(2 row)

tenmo=> select unnest(path), unnest(verbs) from (

select * from shortest_path('i:///.../ryvdj...-nginx-conf.json.drv',

'i:///.../ib4k4...-kubenix-generated.json', 5) limit 1);→˓
unnest | unnest

--+------------

i:///.../ryvdj...-nginx-conf.json.drv | written_by

89154931131069 | child_of

89154931130415 | writes

i:///.../mkfqz...-kubenix-generated.json.drv | read_by

60967060766724 | writes

i:///.../ib4k4...-kubenix-generated.json | <dest>

(6 rows)

Listing 6: A path between kubenix-generated.json and Nginx configu-
ration as incarnations extracted from a Tenmo trace.

Kubectl: Kubectl accepts a definition of the resource, com-
pares it to the current state of the resource on the Kuberentes
cluster and, if different, submits it to the server. We have
extended Kubectl to log executions and incarnations.

A sample execution produced the graph captured in Fig. 3.
The graph shows that the tool reads the input file, transforms
resources into an in-memory representation, compares it with
the version of the resources fetched from a Kubernetes cluster,
and submits their new versions to the cluster. Listing 7 contains
the captured provenance set.

C. Cluster orchestration - Kuberentes
We have also extended Kuberentes to include minimal Tenmo

tracing in deployment resource controller. The bottom part of
Figure 4 shows an extract of its Tenmo trace.

fi
le

 ..
.y

f8
2f

vp
zf

w
7p

7b
zg

jm
3-

ku
be

ni
x-

ge
ne

ra
te

d.
js

on

in
-m

e.
..p

s/
v1

/n
am

es
pa

ce
s/

de
fa

ul
t/

de
pl

oy
m

en
ts

/n
gi

nx
in

-m
e.

..n
am

es
pa

ce
s/

de
fa

ul
t/

co
nf

ig
m

ap
s/

ng
in

x-
co

nf
ig

in
-m

e.
..n

am
es

pa
ce

s/
de

fa
ul

t/
co

nf
ig

m
ap

s/
ng

in
x-

st
at

ic
in

-m
e.

..1
/a

pi
/v

1/
na

m
es

pa
ce

s/
de

fa
ul

t/
se

rv
ic

es
/n

gi
nx

re
so

ur
ce

 d
ep

lo
ym

en
ts

/n
gi

nx
re

so
ur

ce
 c

on
fi

gm
ap

s/
ng

in
x-

co
nf

ig
re

so
ur

ce
 c

on
fi

gm
ap

s/
ng

in
x-

st
at

ic
re

so
ur

ce
 s

er
vi

ce
s/

ng
in

x

ku
be

c.
..r

es
ou

rc
e

bu
ild

in
g

in
-m

e.
..d

ep
lo

ym
en

ts
/n

gi
nx

in
-m

e.
..m

ap
s/

ng
in

x-
co

nf
ig

in
-m

e.
..m

ap
s/

ng
in

x-
st

at
ic

in
-m

e.
..l

t/s
er

vi
ce

s/
ng

in
x

ku
be

ct
l a

pp
ly

 o
ne

re
so

u.
..d

ep
lo

ym
en

ts
/n

gi
nx

ku
be

ct
l a

pp
ly

 o
ne

re
so

u.
..m

ap
s/

ng
in

x-
co

nf
ig

ku
be

ct
l a

pp
ly

 o
ne

re
so

u.
..m

ap
s/

ng
in

x-
st

at
ic

ku
be

ct
l a

pp
ly

 o
ne

re
so

ur
ce

 s
er

vi
ce

s/
ng

in
x

ku
be

ct
l a

pp
ly

fi
le

 ..
.ix

-g
en

er
at

ed
.js

on

re
so

u.
..d

ep
lo

ym
en

ts
/n

gi
nx

re
so

u.
..m

ap
s/

ng
in

x-
co

nf
ig

re
so

u.
..m

ap
s/

ng
in

x-
st

at
ic

re
so

ur
ce

 s
er

vi
ce

s/
ng

in
x

Figure 3: Tenmo trace of a Kubectl execution on a KubeNix-generated
resource file.

tenmo=> select obj from provenance_set_indirect(

'i://https://host/api/v1/namespaces/default/services/nginx?ulid=01EJP9R7H');

obj

i://in-memory-https://host/api/v1/namespaces/default/services/nginx?ulid=01EJP98PA

i://https://host/api/v1/namespaces/default/services/nginx?ulid=01EJP90V0

i://file:///nix/store/va46w...-kubenix-generated.json?ulid=01EJP9V6C

(3 rows)

Listing 7: Tenmo can produce a indirect provenance set for the final
deployment resource.

Interested readers can find more details about PEDST model,
it’s implementation as Tenmo, and it’s usage, in [12].

VII. CONCLUDING REMARKS

The aim of this contribution was to discuss how the approach,
proposed in [1], can be implemented. In this context we
have introduced the Provenance-enhanced Distributed Systems
Tracing model, presented the architecture, and discussed key
aspects of its implementation, in the form of the Tenmo
framework. We have also shown experimentally that Tenmo
solves key problems of debugging Hierarchical Control Plane
Systems. In the future we plan to implement the missing
features and run a comprehensive set of tests in real-life, large-
scale ecosystems, with the main goal to test scalability of the
proposed approach.

REFERENCES

[1] G. Peregud, M. Ganzha, and M. Paprzycki, “Control plane systems tracing
and debugging –existing problems and proposed solution,” MARC, 2020.

[2] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010. [Online].
Available: https://research.google.com/archive/papers/dapper-2010-1.pdf

[3] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Symposium
on Cloud Computing (SoCC’17). ACM, 2017.

[4] “Event Sourcing,” 8 2020, [Online; accessed 11. Aug. 2020]. [Online].
Available: https://martinfowler.com/eaaDev/EventSourcing.html

[5] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: the Works of Leslie Lamport, 2019, pp. 179–
196.

[6] R. Wang, D. Sun, G. Li, M. Atif, and S. Nepal, “Logprov: Logging
events as provenance of big data analytics pipelines with trustworthiness,”
in 2016 IEEE International Conference on Big Data (Big Data). IEEE,
2016, pp. 1402–1411.

[7] C. Vega, P. Roquero, R. Leira, I. Gonzalez, and J. Aracil, “Loginson:
a transform and load system for very large-scale log analysis in large
it infrastructures,” The Journal of Supercomputing, vol. 73, no. 9, pp.
3879–3900, 2017.

[8] E. Dolstra, The purely functional software deployment model. Utrecht
Uni., 2006.

[9] xtruder, “kubenix,” Sep 2020, [Online; accessed 10. Sep. 2020]. [Online].
Available: https://github.com/xtruder/kubenix

[10] E. Dolstra, A. LÖh, and N. Pierron, “Nixos: A purely functional linux
distribution,” Journal of Functional Programming, vol. 20, no. 5-6, pp.
577–615, 2010.

[11] A. Mokhov, N. Mitchell, and S. Peyton Jones, “Build systems à la carte:
Theory and practice,” Journal of Functional Programming, vol. 30, 1
2020. [Online]. Available: https://oadoi.org/10.1017/s0956796820000088

[12] G. Peregud, “Novel method for provenance-enhanced tracing in cloud
systems,” Master’s thesis, Zakład Sztucznej Inteligencji i Metod
Obliczeniowych, 2020.

Figure 4: Extract from Tenmo record of a HCPS composed out of
Nix / KubeNix, kubectl, and Kubernetes deployment controller.

