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Fidanova, S.; Lirkov, I.; Ivanović, M.
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Abstract: There are many areas where conventional supervised machine learning does not work
well, for instance, in cases with a large, or systematically increasing, number of countably infinite
classes. Zero-shot learning has been proposed to address this. In generalized settings, the zero-shot
learning problem represents real-world applications where test instances are present during inference.
Separately, recently, there has been increasing interest in meta-classifiers, which combine the results
from individual classifications to improve the overall classification quality. In this context, the
purpose of the present paper is two-fold: First, the performance of five state-of-the-art, generalized
zero-shot learning methods is compared for five popular benchmark datasets. Second, six standard
meta-classification approaches are tested by experiment. In the experiments undertaken, all meta-
classifiers were applied to the same datasets; their performance was compared to each other and to
the original classifiers.

Keywords: zero-shot learning; generalized zero-shot learning; meta-classifier; performance comparison

1. Introduction

A large number of machine learning methods focus on classifying instances and
are applied in cases where the classes have been seen during the model training phase.
Here, “seen” means that at least a single (correctly labelled) instance of each existing
class was present in the training dataset. The best results of model training are obtained
when available labelled datasets are large and when the number of instances in each class
is balanced.

However, realistic real-world applications may require the classification of instances
belonging to classes that have not been seen before. Here, the examples include, but are
not limited to, object recognition (where every object is a class [1]), cross-lingual dictionary
induction (where every word is a class [2,3]), and “mind reading”, using magnetic resonance
imaging scans of the brain (where every word is a class and every instance is a brain
scan [4]).

In this context, zero-shot learning (ZSL) has been proposed. It is a class of model training
approaches that seeks to deal with situations where the classes covered by the training
instances and the classes to be classified are disjoint [5–10].

In zero-shot learning, some instances in the feature space are given. In practice, these
instances are represented as a vector (usually a real number vector), placed within a feature
space (usually a real number space). The set of all instances consists of a subset of instances,
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which are labeled, and a second subset of instances, which are not labeled. The classes
corresponding to the labeled instances are referred to as seen classes, comprising the training
set and a part of the testing set. Classes corresponding to unlabeled instances are referred to
as unseen classes. They constitute the remaining part of the testing set. Note that the set of
classes that correspond to the training instances and the set of classes that correspond to the
testing instances may not be disjoint. Here, it is reasonably assumed that this more accurately
represents real-world circumstances. Zero-shot learning, where it is not assumed that the
training and testing classes are disjoint, is called generalized zero-shot learning (GZSL). It is
important to note that GZSL differs from ZSL only in the relationships between the training
and the testing datasets.

Machine learning approaches that have been used to solve the ZSL problem have
also been applied to GZSL [11]. However, to the best of our knowledge, for both ZSL and
GZSL, the proposed model training methods have been evaluated separately. Moreover,
even if they have been compared with each other (in a sub-group), different datasets have
been used in reported experiments. Finally, even if all datasets and classifiers were the
same, only a single performance measure (e.g., Top-1) has been used. However, as shown
in [12,13], in the case of ZSL solvers, different performance measures give different answers
to the question: Which ZSL approach is the most effective? Therefore, the first goal of this
investigation is to experimentally compare the performance of five different approaches to
solving the GZSL problem, when the same (the most popular in the literature) benchmark
datasets are used. In these comparisons, four different performance measures are applied.

Separately, it can readily be seen (see, for instance, [14]) that the existence of a large
number of approaches that can be applied to the same machine learning task results in
attempts to develop meta-classifiers. Here, the term “meta-classifier” denotes software
that takes as its input results from individual classifiers and combines them, with the
intention of obtaining a result that is better than for the best individual classifier. Hence,
the second goal of the experimental work undertaken here is to apply standard state-of-
the-art meta-classifiers and establish if they can improve performance over individual
GZSL approaches.

The remainder of the paper is organized as follows: First, a precise formulation of the
problem is provided in Section 2. Next, in Section 3, a brief summary of pertinent literature
is provided. A comprehensive description of the experimental setup is provided in Section 4.
This is followed by description and analysis of the experimental results obtained in Section 5.
Section 6 summarizes the main findings and suggests future research directions.

2. Problem Formulation

The following mathematical formulation of the GZSL problem has been widely ac-
cepted in the literature. This definition is geared towards an image processing/classification
task, which is the focus of the experimental work reported in this paper. However, after
only minimal modifications, it holds in more general settings. Assume the following:

• let Xs = {(xs
i , ys

i )
Ns
i=1 ∈ Xs × Ts} be the set of seen instances

• and let Xu = {(xu
i , yu

i )
Nu
i=1 ∈ Xu × Tu} be the set of unseen instances,

• where Ts ≡ {1, . . . , NTs} is the set of all seen class labels
• and Tu ≡ {NTs

+ 1, . . . , NTs
+ NTu} is the set of all unseen class labels,

• such that X = Xs ∪ Xu is the set of all instances where Xs ∩ Xu = ∅
• and T = Ts ∪ Tu is the set of all class labels where Ts ∩ Tu = ∅ resulting in NTs

+ NTu

distinct classes.

Given a dataset of image embeddings and their corresponding class labels D =
{(xi, yi) ∈ X × T |i = 1, . . . , Ntr + Nte}, each image is a real D-dimensional embedding
vector comprised of features xi ∈ RD, and each class label is represented by an integer
yi ∈ T . The following is denoted X def

= RD, for generality. The division of the dataset D
results in two subsets: the training and the test sets.
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• The training set – is defined as Xtr = {(xtr
i , ytr

i ) ∈ X × Ttr|i = 1, . . . , Ntr}, such
that ytr

i ∈ Ttr ⊂ T . Let Ytr = {ytr
i ∈ Ttr|i = 1, . . . , Ntr} be the set of class labels

corresponding to the training set Xtr.
• The test set – is defined as Xte = {(xte

i , yte
i ) ∈ X × Tte|i = Ntr + 1, . . . , Ntr + Nte}, such

that yte
i ∈ Tte ⊂ T . Let Yte = {yte

i ∈ Tte|i = Ntr + 1, . . . , Ntr + Nte} be the set of class
labels to be predicted, corresponding to the set Xte.

The goal of generalized zero-shot learning is to deliver a classifier that is trained on the
training set Xtr and that is able to deliver reasonably good classification performance on
the test set Xte. It is apparent that the GZSL setting is nearly infeasible without auxiliary
information associating the labels of the classes from both the training set and the test set,
since some of the training classes are used in conjunction with all of the test classes for testing.

One of the solutions to this problem is to represent each class label y where
1 ≤ y ≤ NTs

+ NTu
by its prototype π(y) = p ∈ P def

= RM—also known in the litera-
ture as its “semantic embedding”—where π(·) is the prototyping function, and P is the
semantic space, or the semantic embedding space. The resulting prototype vectors, ob-
tained from the prototyping function are obtained in such a way that any two class labels y0
and y1 are considered similar, if, and only if, their corresponding prototype representations
π(y0) = p0 and π(y1) = p1 are relatively close in the semantic embedding space P . To
make this concept more specific, consider the following example: the inner product of the
resulting similar prototype vectors in P is large, i.e., 〈π(y0), π(y1)〉P is large. Prototyping
all of the class labels into a joint semantic space, i.e., {π(y)|y ∈ Ttr ∪ Tte}, forces the labels
to become related. In consequence, this alleviates the prior problem of having nearly
disjoint class sets, so that the model can learn from the training set and test its predictions
from the test set.

3. Related Work

Multiple approaches have been proposed to solve the ZLS/GZSL problem. An ex-
tended state-of-the-art summary can be found in [13]. Here, we focus our attention mostly
on work directly related to the GZSL problem. Moreover, since only standard state-of-the
art meta-classifiers are experimented with, their detailed description is omitted (this can be
found in [13]). Details concerning their implementation are summarized in Section 4.2.

There are currently five classes of approaches to the solution of the ZSL/GZSL prob-
lem [11].

1. The first utilizes a linearity factor, i.e., it is based on a learning function that is linear.
Here, for instance, deep visual semantic embedding (DeViSE) [15], attribute label
embedding (ALE) [16], and structured joint embedding (SJE) [17] algorithms use a
bilinear compatibility function, i.e., a symmetrically bilinear mapping, in which the
stochastic gradient descent [18] method is used for learning and is implicitly regular-
ized by early stopping. The “embarrassingly simple approach to zero-shot learning”
approach (ESZSL) [19] uses the square loss error, to learn the bilinear compatibility
function between image embedding and the class values, i.e, class labels, and explic-
itly defines regularization, which regularizes the unregularized risk minimization
formulation with respect to the Frobenius norm. In the semantic autoencoder (SAE)
model, the training instances are projected into the semantic embedding space P with
the projection matrix W, and then projected back into the feature space X , with a
projection matrix W∗, where W∗ is the conjugate transpose.

2. The second group of approaches adds a non-linearity component to the linear compat-
ibility function. Here, the latent embeddings method (LATEM) [20] learns a piecewise
linear compatibility and uses the same ranking loss function as the DeViSE approach,
combined with stochastic gradient descent. LATEM learns multiple mappings cor-
responding to different visual characteristics of the data and uses a latent variable
to select which matrix mapping to use in predictions. The cross modal transfer
(CMT) method, described in [21], trains a two-layer neural network using a non-linear
mapping function tanh.
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3. The third group of approaches uses probabilistic embeddings mapping to the class
values [5]. Here, the direct attribute prediction (DAP) algorithm makes class predic-
tions by combining scores of the learned attribute classifiers, whereas the indirect
attribute prediction (IAP) algorithm approximates the probabilities of the attributes
associated with the training instances by predicting the probabilities of each training
class value.

4. The fourth group of approaches expresses the input image features and the semantic
embeddings as a mixture of seen classes. Here, the semantic similarity embedding
(SSE) method [22] connects class values within both the semantic-embedding space
and the feature-embedding space of the feature vectors. The convex combination
of the semantic embeddings (ConSE) [23] method learns the probability of a feature
vector belonging to a specific class. The synthesized classifiers (SynC) [24] approach
first learns a mapping from the semantic-embedding space to the model space, which
holds the classifiers associating the real class values and what are referred to as
phantom class values. The class values, along with the set of phantom class values,
which are introduced to connect the seen and unseen class values, form a weighted
bipartite graph. The objective of SynC is to align the semantic-embedding space and
the model space, resulting in reducing the distortion error. The generative framework
for the zero-shot learning (GFZSL) [25] method applies generative modeling. Here,
each class-conditional distribution is modeled as a multivariate Gaussian distribution.

5. Finally, in the fifth set of models, during training, both seen and unseen classes are
included in the training data. The discriminative semantic representation learning
(DSRL) method [26] can be applied to any method that is based on a compatibility
learning function, i.e., a mapping of the image embeddings to class labels. It learns
the feature-embedding vectors from the training instances with non-negative matrix
factorization and aligns the feature-embedding vectors with the semantic-embedding
vectors of their corresponding class values.

Taking into account the results of the literature review, and the goals of the project
that this work is a part of, the following question is raised: Which classifiers should be
experimented with? While testing them all is tempting, it would require a lot of resources
and would not fit into a single report. Upon further reflection, it was decided that testing
representatives of all five groups of approaches (e.g., one per group) could result in a lot
of questions concerning the selection process and the fairness of comparison (since each
class of approaches addresses the ZSL/GZSL problem from a very different perspective).
Therefore, it was decided that a reasonable first step would be to comprehensively explore
approaches belonging to the first class, where a large number of methods have already been
proposed. Hence, five individual classifiers belonging to the first class of approaches and
implementing different linear factors, i.e., DeViSE, ALE, SJE, ESZSL and SAE, were chosen.
This decision was supported by the fact that all these approaches have been explored in [11],
which can be treated as the basis on which a further, relatively fair, comparison of results
can be made.

4. Experimental Setup

In the following sections, the key aspects of the experimental setup are discussed,
including: (1) implementation details of the ZSL/GZSL algorithms, (2) implementation
details of the meta-classifiers, (3) performance measures applied to the obtained results,
and (4) the datasets used in the experiments.

4.1. Individual Classifier Implementations

Individual classifiers were taken from the sources reported in the respective publica-
tions (see Section 3). Details concerning their implementation have been reported in [12,13].
In the context of GZSL, before proceeding with the actual experiments, light hyperpa-
rameter tuning was performed. Specifically, for each classifier and for each dataset (see
Section 4.4), a series of ten experiments was performed. Each time the hyperparameters
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were slightly shifted in a direction where better results would be anticipated (see also
[12,13]). In these experiments, the Top-1 accuracy measure was used (see Section 4.3) to
assess performance. The final values of the hyperparameters for each of the individual
classifiers and for each dataset are summarized in Table 1. Here, it must be stressed that,
while these hyperparameter values delivered the best accuracy for the experiments per-
formed, it is not claimed that they are the optimal values. It is possible, and quite likely, that
there exist hyperparameters that would result in better performance for each individual
classifier, for each dataset and, as will be shown, for each separate performance measure.
However, searching the complete hyperparameter space was beyond the scope of this in-
vestigation. Instead, it was assumed that a reasonably good set of hyperparameters should
be applied for each classifier and dataset and used to compare classifier performance for
the performance measures considered.

Table 1. Hyperparameters used in experiments for each individual classifier and dataset.

CLF CUB AWA1 AWA2 aPY SUN

DeViSE
lr = 1 lr = 0.01 lr = 0.001 lr = 1 lr = 0.01

mr = 1 mr = 200 mr = 150 mr = 1 mr = 3
norm = L2 norm = std norm = std norm = L2 norm = None

ALE lr = 0.3 lr = 0.01 lr = 0.01 lr = 0.04 lr = 0.1
norm = L2 norm = L2 norm = L2 norm = L2 norm = L2

SJE
lr = 0.1 lr = 1 lr = 1 lr = 0.01 lr = 1

mr = 4.0 mr = 2.5 mr = 2.5 mr = 1.5 mr = 2
norm = std norm = L2 norm = L2 norm = None norm = std

ESZSL γ = 3 γ = 3 γ = 3 γ = 2 γ = 3
λ = 0 λ = 0 λ = 0 λ = 0 λ = 2

SAE λ1 = 80 λ1 = 3.2 λ1 = 0.8 λ1 = 0.16 λ1 = 0.32
λ2 = 0.2 λ2 = 0.8 λ2 = 0.2 λ2 = 2.56 λ2 = 0.08

In Table 1, lr denotes the learning rate; λ1 and λ2 are the weighting coefficients of the
Sylvester equation for the encoder and the decoder, respectively. The image embedding
normalization functions that have been used are: the Euclidean norm denoted as L2 and
the standardization of features, which changes the mean and scales to unit variance. The
latter, for the training instance vector x, is defined as follows:

||x||std =
x− x̄
s(x)

, (1)

where x̄ is the mean of the training instances, defined as

x̄ =
∑Ntr

i=1 xi

Ntr
, (2)

and s(·) is the standard deviation of the training instances, defined as follows:

s(x) =

√
∑Ntr

i=1(xi − x̄)2

Ntr
. (3)

Finally, mr is the margin value, which is used by each individual classifier. It applies
to the stochastic gradient descent approach for optimization in DeViSE, ALE and SJE.

4.2. Meta-Classifier Implementations

Six standard state-of-the-art meta-classifiers were tested, namely, meta-decision tree
(MDT) [27], deep neural network (DNN) [28], a game-theory-based approach (GT) [29], an
auction-based model (Auc) [29], a consensus-based approach (Con) [30], and a simple ma-
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jority voting approach (MV) [31]. Here, GT, Auc, Con and MV classifiers were implemented
exactly as described in the cited literature.

The implementation of the MDT differs from that described in [27] by not applying the
weight condition on the individual classifiers. The weight condition is defined as a function,
which returns the fraction of the training examples that have been used by the individual
classifier to estimate the class distribution for a given training instance. Since, in the case
of the experiments performed, each individual classifier uses the entirety of the dataset,
weighting is irrelevant.

Finally, a simple neural network was implemented for the DNN. It included two
hidden layers using the rectified linear activation function. The stochastic gradient descent
algorithm was applied as an optimization function for the network, where the mean
squared error loss function was used.

Again, as in the case of individual classifiers, the goal was not to create the most
powerful meta-classifier for a given context, but to implement standard state-of-the-art
meta-classifiers and reflect on their potential in the context of GZSL. Therefore, the same
approach that was used to obtain the hyperparameters for the individual classifiers (see
[12,13] and Section 4.1), was applied to obtain the MDT hyperparameters, which are
summarized in Table 2.

Table 2. Meta Decision Tree Hyperparameters.

Hyperparameter CUB AWA1 AWA2 aPY SUN

α 1 0.013 0.185 0.0101 3.21
β 1 0.16632 0.185 0.159171 3.21

The α hyperparameter is the maximum displacement value and the β hyperparameter
is the entropy displacement value. The learning rate of the DNN meta-classifier was set to
1× 10−4.

The implementation of both the individual and the meta-classifiers was carried out from
scratch; the resulting code that was used in the experiments can be found in the Github repository
(https://github.com/Inars/Zero-Shot_Learning_for_Object_Recognition_and_Classification, ac-
cessed on 1 July 2020).

4.3. Performance Measures

In all the experiments undertaken, the accuracy of the classifiers was assessed using
four accuracy measures: Top-1 (T1), Top-5 (T5), logarithmic loss (LogLoss) and the F1
score (F1).

The T1 accuracy, as described in [11], was measured for the single label image classifi-
cation. In this case, the prediction is accurate whenever the predicted class corresponds to
the ground truth. However, for the ZSL/GZSL the concern is with obtaining high perfor-
mance, even for sparsely populated classes. Therefore, the T1 accuracy was measured by
averaging the class accuracy of each class independently, in the following way:

accY =
1

NTs + NTu

NTs
+NTu

∑
c=1

# correct predictions in c
# samples in c

(4)

The T5 accuracy was measured in the same way as the T1 accuracy. Here, the prediction
was considered correct whenever one of the top five predicted classes was true. In the
context of ZSL/GZSL, the T1 accuracy can be seen as a measure of exact precision, while
the T5 accuracy measures the robustness of the approach.

Next, the F1 score [32], which calculates the precision and robustness, i.e., the recall of
the model, was used. Finally, since this research focuses on generalized zero-shot learning,
where the search space at evaluation time is composed of training and test classes (where
ci ∈ T ), a further accuracy measure is typically applied; specifically, the harmonic mean of

https://github.com/Inars/Zero-Shot_Learning_for_Object_Recognition_and_Classification


Information 2022, 13, 561 7 of 16

the training accuracy and the test accuracy is computed. The harmonic mean is selected, in-
stead of the arithmetic mean, because the harmonic mean is not significantly affected by the
potentially large difference(s) between the training accuracy and the testing accuracy [33].
The harmonic mean can be seen as a way to capture variance in the differences.

Note that most predictions of the models are not probabilistic; therefore, the predic-
tion values were converted into a probabilistic distribution by applying the normalized
exponential function [34], also known as the softmax function. The normalized exponential
function σ is a function that normalizes the input vector z = (z1, . . . , zk)

T ∈ Rk into a
probability distribution consisting of k probabilities.

4.4. Datasets Used in Experiments

From the many datasets found in the literature in the context of the GZSL problem,
five of the most widely used were selected for this study, namely: Caltech-UCSD-Birds 200-
2011 (CUB) [35], Scene UNderstanding (SUN) [36], Animals with Attributes 1 (AWA1) [5],
Animals with Attributes 2 (AWA2) [11], and Attribute Apascal&Ayahoo (aPY) [37].

Each of these five datasets forms a continuous attribute space. All the datasets consist
of image embeddings. In the experiments undertaken, the dataset splitting followed the
suggestions in [11], as represented in Table 3. Here the scalars Nte

tr and Nte
te denote the

number of instances used during the testing phase; the type of dataset is displayed in the
“detail” column, and the number of semantic attributes is displayed in the “M” column.

Table 3. Statistics for the Datasets.

DS Detail M NTs
+ NTu |Ttr | |Tte| Ntr + Nte Ntr Nte

tr Nte
te

CUB fine 312 200 100 + 50 50 11,788 7057 1764 2967
AWA1 coarse 85 50 27 + 13 10 30,475 19,832 4958 5685
AWA2 coarse 85 50 27 + 13 10 37,322 23,527 5882 7913
aPY coarse 64 32 15 + 5 12 15,339 5932 1483 7924
SUN fine 102 717 580 + 65 72 14,340 10,320 2580 1440

The aPY dataset consists of two datasets, the Pascal dataset and the Yahoo dataset,
merged into one. It is a coarse-grained dataset consisting of 32 classes. Of the 32 classes
available, 20 classes provided from the Pascal dataset are used for training. The 12 classes,
provided by the Yahoo dataset are used for testing. Of the 20 classes from the Pascal
dataset, five classes are selected randomly to serve as validation classes. The aPY dataset
consists of 64 attributes, describing the classes forming the semantic embedding space.

The AWA1 dataset is a coarse-grained dataset, consisting of 50 classes. Of these
50 classes, 40 classes are used for training, with 13 randomly selected for validation. The
remaining 10 classes are used for testing. The AWA1 dataset consists of 85 attributes. In
terms of the number of image instances, the AWA1 dataset consists of a total of 30,475 im-
age instances.

Like AWA1, AWA2 was introduced in [11] for use as an alternative, since the images on
the AWA1 dataset are not available for public use. The AWA2 dataset is publicly available.
Here, recall that in this investigation the images themselves were not actually needed, as
only the features that were extracted from them were used. This is why we were able
to experiment with both AWA1 and AWA2 datasets. AWA2 is a coarse-grained dataset,
consisting of 50 of the same classes used in the AWA1 dataset. The AWA2 dataset consists
of the same 85 attributes used in the AWA1 dataset. Unlike AWA1, the AWA2 dataset
consists of 37,322 image instances from public web sources, protected under a free-use and
redistribution licence, none of which overlap with the images from the AWA1 dataset. In
a similar way to how the AWA1 dataset is split, of the 50 available classes in AWA2, 40
classes are used for training, with 13 randomly selected for validation and the remaining
10 classes used for testing.

The CUB dataset is a fine-grained dataset in terms of both the number of classes and
the number of images and consists of 200 classes of bird species and 11,788 bird images. Of
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the 200 available classes, 150 classes are used for training, with 50 randomly selected for
validation and the remaining 50 classes used for testing. The classes in the CUB dataset are
annotated with 312 attributes forming the continuous attribute space.

The SUN dataset is a fine-grained dataset in terms of both the number of classes and
the number of images available. It consists of 717 classes of different scenes and comprises
a total of 14,340 images. Of the 717 available classes, 645 classes are used for training,
with 65 randomly selected for validation and the remaining 72 classes used for testing.
The classes in the SUN dataset are annotated with 102 attributes forming the continuous
attribute space.

All five datasets used in the experimental procedure already include the feature vectors,
which contain the features extracted from the image instances provided within each dataset.
Since feature extraction to form the feature space is not the focus of this investigation, it
was assumed that the datasets provided in [11] were sufficient. Therefore, various feature
extraction techniques, such as ResNet, were not applied (e.g., as a preprocessing step) to
the images provided in the datasets.

5. Experimental Results and Their Analysis

As stated above, the first goal of the experiments undertaken was to evaluate and
compare the behavior of the five individual classifiers. The second goal was to explore the
performance of the six meta-classifiers, including a comparison of their performance with
the individual classifiers.

5.1. Experiments with Individual Classifiers

The first set of results represents the T1 accuracy and is summarized in Table 4. Here,
as defined in Section 2, Ytr represents the set of training class labels, Yte denotes the set
of testing class labels, while Ĥ represents the harmonic mean of the two (as described in
Section 4.3).

The first group of rows copies results found in [11] (where only the T1 measurement
was used to assess the performance), whereas the second group of rows displays the results
obtained during the experiments undertaken (in-house implementation). Moreover, the
first row of the results reported for the SAE classifier for the in-house implementation
represents the accuracy obtained from the encoder, whereas the second row represents the
accuracy obtained from the decoder. Finally, for each classifier and for each dataset, the
“best” results are marked in bold font.

Table 4. Individual Classifier Results for the Top-1 Accuracy.

DS CUB AWA1 AWA2 aPY SUN

CLF f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ

Results reported in [11]

DeViSE 23.8 52 32.8 13.4 68.7 22.4 17.1 74.7 27.8 3.5 78.4 6.7 16.9 27.4 20.9
ALE 23.7 62.8 34.4 16.8 76.1 27.5 14 81.8 23.9 4.6 73.7 8.7 21.8 33.1 26.3
SJE 23.5 59.2 33.6 11.3 74.6 19.6 8 73.9 14.4 1.3 71.4 2.6 14.4 29.7 19.4
ESZSL 14.7 56.5 23.3 6.6 75.6 12.1 5.9 77.8 11 2.4 70.1 4.6 11 27.9 15.8
SAE 7.8 54 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9 8.8 18 11.8

In-House Implementation

DeViSE 23.41 61.96 33.98 18.01 84.41 29.69 17.3 71.78 27.88 4.12 76.28 7.8 18.54 32.75 23.68
ALE 26.07 62.74 36.83 13.46 80.14 23.05 12.15 77.59 21.01 10.26 69.85 17.9 23.68 37.13 28.92
SJE 22.82 60.8 33.19 9.93 79.29 17.64 10.48 78.82 18.5 6.26 73.31 11.54 18.75 33.37 24.01
ESZSL 14.7 56.53 23.34 5.29 86.84 9.98 4.04 88.83 7.72 2.25 81.07 4.39 13.75 28.41 18.53

SAE 13.86 49.88 21.69 5.29 80.52 9.92 5 81.42 9.42 8.28 27.97 12.77 16.81 24.69 20
15.72 57.02 24.64 14.72 82.93 25 13.86 87.2 22.41 9.48 56.62 16.24 19.03 31.2 23.64

The following observations can be made based on the results presented in Table 4,
where experiments based on in-house implementation are compared with the results
presented in [11]. Note that, if the difference between the results is within ±5% they are
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considered to be close enough to be considered indistinguishable. This is stipulated since,
as stated earlier, the aim of this investigation was not to fine-tune the hyperparameters, but
to fairly compare the performance of different approaches to GZSL.

• In-house implementation of DeViSE—obtained a 7.29% increase in accuracy (over
results reported in [11]) for the AWA1 dataset.

• ALE—achieved a 9.2% increase in accuracy for the aPY dataset.
• SJE—delivered an 8.98% increase in accuracy for the aPY dataset.
• ESZSL—produced similar results on all five datasets.
• SAE—achieved an 8.09%, a 6.42%, a 7.22%, an 11.87% and an 8.2% increase in accuracy

for the CUB, AWA1, AWA2, aPY and SUN datasets, respectively.

In summary, the results for in-house implementation were of slightly better perfor-
mance than the results reported in [11]. However, the results were relatively close (within
10%) and the difference probably originated from differences in hyperparameter tuning.
Overall, these results support each other as representing a fair estimate of the current
state-of-the-art accuracy of GZSL solvers for the T1 performance measure.

With respect to the results originating from the in-house implementation of individual
classifiers (see Section 4.1) reported in the bottom part of Table 4, it can be seen that: (i) ALE
produced the highest accuracy value on the CUB, SUN and aPY datasets (38.83%, 17.9%
and 28.92%, respectively), whereas DeViSE achieved the highest accuracy values on both
the AWA1 and AWA2 datasets (29.69% and 27.88%, respectively); (ii) none of SJE, ESZSL
or SAE outperformed the remaining classifiers for any of the five datasets; (iii) for the
harmonic means results, only DeViSE, ALE and SJE were above 30% for the CUB dataset;
(iv) all of the individual classifiers performed considerably worse on the aPY dataset than
on the other datasets. This result is consisten with that reported in [12,13] for the ZSL
settings. It also corresponds to the pattern of results reported in [11]; and finally, (v) there
was a significant drop in accuracy across the board compared to the results from the ZSL
experiments reported in [12,13]. The reason for this drop was the availability of the seen
classes taken from the source domain Ttr during the testing phase in the target domain Tte.
In other words, the fact that Ttr ∩ Tte 6= ∅. Here, the seen classes acted as “deterrence” for
the individual classifiers, since they were trained to exclusively classify the seen classes
from the source domain, while no unseen class from the target domain was present during
the training phase. This gave the seen classes “an edge” over their counterparts, i.e., an
increased bias during the prediction process. This resulted in the seen classes having a
higher selection rate than their unseen counterparts. As a consequence, this reduced the
overall accuracy of the individual classifiers.

The remaining experimental results, reported below, could not have been compared
to others, as, to the best of our knowledge, no fully comparable results obtained for the
same approaches, with the same datasets, with the same performance measures, exist in
the literature. The first set of results was obtained for the T5 accuracy and is reported in
Table 5. Here, again, the “best” results are marked in bold font.

Table 5. Individual Classifier Results for the T5 Accuracy.

DS CUB AWA1 AWA2 aPY SUN

CLF f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ

DeViSE 59.6 87.6 70.9 69.3 98.0 81.2 66.9 96.8 79.1 58.3 93.0 71.7 47.3 62.8 54.0
ALE 65.6 89.5 75.7 23.1 80.1 60.0 62.7 97.8 76.4 54.2 98.1 69.8 57.1 69.2 62.6
SJE 62.8 86.7 72.9 66.0 96.6 78.4 66.3 97.0 78.8 51.0 93.3 65.9 48.3 64.1 55.1
ESZSL 58.7 86.5 69.9 63.9 97.8 77.3 63.0 98.4 76.8 40.9 97.8 57.7 42.5 58.4 49.2

SAE 13.9 51.9 21.8 15.1 83.2 25.5 14.6 84.0 24.8 16.6 36.5 22.8 19.0 25.0 21.6
15.7 57.8 24.7 23.1 84.6 36.3 21.3 88.4 34.3 17.8 57.9 27.2 21.0 31.5 25.2

The following observations follow from the results reported in Table 5: (A) DeViSE
produced the highest performance on the AWA1, AWA2 and aPY datasets (81.22%, 79.09%
and 71.65%, respectively); (B) ALE achieved the best overall performance on both the CUB
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and SUN datasets (75.71% and 62.57%, respectively); (C) all of the reported results were
less than 80%; (D) The SUN dataset appeared to be the “hardest” dataset when the T5
performance measure was applied; finally, (E) SAE performed the worst. Most of the
values of SAE for the T5 measure were relatively similar to one another across all five
datasets. This should be taken into account when comparing the values of SAE for the T5
measurement to the values for the T1 measure.

The next set of results relate to the performance of the five classifiers, measured
according to LogLoss accuracy. The results are summarized in Table 6. Note that, here, the
lowest value is the “best”; the best results are marked in bold font).

Table 6. Individual Classifier Results for the LogLoss Accuracy.

DS CUB AWA1 AWA2 aPY SUN

CLF f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ

DeViSE 5.24 5.23 5.23 3.48 3.00 3.22 3.38 2.95 3.15 3.47 3.31 3.39 6.53 6.53 6.53
ALE 5.29 5.29 5.29 3.90 3.90 3.90 3.91 3.91 3.91 3.56 3.44 3.50 6.57 6.57 6.57
SJE 4.90 4.40 4.62 3.78 3.78 3.78 3.81 3.77 3.79 3.47 3.47 3.47 6.88 6.48 6.67
ESZSL 3.78 3.43 3.59 2.93 2.18 2.50 2.92 2.13 2.46 4.67 1.79 2.57 5.63 5.57 5.60

SAE 4.98 4.92 4.95 3.69 3.51 3.6 3.67 3.46 3.56 3.38 3.03 3.20 6.21 6.18 6.19
5.05 5.01 5.03 3.66 3.51 3.58 3.63 3.43 3.52 3.5 2.87 3.15 6.23 6.19 6.21

Comparing the results in Table 6, the following observations can be made: (a) ESZSL
achieved the lowest values on both the AWA1 and aPY datasets (1.41 and 2.3, respectively);
(b) ESZSL achieved the lowest values for each of the CUB, AWA1, AWA2, aPY and SUN
datasets (3.59, 2.5, 2.46, 2.57 and 5.6, respectively). When evaluated from the LogLoss
perspective, the SUN dataset again appeared to be the most difficult to deal with.

Finally, in Table 7, the performance of the five individual classifiers is compared in
terms of the F1 measure. Here, the “best” (highest) values are marked in bold font.

Table 7. Individual Classifier Results for the F1 Accuracy.

DS CUB AWA1 AWA2 aPY SUN

CLF f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ

DeViSE 0.24 0.62 0.34 0.15 0.88 0.26 0.09 0.80 0.16 0.03 0.76 0.06 0.19 0.33 0.24
ALE 0.26 0.62 0.37 0.12 0.87 0.22 0.07 0.86 0.13 0.05 0.74 0.10 0.24 0.37 0.29
SJE 0.23 0.6 0.33 0.1 0.86 0.18 0.07 0.86 0.13 0.03 0.74 0.06 0.19 0.33 0.24
ESZSL 0.15 0.56 0.23 0.07 0.9 0.13 0.04 0.92 0.08 0.01 0.83 0.02 0.14 0.28 0.19

SAE 0.26 0.50 0.22 0.06 0.83 0.11 0.05 0.85 0.09 0.05 0.23 0.09 0.17 0.25 0.20
0.26 0.59 0.36 0.28 0.86 0.43 0.21 0.90 0.35 0.05 0.70 0.10 0.31 0.32 0.31

The following observations can be made on the basis of the results reported in Table 7:
(1) The ALE algorithm achieved the highest performance on the CUB, aPY and SUN
datasets (0.37, 0.1, and 0.29, respectively); (2) DeViSE achieved the highest values on the
AWA1 and AWA2 datasets (0.26 and 0.16, respectively); and (3) the aPY dataset was the
hardest to deal with when the F1 accuracy measure was applied.

Overall, on the basis of all the experiments performed, similar conclusions can be
drawn to those reported in [12,13]: (i) Different performance measures promoted different
GZSL approaches; (ii) the aPY and SUN datasets were the most difficult to classify, depend-
ing on the performance measure that was being used. This differed from the ZSL settings,
where only the aPY dataset was found to be difficult; and (iii) none of the individual classi-
fiers can be considered “the best”. Moreover, none of the classifiers delivered particularly
good results, regardless of the dataset and performance measure used to evaluate it.

The concern to identify the best overall approach was addressed in [13] by introducing
a competitive scoring scheme. Specifically, each of the five classifiers was assigned scores
from 5 to 1 for each dataset for each performance measure, depending on its result (the best
performance received 5 points, while the worst received 1 point). Next, the results were



Information 2022, 13, 561 11 of 16

added. The same approach to representing “robustness” for all classifiers was applied; the
results are displayed in Table 8. The “best” results for each dataset, and overall, are marked
in bold.

Table 8. Individual Classifier Combined Performance.

CLF CUB AWA1 AWA2 aPY SUN Total

DeViSE 13 19 19 14 13 78
ALE 16 11 11 15 17 70
SJE 14 12 13 12 13 64

ESZSL 11 12 11 10 10 54
SAE 6 6 9 12 10 43

The observations from Table 8 can be summarized as follows: (A) DeViSE performed
best for the AWA1 and AWA2 datasets and also obtained the best overall result (78 points);
(B) ALE performed the best for the CUB, aPY, and SUN datasets; and (C) SAE performed
the worst for almost all datasets, as well as overall.

These results differ from these reported in [12,13], where the best overall score was
reported for the ESZSL classifier. Overall, for the GZSL problem, if specific characteristics
of the dataset are not known beforehand, the DeViSE approach may be the one to try first.
However, the results obtained strengthen the view that much more work is needed to
develop a deeper understanding of the relationships between datasets, approaches and
performance measures with respect to the GZSL problem.

5.2. Performance of Meta-Classifiers

The second part of the investigation concerns the experimental evaluation of the
performance of meta-classifiers. Here, the T1 accuracy results are summarized in Table 9.
The “best” results are marked in bold font.

Table 9. Meta-Classifier Results for the T1 Accuracy.

DS CUB AWA1 AWA2 aPY SUN

CLF f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ

MV 21.98 66.83 33.08 8.76 84.01 15.87 7.34 81.61 13.48 3.24 80.36 6.23 22.64 37.6 28.26
MDT 25.96 75.89 38.69 20.21 80.01 32.27 20.4 80 32.51 38.53 62.65 47.72 11.02 90.01 19.63
DNN 25.9 75.89 38.62 20.18 80.05 32.23 20.46 80.02 32.59 38.53 64.17 48.15 11.16 90.06 19.86
GT 26.45 75.49 39.17 20.86 80.59 33.14 21.03 80.24 33.33 38.62 64 48.17 10.36 90.06 18.58
Con 25.97 75.71 38.67 20.18 80.05 32.23 21.42 80.3 33.82 37.92 64.84 47.85 10.91 90.08 19.47
Auc 25.96 75.89 38.69 20.18 80.05 32.23 20.46 80.03 32.59 38.53 62.65 47.72 10.77 90.03 19.25

The following key information can be derived from the results reported in Table 9:
(i) The GT achieved the highest performance for the CUB, AWA1 and aPY datasets (39.17%,
33.14% and 48.17%, respectively); (ii) Con achieved the highest overall T1 accuracy for
the AWA2 dataset (33.82%); (iii) MV achieved the highest T1 accuracy value for the SUN
dataset (28.26%); (iv) these results imply that none of MDT, DNN or Auc achieved the best
scores for any single dataset; (v) all the results were below 50% accuracy; (vi) all the results
obtained were higher than those reported in Table 4; (vii) the largest difference was for
the ESZSL classifier and the AWA2 dataset (69.07%), while the smallest was for the SAE
classifier and the CUB dataset (0.12%); and (viii) the SUN dataset was found to be the most
difficult when the performance of the meta-classifiers was measured in terms of the T1
accuracy measure.

It is important to note that the T5 accuracy was not reported, as some meta-classifiers,
e.g., DNN, returned the individual classifier result as an output. Hence, since the exper-
imentation was undertaken for five individual classifiers, the resulting accuracy of the
meta-classifier using the T5 measure would always be 100%, regardless of the correctness
of the output.
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For use of the F1 accuracy measure to assess the performance of the meta-classifiers,
the results are summarized in Table 10 (bold-font-marked results are “the best”).

Table 10. Meta-Classifier Results for the F1 Accuracy.

DS CUB AWA1 AWA2 aPY SUN

CLF f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ f (Ytr) f (Yte) Ĥ

MV 0.66 0.22 0.33 0.89 0.09 0.17 0.88 0.06 0.1 0.81 0.02 0.03 0.38 0.23 0.28
MDT 0.12 0.36 0.19 0.01 0.02 0.02 0.02 0.02 0.02 0.1 0.02 0.03 0.11 0.1 0.1
DNN 0.12 0.36 0.18 0.02 0.01 0.02 0.02 0.02 0.02 0.11 0.67 0.19 0.12 0.1 0.11
GT 0.16 0.2 0.18 0.1 0.3 0.2 0.12 0.01 0.1 0.11 0.12 0.11 0.03 0.1 0.05
Con 0.12 0.29 0.17 0.28 0.39 0.32 0.16 0.11 0.13 0.05 0.17 0.07 0.1 0.12 0.11
Auc 0.19 0.36 0.19 0.01 0.02 0.02 0.02 0.03 0.02 0.11 0.02 0.03 0.12 0.1 0.11

The following observations can be derived from Table 10: (a) MV achieved the highest
values for the CUB and SUN datasets (0.33 and 0.28, respectively); (b) Con achieved the
highest performance for the AWA1 and AWA2 datasets (0.32 and 0.13, respectively); (c)
DNN achieved the highest accuracy score for the aPY dataset (0.19); (d) none of MDT,
GT or Auc achieved the best accuracy score for any dataset; (e) all of the reported results
were below 0.4; (f) the obtained results were comparable to, but somewhat worse than, the
results reported in Table 7; and (g) the AWA2 dataset was the most difficult using the F1
accuracy measure.

Comparing the results obtained when applying the F1 accuracy score to the meta-
classifiers with those obtained for the individual classifiers, it can be seen that the meta-
classifiers performed better than the individual classifiers on the AWA1 and aPY datasets
(0.32 and 0.28 compared to 0.26 and 0.1, respectively). At the same time, the individual
classifiers obtained better results on the CUB, AWA2, and SUN datasets (0.37, 0.17 and 0.29
compared to 0.33, 0.13 and 0.28, respectively).

Using the method of competitive point distribution described above to measure the
combined performance of the individual classifiers, the results calculated for the meta-
classifiers are reported in Table 11 (“best” results reported in bold font). Both the perfor-
mance measures, T1 and F1, were combined for the meta-results. The top scorer, in a given
category, is given six points, since there are six meta-classifiers.

Table 11. Meta-Classifier Combined Performance.

CLF CUB AWA1 AWA2 aPY SUN Total

MV 8 7 7 5 12 39
MDT 9 8 7 6 8 38
DNN 7 7 8 11 10 43
GT 10 11 10 11 4 46
Con 8 10 12 8 8 46
Auc 9 7 8 6 7 37

The following can be noted on the basis of the results reported in Table 11: (A) GT
performed the best for the CUB and AWA1 datasets and obtained one of the best overall
results alongside Con (total score for both equal to 46 points), which achieved the best score
for the AWA2 dataset; (B) GT and DNN performed the best for the aPY dataset; (C) MV
performed the best for the SUN dataset; and (D) Auc performed the worst overall (both on
individual datasets and for combined performance).

Finally, the same competitive score combination method was applied jointly to both
the meta-classifiers and the individual classifiers. For obvious reasons, only the T1 and
the F1 accuracy measures were taken into account; since 11 classifiers were compared,
the top score was 11 points. The results are displayed in Table 12 (bold font marks the
“best” results).
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Table 12. Individual Classifier and Meta-Classifier Combined Performance.

CLF CUB AWA1 AWA2 aPY SUN Total

DeViSE 16 18 18 11 17 80
ALE 18 16 16 16 22 88
SJE 14 13 15 12 18 72

ESZSL 11 9 9 7 8 44
SAE 9 8 11 14 15 57
MV 13 11 13 9 20 66

MDT 16 13 14 14 10 67
DNN 13 12 15 21 12 73
GT 16 17 19 21 6 79
Con 13 20 21 17 10 81
Auc 16 12 15 14 9 66

Observations that can be made from the results reported in Table 12 are detailed below:

• For the individual classifiers – ALE obtained the highest score on both the CUB and
SUN datasets (18 and 22), as well as the highest overall score (88). Only ALE achieved
a score of 20 or higher on any given dataset. DeViSE, ALE and SJE obtained overall
scores of 60 or higher, whereas ESZSL and SAE scored below this threshold.

• For the meta-classifiers – Con obtained the highest score on both the AWA1 and AWA2
datasets (20 and 21); DNN and GT both obtained the highest score for the aPY dataset;
MV, DNN, GT and Con obtained scores of 20 or higher for any given dataset. All the
meta-classifiers achieved an overall score of 60 or higher, with half achieving overall
scores of above 70.

• When comparing individual and meta-classifiers, half of the meta-classifiers obtained
total scores higher than 70, whereas less than half of the individual classifiers did.

• None of the meta-classifiers obtained total scores of less than 60, while three of the
five individual classifiers did.

• Only ALE obtained a score of 20 or above on an individual dataset, whereas four of
the six (i.e., two-thirds) of the meta-classifiers reached this level.

• Unlike the conclusions presented in [12,13] for the ZSL problem setting, where the
simpler meta-classifiers (e.g., MV) gave better results, in the case of the GZSL problem,
the more complex meta-classifiers (e.g., DNN) delivered better results.

Overall, it can be concluded that, in GZSL settings, selection of the “best approach” is
very much context-dependent. With “inside knowledge” of the characteristics of the dataset
and/or the aims for obtaining fine-tuned results for a given performance measure, this can
be achieved using one of the individual classifiers. On the other hand, when the goal is to
solve the problem, while avoiding the “worst case scenario”, then, use of meta-classifiers
is desirable.

6. Concluding Remarks and Future Research Directions

The aim of this investigation was to experimentally study two different aspects of the
generalized zero-shot learning problem. The first involved a comprehensive evaluation
of five different approaches (DeViSE, ALE, SJE, ESZSL and SAE) for solving the GZSL
problem, using five standard benchmarking datasets (CUB, AWA1, AWA2, aPY and SUN),
applying four performance measures. The second involved a preliminary assessment of
the performance of six standard state-of-the-art meta-classifiers—MV, MDT, DNN, GT, Con
and Auc—applied to the results obtained by the five individual GZSL classifiers.

Similar to the conclusions presented in [12,13], at this stage of research, there appears
to be no single best overall classifier for the GZSL problem, since the performance of the
existing classifiers depends on the dataset and the applied performance measure used.
Thus, determining which classifier to use will depend on the data and the goals. For
instance, a classifier may be applied when the single best result is important and a different
one used when the total performance for the five best results matters.
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Another important finding is that the meta-classifiers seem to be valuable as an
approach geared towards avoiding performance pitfalls, when it is not clear which solver
should be tried. Here, despite their performance ceiling, MV, MDT and DNN performed
comparably well. However, the non-constrained models, GT and Con, achieved the best
performances when applied to the GZSL problem.

With respect to future work, first and foremost, it is clear that much more work is
needed to develop novel approaches to obtain satisfactory results for the GZSL problem.
More work is needed to develop a better understanding of the relationships between
the characteristics of the dataset, the method used to solve the GZSL problem, and the
performance measure that is being used. There is an obvious need to introduce additional
datasets that can be used to gain more knowledge about such relationships. Moreover,
studies similar to this one should be undertaken to include methods belonging to other
categories of ZSL/GZSL solvers (see Section 3). Finally, similar to the research reported,
for instance, in [38], more refined meta-classifiers or meta-learning systems need to be
developed and investigated to address the ZSL/GZSL problem. Combining the knowledge
obtained following these research projects may result in better understanding of which
approaches can raise the quality of available solutions to the next level.
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Abbreviations
The following abbreviations are used in this manuscript:

ZSL Zero-shot learning
GZSL Generalized zero-shot learning
DeViSE Deep visual semantic embedding
ALE Attribute label embedding
SJE Structured joint embedding
ESZSL Embarrassingly simple approach to zero-shot learning
SAE Semantic autoencoder
MDT Meta-decision tree
DNN Deep neural network
GT Game-theory-based approach
Auc Auction-based model
Con Consensus-based approach
T1 Top-1
T5 Top-5



Information 2022, 13, 561 15 of 16

LogLoss Logarithmic loss
F1 F1 score
CUB Caltech-UCSD-Birds 200-2011
SUN Scene UNderstanding
AWA1 Animals with Attributes 1
AWA2 Animals with Attributes 2
aPY Attribute Apascal&Ayahoo
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