ISCA

Proceedings of the ISCA
International Conference

————— L B i e —— ==

PARALLEL AND DISTRIBUTED COMPUTING

SYSTEMS

Las Vegas, Nevada U.S.A.
October 6-8, 1994

A Publication of
The Infernational Society for
Computers and Their Applications - ISCA

iISBN: 1-880843-09-9

Solving Block Bidiagonal Systems
on Distributed Memory Computers

P. Amodisc T. Politi
Dipartimento di Matematica

Universita di Bari
Bari, 70125, Italy

Abstract

Two parallel algorithms for solving block bidiago-
nal linear systems on distributed memory computers
are introduced. The first is a simple modification of
the sequential algorithm and is suitable for a smal
number of processors. The second is based on parallel
methods for banded systems and is much better suiled
for parallel computations. Experimental results from
a linear array of 36 Transputers are presented.

1 Introduction

In many application areas, matrices arisc with ex-
ploitable sparse block structure. For example, several
numerical methods for the solution of ODEs, PDEs

and BVPs lead to matrices with only few nonzero
block-diagonals [2, 6],
We consider the parallel solution of a linear system

Az = b (1)
where the coefficient matrix 4 has a block bidiagonal
structure

D, \
C; I3
) (2
Ca D,/
with Dy and C; dense blocks of size m (I is nonsin-
gular for3 =1,...,n}, and
(£ \ bl
= ol bl
z = b =)

\ 2 / by
Although this problem has not been extensively
considered in the literature, its solution is the ker-

nel of a number of mathematical applications. The

812

M. Paprzycks
Department of Math. and Computer Sei.
Univerity of Texas of the Permian Basin

Odessa, Texas 79762, USA

known approaches come from the solution of almost
block diagonal (ABD) systems arising from particu-
lar discretizations of ODEs with boundary conditions
(see [6]). After temporarily neglecting boundary con-
ditions, the resulting block bidiagonal system is solved
by parallel reduction algorithms. Since ABD matir-
ces differ from block bidiagonal matrices by a block
row (or column) in the upper triangular porlion, these
solvers produce paralle] faclorizations with both lower
and upper fill-in vectors. In our case, it 1s possible to
develop algorithms that do not destroy the block tri-
angular structure of the coeficient matrix. Moreover,
these algorithms include row pivoting which should be
sufficient to guarantee the stability of the solution [3].

The following 1s the generic sequential algorithm for

the solution of (1):

P,L U, = D,
zy, = D71b,
for 1= 2. n
PiLiUi - D{
£, = .D:l(bi - C;:,;_l)

end

The algorithms presented in this paper require more
arithmetical operations than the sequential one but
they may be nsed on a large number of processors.
All of the proposed algorithms will be based on the

following decomposition of matrix A (2}):

(A1) \
cgur Dy
cl‘:l?} Al

;-vhcr: n = kp -1, pis the number of processors
tnvolved, &; denotes a block vector of length & — }

“;i.'ih only the ith block equal to the identity matrix,
¢i’ = Cirexcy, el = Cli-1)a+1€1, and

[Dz \
46 - Cli-tik+2 Dpic1jres |

\ Cix-:x Dy)

Except for the last, each processor stores two block
tows of the partitioning of 4 {i.e. the ith processor
contains the block rows with 4{} and Dy, and the
last contains the block row with Alr)),

2 Quasi-sequential algorithm

The first algorithm we consider is a simple modifi-
cation of the sequential one.

The most expensive part of the sequential algorithm
1s the inversion of the majn diagonal blocks D the LU
factorization of which may be performed in parallel.
Then the algorithm continuesin the following way: the
first processor solves its part of the system and sends
the last block compoenent of the solution to the se cond
processor. The second processor, waiting for the data
from the first, scales its first g2 block equations (where
g2 is a positive integer less than or equal to k}. When
it receives the data, it updates on the first gz block
equations, solves the remaining equations and sends jts
last block of the solution to the third processor. Each
processor 3 performs the same operations as processor
two; waiting for the data from processor (7 -1), it
scales the first g; block equations (obviously the value
of g; should be proportional to j), then it solves the
equations and sends the data to processor 5 4+ 1. The
algorithm for processor 7, can be thus summarized as
follows:

for 1 ={(j — 1}k + 1, jk

P, LU, = Dy

end

for i=(7 ~1)k+1,(j — 1}k + ¢,
E; = D7'¢, -
g = D."_lbi

end

receive (;_ ;) from processor j — 1
for s={j — 1)k +1,(5 ~ 1)k + ¢4

T = g — Eiziy
and

for i =(j — 1)k +¢q; +1,;k

813

g, = b; — Cizmi-y
2 = D g,
snd
send z,, to processor j + 1

This algorithm has the typical characteristics of the
sequential algorithm, such as the sequential commau-
nication between processors {each processor waits for
data from another processor before sending its data
to the next one). This does not make it very efficient
especially if the number of processors is large relative
to the block sizes (see Section 4). At the same time,
however, it has some advantages: it does not produce
fill-in vectors and requires only vecltor transmissions.
If a large number of processors is available (and if each
of these processors has a substantial local memory), it
i5 possible to tune the algorithm performance by grad-
ually increasing the number of blocks stoted in further

Processors.

3 Parallel factorization algorithm

The second algorithm is based on the domain de-
composition methods already used in [1] to derive par-
allel factorizations of tridiagonal matrices, in [4] to
solve ABD systems and in [5] to solve linear recur-
rence systems. The matrix A is factorized as:

A — N . Q} (3}
where
A(L)
cg”r Dy
N = 0;.y A%
T |
l:(:] ﬂ:t
!ml‘. \
of.y Im
{2) g
Q — L] mk .
Ve of_; Im

and the unknown eclements of V;; and pli~1}
[Vg_ by .V}{_I)T are obtained from (3) by direct

identification:

forj=2,...,p
for j =2,...,p—~ L

w0} = (AN -1l

.y F .
Vie = ~Dpl e} w0)

(1)

The factorization (3), the solution of ¥ and the up.
dating of the right hand side by v(’} are performed in
parallel with no data transmission between processors.
Data transmissions are only required when solving the
teduced linear system with coeficient matrix:

Im \
Vir, I
Vﬂi J.r|'1 (5]
Vo-1x Im
and unknowns Zy, Dk, -, Bp-1)%- The following is

the algorithm for the generic processor j:

for i=(j — 1)k +1, jk
FiLUi = Dy
and
1"{;‘-—1]#4_1 = ‘Dall.l}}_.{.lc[j-l}lﬂlhl
b{j-l]k-i-l = D{_‘;'l_l}l.l.lb{j-l}knlul
for i =(j — Dk +2, jk
Vi = -D;7 Vi
b = Dy} (b — Cibi_y)
end
compute x(; 1y and =z,; by solving
the reduced systenm
for i =(5 — 1)k +1,jk-1
2, =& - Vizi1n

end

As far as the reduced system on a distributed mem-
iy patallel computer with a large number of proces-
ors is concerned, its solution may be quite expensive.
fach processor (except the last) has one block-row of
he matrix (5) and the corresponding elements of the
ight hand side. To reduce the communication ove:-
iead we suggest the following algorithm for each pro-
essor § (assuming that processor j performs the ith
-end operation if 7 + 2* < p and the ith receive op-
ration if — 2* > 1):

for ¢ =0, [log,(p—1}] — 2
send b;; and Vj, to processor j + 2
receive b 3, and V(;_3i from
procegssor j— 2°
bjx = bjx — Viebj_an
Vie = —Via Vi _aips
and
3= [loga(p—1)] - 1 |
send b;; to proceszor 3 +2
receive b{j-?"}i from processor j - 2
256 = by — Vb g
send =z,; to processor j +1

814

Figure 1: Communicafions needed for the solution of
the reduced system on 7 processors. With the solid
line we express transmissions of veclors and maitrices.
With the dotled line transmaissions of vectors,

receive z(, ;3 from processor j— I

Figure 1 shows the communication needed for this
approach on p = 7 processors. Observe that if p > 1,
the solution of the reduced system requires on each
processor at most [log,{p—1)]—1 matrix transmissions
and flog,(p — 1}] + 1 vector transmissions.

4 Numerical Tests

The two algorithms presented in the previous sec-
tions have been coded in Parallel Foriran [7] with
the Exptess communication library [8] on & MicroWay
Multiputer, which has a network of 30 transputers
T800-20, eack one with a local memory of 1 Mb. The
sequential algorithm has been implemented in Fortran
on & single transputer T800-20 with 16 Mb of memory.
The codes use the level 3-BLAS routines DGEMM to
perform matrix-matrix products, DGEMYV to perform
matrix-vector products, and two subroutines of LIN-
PACK package: DGEFA, which factorizes the main
diagonal blocks with only local row pivoting, and
DGESL, which solves triangular linear systems fac-
torised by DGEFA. Presented speedups are calculated
against the sequential algorithm and all the results are
averages of multiple runs.

We have chosen general nonsingular block bidiag-
onal systems with dense blocks. In Figure 2-4 the
measured speedups of paralle} factorisation and quasi-
sequential algorithms are reported for p =4, p = 15
and p = 30 processors, and different values of m and
k = |800/m]. For the gquasi-sequential algorithm we
have chosen ¢; = (J — 1)¢, (where ¢ is a positive in-
teger number fixed for all processors, j is the number
of the processor, j = 1,...,p) in such a way that the

speedup is the highest.

3_
g d e
. \
0 L I ! | T
q
0 20 20 30

size of each block (m)

Figure 2: Speedups of the algorithms for p = 4 and
m and k = [800/m] variables. Solid line for paral.
lel factorization, end dolted line Jor quasi-sequential
algorithm.

site of each block (m)

Figute 3: Speedups of the algorithms for p = 15 gnd
m and k = (800/r] variables. Solid line for paral-
lel factorization, and doited line Jor quasi-sequential
elgorithm.

12

;-

-

0 l T 7 T I 1
0 10 20 30

size of each block (m)

Figure 4: Speedups of the algorithms for p = 30 and
m and k = [800/m| variables. Solid line for paral-
lel factorization, and dotted line Jor quasi-sequential
algorithm.

815

We observe that when using & small number of
processors, the quasi-sequential algorithm has good
speedups and is always betler than the parallel fac-
torisation. This second algorithm becomes preferable
when a larger number of processors is available. Unfor-

tunately we are not able to use a number of processors
greater than 30, but the experimental results suggest
that for p > 2m the parallel factorisation algorithm
leads to better speedups than the quasi-sequential one.

References

(1] P. Amodio, L. Brugnano, T. Politi, “Paralle! Fac-
tonzations for Tridiagonal Matrices”, SIAM J,
Numer. Anal., Vol. 30, pp. 813-823, 1993,

[2]) 1. Gladwell, M. Papraycki, “Parallel Solution of
Almost Block Dhagonal Systems on the CRAY Y-
MP usinglevel 3 BLAS", J. Comput. Appl. Math_,
Yol. 45, pp. 181-189, 1993.

{3] G. H. Golub, C. F. Van Loan, Matriz Computa-
tions, The Johns Hopkins University Press, Bal-

timore, 1989. |

(4] M. Papraycki, 1. Gladwell, "Solving Almost Block
Diagonal Systems on Parallel Computers®, Par-

allel Compul., Vol. 17, pp. 133-153, 1981.

[5] M. Papreycki, P. Stpicaynski, *Solving Linear
Recurrence Systems on Parallel Computers®, in:
R. Kalia, P. Vashishta {eds.) Proceedings of the
Mards Gras '8 Conference, Baton Rouge, Feb.
10-12, 1994, Nova Science Publishers, New York,

1994 (to appear).

(6] S.I. Wright, “Stable Paralle] Algorithms for Two-
Paoint Boundary Value Problems™, STAM J. Sei.

Statist. Comput., Vol. 13, pp. 742-764, 1992,

[7] Parallel Fortran User Guide, 31 Ltd., Living-
stone, 1988,

(8] Ezpress Fortran User's Guide, ParaSoft Corp.,
Pasadena, 1990.

	big copy.gif
	big0001 copy.gif
	big0002 copy.gif
	big0003 copy.gif
	big0004 copy.gif

