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A new block elimination method for bordered systems is proposed and its numerical
properties are analysed. In the case where the leading principal block is ill-conditioned or
singular and the method becomes unstable a perturbation approach is used to enhance the
stability. Results of experiments performed on the SGI Power Challenge 8000 and on the
Cray J-9x illustrate the performance of the new algorithm and compare it with the current
best approach. It is shown that the new method works faster while preserving stability.

1. Introduction

Consider a linear system of equations Mz = b, where M € RUFTM*(+m) jg non_gingular,
z, b € RUtmx1 where

n o om
LA LT G L
M_m(C D)’ E_m(y)’ b_n:-:(g)'

We are primarily interested in the case where m is very small in comparison with n and the
matrix A is sparse, structured and ill-conditioned, or singular. Such problems arise in e.g.
the parallel solution of banded systems (Hajj & Skelboe, 1990), numerical continuation
and bifurcation (Chan (1984), Decker & Keller (1980), Keller (1983), Werner (1996)),
symmetry-breaking bifurcations (Werner & Spence, 1984), constrained optimization (Gill
et al., 1981) and domain decomposition methods (Barlow & Vemulapati, 1990).
Typically, a standard black-box solver is applied to matrix A. When A has a special
structure (e.g. banded, block diagonal, sparse) an appropriate structure-oriented linear
solver can be applied, thus significantly accelerating the solution process. However, when
A 1s ill-conditioned or singular a standard solver is likely to produce incorrect results.
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A stable solver can be applied to the whole matrix M but the computational cost (time)
increases considerably because the structure of matrix A is not utilized.

Several algorithms have been proposed (Chan & Resasco (1986), Govaerts (1991),
Govaerts & Pryce (1993)) that utilize information about the structure of A and allow
a stable computation of the solution z. A method proposed in Chan & Resasco (1986)
involves computing several singular vectors of A. In addition, at least 3m + 1 back-solves
with A are needed (in the case where A has maximum rank deficiency, see Chan & Resasco
(1986) for more details). The algorithm developed by Govaerts & Pryce (1993) requires
2 solves involving A and 1 solve involving A7 at each bordering step (the number of
bordering steps is equal to m). This latter algorithm is faster than the former and produces
quite accurate results.

In the present paper, we propose a new algorithm for the solution of the bordered
system which is based on applying perturbations to the decomposition process (similar
to the methods introduced in Balle & Hansen (1993), Hansen & Yalamov (1995), for
instance). This algorithm is more efficient than that of Govaerts and Pryce while having
similar stability properties. The basic idea of the proposed method is to add relatively small
perturbations in the factorization whenever a division by a small value is to be performed.
In this way, the blowup of the solution is prevented. However, a perturbed problem Is
solved instead of the original one. To recover the solution of the original system iterative
refinement (Golub & Van Loan (1996, §3.5.3)) is applied. This step is inexpensive because
a factorization of A (e.g. LU factorization) has already been computed. In practice, one
step of iterative refinement is enough to recover the solution. Its cost is equal to the cost of
three triangular solves and a back-solve for a system with matrix A (for the definition
of A see below), which is assumed to be of relatively small size. Hence, a solution
involving A7 is not required, and the most time-consuming part of the algorithm is the
LU decomposition of A. Even if additional steps of iterative refinement are needed, this
does not lead to a significant increase in the computational time. The speedup of the new
algorithm arises also from the fact that the level 3 BLAS (Anderson et al., 1992) kernels can
be applied to block operations whenever possible. The main advantage of the new approach
is that it is stable when the block operations are applied, while the blocked version of the
Govaerts—Pryce algorithm is quite unstable.

The outline of the paper is as follows. In Section 2 we summarize the Govaerts—Pryce
algorithm. Then in Section 3 we present the new algorithm. A roundofl error analysis of
this algorithm is given in Section 4. Section 5 presents numerical experiments.

2. The Govaerts—Pryce algorithm

This algorithm was originally developed for bordering of width 1 (ie. m = |1 in
our notation), For systems with wider borders the algorithm is applied recursively. The
algorithm can be summarized as follows:

Step 1. Solve ATV* =T,

Step 2. Compute y* = D — V' B,
Step 3. Solve AV = B.

Step4. Compute § = D —CV.

Step 5. Compute y; = (g — vyt
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Step 6. Compute f; = f — By).
Step 7. Compute gy = g — Dyy.
Step 8. Solve Aw = f.

Step 9. Compute y2 = (g1 — Cw)/y.
Step 10. Compute x = w — Vs,

Step 11. Compute y = y; + 2.

An analysis of the stability of the algorithm and a number of examples are given in
Govaerts & Pryce (1993). The results presented there show that the algorithm is quite
stable even for almost singular matrices A. But stability is guaranteed only for borders
with width 1 (i.e., for wider borders the algorithm is applied recursively). It is not difficult
to find numerical examples in which any block bordering leads to strong instability.

3. The perturbation approach

Our approach is based on the block LU decomposition of the matrix M

PLU 0 I, V
M=( C .*,”)(0 .ﬂ.)’ (D

where V = A=!'B, A = D — CV. Here we calculate A = PLU by LU decomposition
with partial pivoting (this is the most time-consuming part of the algorithm). If A is ill-
conditioned (or singular) the matrix U has small (or zero) elements along its principal
diagonal. Division by these elements would lead to the blowup of the error in the final
solution,

‘To overcome this dilficulty we perturb the diagonal entries «;; of U/ by a small number
n which will be specified later. We have

iip = Wi+ 8ujp = uii + Sgn(u;)n,

where

sign(a), 1la #0,

Sen(a) =14 il = 0.

So the growth of intermediate results is bounded to some extent, and usually we can
expect some correct digits in the solution. After the perturbation is applied, the solution
is computed in an obvious way by block decomposition (1).

The algorithm can be summarized as follows:

Step 1. Compute PLU = A.

Step 2. If |u;;| < n, then perturb w;; = wu;; -+ Sgn(u;; )n.
Step 3. Solve AV = B by LU decomposition,

Step 4. Compute A = D - CV,

Step 5. Solve Axy; = f by LU decomposition.

Step 6. Compute y; = g — Cx;.

Step 7. Solve Ay, = y).

Step 8. Compute x, = x| — Vy,,.
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The result of the algorithm 1s the perturbed solution z;,, = (J::f; }-';‘;")T.

Since the solution is perturbed we are probably not very close to the exact solution.
Therefore, we apply the standard iterative refinement procedure (Golub & Van Loan
(1996), Higham (1996)) to recover an accurate solution. (Since this procedure 1s very well
known we omit its description.) Usually one step of iterative refinement is enough to obtain
a solution with accuracy close to machine precision,

Now we can estimate the influence of the perturbation. At first glance the influence 1s

not clear because we perturb the intermediate results. Bul from the equation

-1

Ui = aj; — E lijugi,
j=1

which defines the element u;;,

f—1

wip =ty +duy = ajp + dagp — E Lijifi.
i=l

So, the perturbation in u;; is equivalent to an equal perturbation in @;;. Note, that a;; 1 a
diagonal entry in the permuted matrix A but it will be denoted a;; for simplicity of notation.
(This renaming does not influence our conclusions.)

Summarizing, the effect of perturbing the elements u;; is equivalent to solving the
original problem but with a perturbed matrix M =M +8M, where

1dM loc < 1. (2)

The matrix §M is diagonal, with some diagonal entries nonzero and equal to n. Now,
we estimate the influence of the perturbation on the error and develop the roundoff error
analysis. From this analysis we will derive a rule for selecting the value of .

4. Roundoff error analysis

We consider the roundoff error analysis of our proposed algorithm. Initial results have been
reported in Yalamov & Paprzycki (1998); here we present a complete analysis. We assume
that backward stable solvers (in either componentwise or normwise sense) are applied
to the matrices A and A. Here, componentwise backward stability will be assumed, but
normwise backward stability leads to similar results. We have

(A+e)x =c¢, leal < K11A]po, (3)

(A+ea)T=d, leal < Ka|4] po, (4)

where K| and K, are moderate constants (see Higham (1996, §9.2)), and x and y are the
computed solutions. We analyze the individual stages of the algorithm, separately, 1.¢. the
block LU decomposition and the solution of the triangular systems. Then, these results are
combined to give a backward analysis of the complete algorithm.
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LEMMA | In the presence of roundoff errors we have LU = M + E, where
A 0 ~ IV
L_(C f)* U“(U 5)’
0 |V]
El<IMI\ g 70 J = max{Kipo, Vartds Vol =

(e 7
v+ (o

and

(n+1)po
l—(n+1)po

Proof. From

LU

VY _(A AV N _ (A B+AsV
)L C cv4+A )\ C D+8A

)

Il
+
b% S

we obtain
E— 0 AsV
TN 0 A
where 8V is the error V —V and 8 A is the error from computing Aie.dA=A-D+CV.

Now we bound the entries of E. Denote the ith columns of V and B by V; and B;,
respectively. Then from (3},

(A+2) V=B,
and after a standard manipulation we obtain
ASVi = &' Vi, 1A8Vi| < K1 |AIVi] po, (5)
where §V; = ':;, — Vi, As aresull,
[ASV| < Ky 1Al Vi] po.

The error § A 1s the result of one matrix multiplication and one matrix summation. Standard
roundoff error analysis (see Higham (1996, §3.5)) produces:

Y (n+ 1) po
SA| < (|D|+|C||V 1, + = :
BAI < (IDI+ICIV]) Vasts Vari o Do
Finally, N
0 Ky A||V| po 0 V
Bl < ~ < M| .
0 (IDI+ICIV]) yus 0 1
]
LEMMA 2 The computed solution of the block triangular system Lu = b salisfies

(L + ALY = b, where

ALl < [Llpa,  po =max{K|pg, ¥u}.
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Proof The solution of the block triangular system has two stages. First, the system
with matrix A is solved, then a simple forward substitution is applied. For the first step,
condition (3) holds. For the second part we have (see Higham (1996, §8.1))

|AC| < |C| Vu, AT < Ty,

50,
AA O
AL “( AC Al )
and
KilAlpo O )
ALl € < |L| pta.
| | ( |C| ¥ Iy Ll

LEMMA 3 The computed solution of Uz =  satisfies ([T" + AU)Z = u, where
AU < IET’I u3, 3 = max{K2p0, Yi}.

Proof. The proof is similar to that of the previous lemma except that we apply condition
(4) instead of (3). ]

Now we combine these results to obtain the backward roundolf error analysis of the
complete algorithm.

THEOREM | The computer solution of Mz = b satislies (M -+ AM)7Z = b, where

Pl

I |V
|AM| QEIM1( 0 l‘,] )H, o= (g + p2 + 13+ paps.

Proof. Combining Lemmas 1, 2 and 3 we obtain
(M + AM)Z = (M + E + ALU + LAU + ALAU) 7 = b.
Applying the bounds for E, AL, and AU calculated earlier

0 |V ~
|AM| < lMI( 0 Lfl )m + | LIU| (pa + p2 + p2p43). (6)

) )
(1o &Y )
(
2

Now,

L[|

|

Al 1AV )

C| |D|+2(Cl|V|

g
Al |B] IV 1|V
S (ICI |C|)(D f )“Z'M'(U f ) 7
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The backward analysis in Theorem 1 holds for any matrix M. We solve the system with
the matrix M + &M, ||6M ||, < 1. So, we have

(M +8M + AM)Z,, = b, (8)
where 7, is the solution computed with perturbations.
THEOREM 2 The relative forward error of the solution of (8) satisfies
% — <]

%]

where the condition number « (M) is defined by

2L 2 (M) (n+r), ©)

e () = max {101 1o, i~ 1ae1]fr = | 'f'H ,

and (¢ 1s defined 1in Theorem 1.

Proof. From (8) N
Ty —2=—M"V (&M + AM)7Z),

so [rom (2),

7 — 2l < M| wt |i1am1]| (10)

We introduce the notation .
o

0T '

)

[ — el < pe=t|_nt2 it rio 7).
<2k (MY (n+ru) |E,,Hm. (11)
CJ

From Theorem 1 and (10)

Theorem 2 shows that the bound on the forward error is proportional to n + ru. The
value r measures the growth of the intermediate results when computing V. Since we have
assumed that the solver for A is backward stable, the constant p is O (npp) . In this case,
the source of any large forward error must be a large r, which can happen when the matrix
A 1s 1ll-conditioned. It is difficult to find exact bounds on . Note:

1. We have assumed that A is scaled appropriately, so that it does not contain large
clements.
2. We solve a system with matrix A by LU decomposition with partial pivoting. In the
general case, equation (3) is (see Higham (1996, §9.2))
(A+AAYX =b, |AA|l <2y |L||0],

where L and U are the computed factors. Because the solver is backward stable the
product | L||U is not much larger than |A|, and so |L| and |U/| do not have very large
entries.
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3. The essential growth of elements when solving a system with the matrix A arises
from division by small elements on the principal diagonal of the U factor.

We can model the growth factor r by:
ro—, (12)

where s is difficult to estimate. We shall see in the next section that the value s = 1 works
very well in practice.
Now, we can choose an appropriate value for 5. From (9) and (12),

1% — 2| azfrm)(w%) (13)
7] oo 7

which shows that we would have a minimal bound on the error in the perturbed solution
when n 4 p/n* is minimal, The minimum is attained when n = (st) /s+1 For the choice

s =1,
0~ JE A~ iR,

[n the numerical experiments we have chosen 1 equal to ,/pg. As a result, in most cases,
we needed only one step of iterative refinement to achieve almost full precision. Thus the
algorithm was stabilized cheaply.

5. Numerical tests

We present results from tests with random matrices using single precision (pg ~ 10~7 for
the SGI 8000, and py ~ 10~ for the Cray J-9x). The exact solution in all examples is
chosentobez = (1,..., DY, and the value of n is the square root of the machine precision
(i.e. 2~ 1074 for the SGI 8000, and &~ 1077 for the Cray J-9x). We have run our experiments
also on the SGI 10000. Since the results were quite similar to those obtained on the SGI
8000 only the latter ones will be reported.

The matrices A are generated randomly as follows:

A= H... Hygdiag(0,0,0,07 + 004n,07 4+ 0-04(n — 1),...,0:86)Hyg ... Hopo,

where

Hy =1 —2hih]

and f; is a vector of unit length whose entries are random and uniformly distributed in [0, 1].
Matrices of this type are used in the experiments reported in Govaerts & Pryce (1993). The
sparsity and the structure of A can vary in practice, Here, we consider the (wo (almost)
limiting cases: a dense matrix and a tridiagonal matrix.

Experiments on the SGI 8000 are reported in Figs 1-4 for dense (Figs 1-2) and
tridiagonal (Figs 3—4) matrices A, and for m = 1,2,...,25 and n = 500, and m =
1,2,...,50, n = 1000, In a similar way, Figs 5-8 show the results on the Cray J-9x for
m=1,2.....25and n = 500, and m = 1,2, ..., 50, n = 1000. In each figure, the first
diagram compares the computational times for the Govaerts—Pryce algorithm (solid linc)
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10 ' . ' . 1077

10

F1G. 1. The computational time (left) and the error (right) on the SGI 8000 for both algorithms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A dense, n = 500, m = 1, ..., 25,
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F1G.2, The computational time (left) and the error (right) on the SGI 8000 for both algorithms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A dense, n = 1000, m = 1, ..., 50.
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FiG. 3. The computational time (left) and the error (right) on the SGI 8000 for both algorithms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A tridiagonal, n = 500,m =1, ..., 25.

0.25

0,16

FiG. 4. The computational time (left) and the error (right) on the SGI 8000 for both algerithms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A tridiagonal, n = 1000, m =1, .. ., 30,
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F1G. 5. The computational time (left) and the error (right) on the Cray J-9x for both algornthms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A dense, n =500, m =1, ..., 25,
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F1G. 6, The computational time (left) and the error (right) on the Cray J-9x for both algorithms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A dense, n = 1000, m =1, ..., 30,
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F1G. 7. The computational time (left} and the error {right) on the Cray J-9x for both algorithms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A tridiagonal, n = 500, m =1, ..., 25,
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F1G. 8. The computational time (left) and the error {right) on the Cray J-9x for both algorithms: Govaerts—Pryce
(continuous line), perturbation approach (dashed line); matrix A tridiagonal, n = 1000, m =1, ..., 50
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and the perturbation approach (dashed line). The second diagram presents the forward error
1z — zlloo /|2 ||sc 1n the computed solution z for the two algorithms.
From these results we draw the following observations:

. The computational time for the Govaerts—Pryce algorithm grows linearly with w1,
while the computational time of our approach is almost constant as m increases. This
1s due to the speed of the blocked level 3 BLAS-based operations. As the blocksize
increases their performance also increases and is able to partially compensate for the
computational complexity introduced with the increasing m.

2. The perturbation approach is several times faster for dense matrices A, and the
speedup is almost linear with m. In most cases, the perturbation approach needs
only one step of iterative refinement. In our experiments there were only few cases
when the number of iterations was 2, 4 or 5. Even then the perturbation approach
remained several times faster, as can be seen from Figs 1, 2, 5 and 6.

frd

. For the tridiagonal matrices, the perturbation approach is slightly slower than the
Govaerts—Pryce algorithm for small values of m. For larger values of m, we obtain
a reasonable speedup. It seems that the critical value of m varies between machines.
From Figs 4 and 5 we see that on the Cray this critical value is small, and on the SGI
8000 it 1s relatively large. This requires further study.

4. The error 1n both algorithms is similar. In most cases (especially for dense matrices
A) the perturbation approach produces a slightly smaller error.

5. Essentially the error does not vary with n,

6. The perturbation approach is essentially independent of the choice of 1 as long as n
1s located in a relatively large range around machine precision. This result is slightly
surprising and we plan to investigate it further,

6. Conclusions

We have presented a new perturbation-based method for solving bordered linear systems,
This approach has been shown to work faster than the well-known algorithm of Govaerts
and Pryce while preserving similar numerical stability. Future research will concentrate on
several areas: the choice of the value of n; establishing a critical value m for which the
new algorithm outperforms the Govaerts—Pryce approach; and applying the approach to
the parallel solution of bordered systems.
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