Proceedings of the ISCA
10t International Conference

COMPUTER APPLICATIONS IN INDUSTRY

AND ENGINEERING

San Antonio, Texas U.S.A.
December 10 - 12, 1997

Editor: T. Philip

A Publicatlion of
The International Society tor
Computers and Their Applications - ISCA

ISBN: 1-880843-22-6

Solving Block-Structured Lin

M. Paprzycki
Department of Computer Science
and Statistics
University of Southern Mississippt
Hattiesburg, MS 39406, USA

Abstract

Discretization of a large number of mathematical
problems leads to block-structured matrices. Operations on
these matrices become the most expensive part of the
solution of the orginal problem. To achieve an efficient
solution, a level 3 BLAS based lLibrary of subroutines 1§
proposed and its performance ofn an SGI Power Challenge
8000 is illustrated.

1 Introduction

A number of mathematical problems give risc to block
bidiagonal (BBD). block tridiagonal {BTD), almost block
diagonal and other block-structured limear systems
[1.6,8,10]. The nced for efficiency in dealing with such
matrices becomes particularly transparent when (a) a non-
linear problem is being solved and thus a block-structured
matrix has to be factorized in each step of an itcrative
scheme. and (b) when a tearing-type straiegy is applied to a
very large block-structured matrix to achieve parallelization
of the soluticn process [1,2,3]. In both cases the efTiciency of
the matrix operations becomes the bottleneck of the solution
process.

In this note we present the efficiency of a level 3 BLAS
based library of subroutines {3} performing matrx
multiplication, matrix factorization and a back-solve for
block-structured matrices. Due to lack of space we will limit
our attention to block bidiagonal and block tridiagonal
matrices and to the SGI Power Challenge 8000 computer
(timing results were coliected using the dtime utility and
each result is an average of multiple runs). Results of earlier
experiments on the Cray 1916 computer can be found in
[7,9). We will try do address one basic question: Should
biock structured matrices be represented in the block-
structured form, or should they be represented as banded

Mmatrces.

2 Matrix-VYector Multiplication

It is easy to visualize how the matrix-vector and the
matrix-matrix multiptication of block bidiagonal and block
tridiagonal matrices can be realized by a sequence of calls to
the level 3 BLAS matnx multiplication routine GFEMM,

123

ear Systems on a Power Challenge 8000

P. Yalamov
Center of Applied Mathematics
and Informatics
University of Russe
7017 Russe, Bulgaria

The proposed library allows both straightforward
multiplication and a multiplication by a transposed matrix.
The latter is achieved by appropriately applying the
transpose option of the _GEMM. The performance of the
library routines will be compared with the level 2 BLAS
routine _GBMV which performs a matrix-vector
multiplication for a banded matrix. Let us assume that 4 1s a
BTD (or 2 BBD) matnx cansisting of k blocks of size 7. In
the library routines it will be represented as a collection of
blocks stored in a column-oriented fashion. The same BTD
(BBD) matrix ¢an be represented as a banded matrix. For the
purpese of the _GBMV routine il would be stored as a
collection of vectors representing the main diagonal and
2n-1 sub-diagonais and 2n-1 super-diagonals (in case of the
BBD matrix we would have n-i sub-diagonals and Zn-I
super-diagonals). Thus difference in storage scheme had 2
significant effect on performance on the Cray vector-
computer. Although the banded representaion SIOTES
elements that are outside of the original matrix, the iong
vectors allowed the banded storage based GBAMV to
outperform the block-oriented routines for approximately
n<30 (see [9] for more details).

In the first series of experimenis we comparc the
performance of the block-oriented and banded matrix-vecior
multiplication. In Figure 1 we present the ratio of time of the
banded and block-oriented routines for the increasing block
size n for BTD and BBD matnices and their transposcs
{(denoted by (T)). In this, and the remaining figures, the
results presented are for & = 400 blocks. We have found that
the number of blocks & does not affect the performance.

The results indicate that for small blocks the banded
representation should be used. It is only for n>10 when the
blocked approach outperforms the banded one. The
difference in time is especially visible for the medinm-size
blocks, and for the largest blocks it tends to decrease which
is likely to be an effect of the cache management. It can be,
however, predicted that for very large blocks, this difference
will increase again as the banded approach will perform a
number of additional unnecessary operations on the zero
elements that do not belong to the original matrix.

The situation is different for the transposed matrices.
Here, the banded approach 15 much more efficient. As the
block size # is increasing the blocked approach seems to be
slowly gaining and it can be predicted that for large blocks it
should be the approach of choice.

Matrix-Vector Multiplication
—»—BTD —%—BTD(T) —— BBD —&—BB(T)|

2.3

Ratio bandeﬂ vs. blocked
tn

] |
1]
1]
1]
11
} |
1]
ri
La

n
1

0.3 A

15 17 19 21 23 25 27 29
Block size {n)

Figure 1. Matnix-vector muitiplication banded vs. blocked approach; (T) denoics transpose.

LU Factorization

\:—1& BTD(R) —%— BTD(C) —6— BBD{R) —B—BBD(C)

Ratlo banded vs. blocked

| 1
D | 1] T 1 1] | |
]

1 3 S 7 9 11 13 13 17 19 21 23 25 27 29
Block slze (n)

Figure 2. Matrix factorization banded vs. blocked approach; (R) denotes row pivoting, (C) denotes column pivoting.

124

P
th
J

Back solve
4
—8-BTD (R) —e—BTD(RT) /’\.__

35 4 |——BTD (C) —&—BTD(CT); ’
v —¢—-BBD (R) —%—BBD (RT)
‘g‘ 3 i |——BBD(C) ——BBD(CT)
yo
025 -
3
g Z-
fal
o
% 1.5 -
o

1 -

0.5 -

0

11 13

15

17 19 21 23 25 27 29

Block size {n)

Figure 3. Back Substitution banded vs. blocked approach

3 Matrix factorization

In the second series of expenments we have studiced the
performance of the LU factorization routines. Here the
question of a fair comparison needs to be addressed. The
block-algorithms perform the LU factorization with limuted
pivoting, where the pivot element ts sought only in the
middle-block. This result follows the strategy proposed
originaily by Varah in [10). In the same paper the detailed
result concerning the stability of this approach can be found.
The factorization routine for the banded matrices from the
LAPACK library _GBTRF uses pivoting and row
interchanges. This means that a fill-in of the size of the
upper bandwidth is generated (and additional arithmetical
operations performed).

We believe that since pivoting is also performed by the
block-oriented algorithms it is fair to make a straightforward
comparison between the two approaches. It is assumed that
the additional cost of the banded solver is part of the price
one has to pay when using a black-box library software.
Finally, in both cases of BBD and BTD matrices we have
combined pivoting with row (denoted as (R})) and column
(denoted as (C)) interchanges 10 S¢¢ if there is a performance

difference caused by these two approaches.
The results are much more favarable for the blocked

appreach than in the casc of matrix-vector multiplication.
Already for n>9 the block-oriented approaches .nu_tperfqnn
the banded one. In addition, the performance gain increases

125

as the biock size 7 increases. It is slightly larger for the BTD
matrices than for the BBD matrices and in both cases there is
almost no difference between the column and row pivoting
strategies. Only for the BBD matrices the column pivoting
slightly outperforms the row pivoling,

4 Back substitution

In the final series of experiments we have compared
the performance of the back solvers for a single night hand
side for the matrices decomposed by the factorizing routines
described above. In Figure 3 we present the ratio of times
used by the level 2 BLAS based banded solver GBTRS and
the block-oriented back-solvers for the increasing block size
n. Since the row and column pivoting based factorizations
have been implemented there are 4 back solvers available:
row pivoting (R), row pivoting transposed (RT), column
piveting (C), column pivoting transposed (CT). They are
compared with the banded and banded transposed solvers as
appropnate.

As in previous cases for #>10 the block-oriented
solvers start to outperform the banded approach.
Surprisingly, the BBD solver creates a morc substantial
performance gain than the BTD solver. There secems 10 be no
particular difference between the four solvers for each
blocked matrix: in particular there is no difference between
the transposed and the non-transposed solvers. Just as in the

case of matrix-vector multiplication, as the value of n
increases the difference between the performance of the
banded and the block-oricnted solvers slowly disappears.
Again, it can be predicted that for large values of n the
difference will start increasing as the banded solver performs
unnecessary arithmetical operations.

5 Concluding remarks

In this note we have compared the performance of the
bantded and the block-oriented approaches to the basic
operations (multiplication, factorization and back-
substitution) on block-structured matrices, We have found
that on the SGI Power Challenge 8000 RISC-based
supercomputer jor small blocks n<10 the banded approach
is superior to the block-oriented approach for all operalions
and should be the method of choice in the computational
practice. As the block size increases the blocked approach
outperforms the banded one. This is especially true for the
matrix factorization. the most time consuming operation of
the investigated. These results differ slightly from those
reported for the Cray vector-processors where the banded
approach has outperformed the blocked approaches for
n < 30 for matrix-vector multiplication and a straightforward
back-substitution. In the case of matrix factorization the
results on both computers were similar. Finally, on the Cray
the blocked and banded transposcd back-substitution runs
equally fast [10]. These results present an interesting
challenge 1o the designers of codes like ¢.g. COLNEW [4]
which relies heavily on block structured linear algebra. In
the near future we will expand our itnvestigation and
consider the almost block diagonal matrices and other RISC
based high performance computers (in particular the SGI
Power Challenge 10000 and the Convex Exemplar).

Acknowledgements

Computer time grant from NCSA at Urbana is kindly
acknowledged. The research has been initiated by a
COBASE grant from the National Research Council. The
second author was supported by Grant MM-434/94 from the
National Research Fund of the Bulgarian Ministry of
Education and Science,

References

[1] P. Amodio, T. Politi, M. Paprzycki, "Survey of Parallel
Algorithms for Block Bidiagonal Linear Systems,”
Journal of Computers in Mathematics Applications,
Vol. 31(7), pp. 111-127, 1996

[2] P. Amodio, T. Politi, M. Paprzycki, "Solving Block
Bidiagonal Linear Systems on Distributed Memory

126

Compters," Proceedings of the Seventh [nternational
Conference on Parallel and Distributed Computing

Sustems, ISCA. Raleigh. NC. pp. 812-8135, 1994

E Anderson. Z. Bai. C. Bischof. . Demmel. .
Dongarra, J. Du Croz. A, Greenbaum, S. Hammarling,
A McKenney, S. Ostrouchov and D. Sorensen,
1 APACK Users' Guide, SIAM, Philadelphia, 1993

[3]

U. Ascher, J. Christiansen. R D. Russell, "Numerical
Solution of Boundary 1alue Problems for Ordinary
Differential Equations,” Prentice-Hall, New York, 1988

[4]

M. Berry, A. Sameh, "Multiprocessor Schemes for
Solving Block Tridigonal Linear Systems,” The
International Journal of Supercomputing Applications.
vol. 2, pp. 37-57, 1988

[3]

C. Cyphers, M. Paprzycki, A. Karageorghis, "High
Performance Solution of Partial Differential Equations
Discretized Using a Chebyshev Spectral Collocatton
Method," Journal of Compurtational and Applied
Marhematics, Vol. 66(1), pp. 71-80, 1996

6]

M. Paprzycki. C. Cyphers, "Level 3 BLAS Based
Library for Block Tridiagonal Matrices,” in: S. Elaydi,
et. al. (eds.), Advances in Difference Equalions, Gordon
and Breach, Amsterdam, pp. 491-498, 1997

17]

M. Paprzycki, 1. Gladwell, "Solving Almost Block
Diagonal Systems Using Level 3 BLAS," Proceedings
of The Fifth SIAM Conference on Parallel Processing
for Scientific Compuling, SIAM, Philadelphia, pp. 32-
62, 1992

8]

[9) M. Paprzycki, A. Karageorghis, C. Cyphers, "Solving
Structured Matrix Problems on a Cray Vecior-
Computer," Technical Report, University of Cyprus,
submitted for publication

[10]]. Varah, "On the Solution of Block-Tndiagonal
Systems Arising from Certain Finite-Difference
Equations,” Marthematics of Computation, Vol. 26, pp.
859-868, 1972

	aig copy.gif
	aig0001 copy.gif
	aig0002 copy.gif
	aig0003 copy.gif
	aig0004 copy.gif

