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In this paper we examine the conditioning of the matrices resulting Irom certain
conforming pseudospectral approximations. In particular, we consider non-
conlorming donuun decompositions in rectangular domains and the solution of
lfourth order problems. We investigate the way in which the poor conditioning
ol these matrices allects the performance, in terms of accuracy, ol vanous direct
methods ol solution of the resulting systems. We also show how a simple
iterative relinement procedure can improve the accuracy ol the results oblained
with a capacitance technique.

KEY WORDS: Spectral methods; collocation: domain decompuosition; condi-
Lioning.

1. INTRODUCTION

We study the conditioning of the systems resulting rom conforming
Chebyshev spectral approximations in nonconforming domain decompositions
in rectangular domains, developed by Karageorghis and Sivaloganathan
(1998). The matrices resulting [rom these approximations are large, relatively
sparse and possess a particular block structure. This structure may be
exploited by various computational techniques. A comparative study of the
clliciency of such techniques on a number of modern high performance
computer architectures was presented by Karageorghis and Paprzycki
(1998); and Paprzycki and Karageorghis (1997). In this paper we are
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concerned with the condittoning of the matrices arising in these methods
when applied (o the solution of lourth-order prablems. In general, 1n ong
domam it A s the order of the polynonjial expansion, the ill-conditioning
of Chebyshey collocation matrices for fourth order problems 1s known (o
be of order OPAL™) [ Funare (19921 Quarteroni and Valli (1994)]). This
peor conditianing {eads to lurge round-ofl errors which alTect the accuracy
of the solution fsee c.g. Karageorghis and Tang (1996)].

T
[

2, DOMAIN DECOMPOSITION AND SPECTRAL,
APPRONINMATIONS

We constder the fourth order problem
VWi v = Fia. vy on the rectangle (2, fi = (a, §) (2.1}

subject to [Drichlet-type boundary conditions (e, given ¢ and its normal
depvative on the boundary).  As  shown  in Karageorghis  and
Swvaloganathan (19981 Tor the partiions a=a, <, <a,< -+ <ay_, <
re=fland v=uy<a, <uy,< - <ay_,<duy=h, NeN, we consider the
decomposition 0,,_,: 1he vectangle {a, Y x (a, ) 15 decomposed into
2N — 1 subdomains in the followmg way: for A =1, 2., N — 1. subdonmain
2k — 1 s the rectangle {x, . %0 x {0, . dn) and subdomain 25 is the
rectimgle (v ) < {eag o). Subdomam 2V — 1 is the rectangle
(2o o xad Xy oapd. Incach subdomain the solution 15 approximated
[

M. AN
dlxovy= Y Y 5 Ty T, s=1.2...2N- 1 (22)
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where the functions 775 0x) and 7 0r) are the appropriately shifted
Chebyshey polynomials defined on the corresponding intervals of each
regton and the collocation pamts on cach wterval of cach region are the
Crauss-Lobatto pomnts [ Boyd (19897 and Canuto e «f (1988)]. More
detatls on tas particalar class of domain decompositions can bhe found in
Karageorghs und Paprzyckn (19981,

This discretization leads to a global limcar system which is relatively
sparse and possesses a spectal block-structure [see (3.1)-{34by]. This
svsten may be solved with o generad dense or o genicral sparse solver. 11
15 dbso possible to exploit the block-structure of the matrix and apply a
capacitianee technigue.
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3. CAPACITANCE-TYPE TECHNIQUE

In the capacitance technique {see Karageorghis and Paprzycki (1996,
[998) ] the idex is to reduce the global linear system which has the struc-
ture (3.1) (3.4b) to & smaller system by perlforming & series of block
Gaussian eliminuations. ..

Ay + Rhx 4+ Rlxy =12, (3.1)
WX+ A+ REx+ Riyx=ua, (3.2)
RON +RLHX, + Ay ys + Rigxy+ R xs =2, (3.3)

Re vncaXe A+ RE_ | LoaX g+ Ap X+ RE_y (xp=o,_, (3.4a)

RiL_2Xe o+ Ry X, (+A,x, =0, (3.4b)

For example, from (3.1) and (3.4b) we may express x, and x, i terms of
Xp. Xyoand x; 5, ¥, 4, respectively, Substitution of these expressions
nto {3.2)-(3.4a) yiclds a systcm in terms of the unknown vectors
Xp4 Xy, Xp . This process is repeated until the systemn is reduced to a
system of the [orm:

Aw_1Xp_ 1 + Ap_1 nXy+ m_.ff LN+t YN =Zn_ | (3.5qa)
Runw aXw_y+Apxy+ Ry ) xn, =4y {3.5b)
....ME+_.2|_m.E|_ +HE+_,EM.E+ME+_HE+_ =" py1 (3.5¢)

A detailed description of this process can be found in Kuarageorghis and
Yaprzyckr (1998,

4. SOLUTION ROUTINES

It 1ts block structure is ignored. the global linear system can be treated
cither as o full system and solved using LU decomposition or as a sparse
system and solved using a general sparse solver. The performance charac-
teristics of these  approaches were considered in Karageorghis and
>aprzycks {1998) and Paprzycki and Karageorghis (1997). In this study we
will examinc the effect of the solution procedure on the accuracy of the
spectral approximation. In the case of the lull system we applied three
ifferent rountines from NAG (1997). In particular, we first used the

lincar system solver FO4ATF and the decomposer-solver pair FOTADF-AEF.
Fhe routine FOAATIT calculates the sohntion of a svstem of linear ranstinne
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for a singte right-hand side using LU factorization with partial pivoting.
Additienal precision 15 obtained by uvsing iterative refnement. The routine
FOTAEER solves o system of lincar cquations the matrix of which has
previously been L -hictorized by the routine FOTADF {standard partial
prveting stratepy s applhed). In the case of the decomposcr-solver pair
teratine reftnement s not apphicd.

For the full dense system approach we also experimented with the
routie FOAANMYE which calculates the least-squares solution of an over-
determned system alter a QR lactornzation of the global matrix, and uses
Lhe aterative relimement Lo improve the accuracy of the solution. This idea
wits used in by Schultz ef of {1989 [see also Boyd ([ 1989), p. 2027, where
the dl-conditioning diflicufties the authors encountered when applying a
Chebyshey spectral collocation methad to 1he driven cavily problem, were
removed by salving i overdetermined system. In our case the number of
cuaations of the global system s incrcased by imposing the satisfaction of
the differennial equations al more points in cach domain. In particular,
instead of sauslying the differential equation at (A~ 3)x (N, — 3) points,
we salisly 1t at (M — 11 N, — 1) pomnts in each domain [ Karageorghis
andd Srvaloganathan (19981 ].

Finally, for the general-sparse matrix representation we used the state-ol-
the-art peneral sparse solver package UMEPACK {1995} (version 2.0).

For the capacitance approach we uscd the same NAG solvers as for
the tull system methed {FO4ATE and the FOTADF-AEF pair), but this
tme these routines were apphed to block operations in the capacitance
lechmigue  process. These routines were atso used 1o solve the final
capacitance system [ see the system (3.51)-(3.5¢)].

3 RESULTS

S Nomerieal Example

The condittoning of the matrices involved in the domuin decomposition
method and s eflect on the quality of the solution were examined in
refation to the test problem

VAN, 1 =240 + eV + (02— e (P 1) e
FRUAT - DeY (3 = 1) et) on (—1.1)°

subject 1o Dinehlet boundary conditiens which correspond 1o the cxact
solution ol this problem iy, 1y=(r"— DN2e +(x?— 1)1 ¢¥. We used the
decomposition {in the notation of Scction 2), o, =, _ + (/2o — 2, _ 1 ),
r= 2 Ny =a = = ey == and g =a  F 2 a e — a0

-
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(=12, N~ ay=a= -1, upy=b=1. We also took (in Eq. (2.2))
M. =N =n s=12,.,1 The total number of unknowns is thereforc

Lx(n+4 12

5.2, Numecrical Resnlts for Full System Solvers

In the Tirst series of experiments we compared the accuracy of the
approxtmation obtained on a uniform 0.0625 x 0.0625 gril for five, seven
ind nine subdomain decompositions when the system waus represented as a
fult or o sparse matrix. Tables 1-H1 represent the maximum relative error
(mtaxreler) obtained with the general solver FO4ATE, the pair FOTADF-
AEE Lhe least-squares routine FO4AMF and. for the Sparse represemtation,
the package UMTEIFPACK {1995) (version 2.0). We also fist (in the last
colunmn) cstimaltes of the condition numbers of the full matrices. These were
obtained with the pair FOTAGF-ADF [sce NAG (1997)] which estimates
the condition number of a real matrix in the one-norm by Higham’s
implementation of Huager's method (Higham (1988} All results were
obtained in double precision on an IBM RS6000 workstation. The absence
ol results for n=18 in Tuble I, #=16 in Table H and #=14 in Table 1]
indicates that for a given solution method we were not able to fit the
probiem into the avaitable memery. Only results for even »n are reported,
but our experiments indicate that the odd numbers behave in exactly the
SAIC wWay.

The resulis in Tables I-[H show that when we use the routine
FO4ATE the maximum relative error decreases as the number ol degrecs of
[recdom is increased. A slight drop in accuracy is observed in the cases with
the largest numbers of degrees of freedom but this is to be expected as we
are close o the machine precision. For the pair FOTADF-AEF, however,

Table 1. Full Mairix Resulis for the Five Subdomain Decomposilion

Masreler Maxreler Maxreler Maxreler Condition

1 FO4A T FOFADE-AEY FOAAMI- UMI-PACK?2 nirrmber

d M422(-2}) same as FO4ATT D.5204-1 ) saorne us F4ATF N.641{8)
£ (12431 -4 " n213(- " NLASTT
N (1504 -6 ) " N.119(-4) ™ D120 13
1N (3 d449( -9 h 0.766(-7) " L2500 1)
|2 LIRO-12) DAIN-1 {1 .351(-9) 0587 -0) 4741 15)
|4 25123 (100 -0 DRGA -2 NR&aR -1 MM 16
[ £ a1 iy 2471-9) N434(-13) 0503 -1 355017
| 8 {358 010K -B) Ialf-13) IO TE Y
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Table 1L Folt Matris Resalis Tor the Seven Subdomain Decompasition

Maoreler AMareler Myxrcler Masreler Condition
/) FOdATI FOTALN AR ¥ | DA MI LIMIFPACK? number
4 140 -M it s oA D {113 winme as FO4ATL 0740y 140y
i 0. 2400 h 3330 A NOld4p[2)
- TR T B 774 " 013 1S)
It PG -Fh h (b [ tME -0y .. 235 16)
| > Nnddr-12 RSN (363 - W 260-7) 06T
| AR -1y T27-Tn TR220r-1Hy (38 -8y ST IR
14 (hAfi - 745 -1 3y DA

e situation s quite diflerent, The quadity ol the solution deterorates for
relatively fow degrees of freedom and ts obviously alfected by the large con-
ditton numbers of the global matrices, The poorest results were oblained
for the nine subdomain decomposition where approximalely three digits ol
wecuracy were last for s — 120 These results indicate the importance of the
Herative relimement process m FO4ATIE which compensated for the poor
conditionmg of the matrix. The sttuation is substantially worse when we
use LUIMEPACK as the accuracy ol the solution is poor for even small
numbers ol degrees of freedom. The situation is slightly dilfferent with the
least squares routine FO4AME. While Tor a small number of degrees of
[recdom its accuracy 1s poor. as the number of degrees of lreedom increascs
it hecomes considerably better than when using the pair FOTADF-AEF or
UNTPACK and, for Lirge preoblem sizes, even stightly better than when
using FO4ATE,

In g 1owe plot the logarithm of the conditton number estimates of
the global matrees for =4, 18 (where 715 delined in Section 510, for
the cases of live, seven and nine subdomain decompositions. in all three
cases the behavior of these condition number estimates is very similar. 11

-

Table TIL Full Matns Resolis Tor the Nine Subdomain Decompaosition

haxreler Maarcler Maxreher Maxreler Condibion
i IO AT) FOIADIE-AL) O AM I LIMFPACK? e
4 A RE-2y e ils TTOHA T . 103 sime as FOSATE NHNM T2
s (246 -4 h {1 305 -2 " 234014
- (516 - (] 76 -4) ” N77EH Th)
10 60 -0 " (V1T -6) A4830-5) N2ISETR)
| NEFRTIT IRy Chfy [4h -4 ) fh, 3400 -9 0205 -R) OEAT49)
I R T (L2200 AREV TR
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1 0E422 CONDITIONING OF MATRICES

18E+19 ] e L e iemeee s e eeeaaan . T e
|:|m.-m_m..|:m:_m
—B- 7-alemanls
—— Q.6femenls

1 OEs g 4o n . || R . . il
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condition number

10E+10 . L Ce C e

I L T — - —— - - — .
4 g 8 10 12 14 16 L
¥ of degrees of lreedom

Fig. 1. Conditioning of the linear systems for live, seven. and nine element decompasilinns.

wils found that these behave approximately like O(n'®). Tt is noteworthy
that the conditioning does not depend on the number of subdemains in the
decomposition but only on the number of degrees of freedom.

3.3, Numerical Results for the Capacitance Technique

The second sct of results {( Tables 1V-VI) shows the maximum relative
error on the same uniform grid with the solver FO4ATF and the pair
FOVADE-AEF when the capacitance technique was applied to solve the
system. We also list estimates of the condition number of the capacitance
mitnix (as previously, obtained with the NAG pair FOIAGF-ADF). The
absence ol results for the largest case lor the five domain decomposition
indicates that we were not able 1o fit it in the memory of the workstation.

IFrom Tables 1V- V1 1t can be scen that the condition numbers of 1he
capacilance matrices and the full matrices are comparable in magnitude
indicating that the capacitance process does not worsen the conditioning of
the actuail capacitance matrix. The results obtained with the pair FOTADF-
AELF are shghtly worse than those obtained with FO4ATF, the poorest
agreement occurring i the nine subdomain decomposition. In both cases
Lhe results are worse than the resuits obtained with the solution of the full
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Table IV, Capitance Matria Resudts Tor the Five Subdomain
Decimposidion
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Tabte VI Capacitance Matrix Results lor the Nine Subdomain
[ Jecomposition

Aaxaeler O Aaxreler Condilipn
" PidATT T FOFTATYE-AEL- number
N 14270 satiie s FOdATL (4208
i L TR - (RN
b N IT BT £ " JR TR RS
111 0 % P - (L1605 FI
12 WA I 0290110 326015
i {EEEO-H1) (] WU -0 IS B ELY
I s {F 347 - N AT 240017
1M i1 IS4 0773 -0 (T 15
2 0120 -=) 67 -H) IR
a0 SR PN {1 r-N) 0.2G1 0N
RN (1337 0120 20

Muaxreler Maxreler Condition

T FIdATE FOZADF-AEF nurmber
4 (JI1E-2) warne as FOAATE (.33 K
£ (}.246(-4}) : 17t
b BAS1(-6) " 27214
1 0.358(0-5) 0.39041-5) D408 15)
17 {13401 -6} N.25H -6 a2{17T)
14 {11501 -6 {1475(-5) () 7624 F7)
1 (Y ORRE{-T) 0 107-4) (1R 1)
| & 0240 -5 1203 O4a0019)
Al 1100 -6} 4007 -1) 0723520

system. Fhis s because in the capacitance method the accuracy sullers not
only from the poor conditioning of the capacitance matrix but also rom
other lactors such as the poor conditioning of adl the intermediate maudrices
mvolved in the block-matrix operations. This is particularly obvious in the
niie subdominn decomposition case which involves the most such maltrix
operations {see Sccuion 3} and thus the results we obtain are the pooresl
for botly the FOSATE and the FOTADE-AEF solulions. Finally, the resulis
confirm that the iterative relinement process improves the overail ACCUTICY
of the solutton by restoring approximately one (o three dipits of accuracy,

Table Voo Capacitimer Matns Resufts tar the Seven Subdanmain
PIeconmprmitien

S avreler Musireler {"ondition
H AT FOFADI-ALL numbwer
b L2102 siine s TOJATE IAREINIE
{1 i1 24604 a (381371
N ST ” (L1050 14
| 1 127 b Ld&E-T) N8 15}
[ 1, 15%)-¥) Bold2-7 04927 |6}
| -4 HAS7-7) TIT-7 200017
| (4 (120 -y 0 E 54 (a7 18]
| 5 b ] 20 -fa 023 T0-6) () TR 1)
™) D30 -7 IRV LTI Y (L1751 MY

6. APPLICATION OF ITERATIVE REFINEMENT T0O THF
CAPACITANCE TECHNIQUE

The advantage of the capucitance technique is that it leads to sub-
stantial - savings in memory  requirements  and  computational  cost
[ Karageorghis and  Paprzycki (1998); Paprzycki and Karageorghis
(1997}]. However, comparison of the results in Tables ! -11T with those in
Tables [V-VI reveals that it also leads to substantial loss of accuracy.
Morcover, the experimental results indicate that the iterative refinement
procedure can tmprove the accuracy of the overall solution. In order to
improve the accuracy of the capacitance technique we applicd a basic
iterative relincment technique [see Golub and Van Loun (1989); Higham
(1990} ] to this solution, Since cur algorithm wus implemented in double
precision we did not use additional precision to calculate the residual
(which 1s somctimes suggested in the literature.). According to Higham
(1996) [ p. 235], this approach can also be expected to be beneficial to the
quahty of the selution. We used the blocked representation of the linear
system while caleulating the residual and thus only a minimal number of
arithmetical operations was necessary. When solving the linear system for
the updatc vector, the existing decomposition of the capacitunce matrix can
be used. The overall cost of one step of iterative relinement is thus Ofn?),

In Table VIT we list the results (maximum relative errors) obtaimed for
live, seven and ning element decompositions when FO4ATF (which includes
lerative refinement) was applied to the Mull matrix, the capacitance solver
(which includes FOAATE in the intermediate steps) and the capacitance
solver with one step of iterative refinement were used. Results Tor n= 12,
4, 16, 18 are presented.
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Table ¥I1. Reduction of the Frror Aler ae Step of herntive Relinement

; Capacitance alter vne
: . ; : .
T Full Aanrx Capacitance slep ol Herative relinement

1 ive subdomains

| 2 IR0 TN N CARA-11}
4 AT B CLRHOE-T 1 N7 HH-1)
Iy IRIO T {337 B T350- 11
| = (LARE-] ] 0 IKA[ - (LS50 -1

Soes cH s onmains

12 UL T LY AN -N) T IE- 10
-} R I I WASTI-T 023749
I )20 -6 JRIGRTRRIR
I 20 -6 {RRE IR
N sulsdoninns

|2 LR Y {03400 -0 (14 -3}

-l Th 3500 .6y i1 5754

KL {LREI-7) 02T 5T

| 5 {1340 -5) N 1560-7)

In the case of few degrees of freedom for the five element decomposition
there is no substantial improvement in the results when iterative refinement
1s used. This s 1o be expected as the results are rather accurate and close
o the machine precision. For seven and nine clement decomposilions,
however, one step ol derative rehnement improves the accuracy of the
results by between one and three digits of accuracy, This is especially
mportant lor the nine clement decomposition where the initiad loss of
accuracy was considerable,

Finally, o +igs. 24 we present the effeel of applying nine steps of
flerative refinement for the five (Fig 2), seven {(Fig. 3) and nine (Fig. 4)
clement decompesitions for n=14. 16, 18 The graphs represent the
loganthm of the maximum relative error of the solution versus the iterative
Sleps.

it can be observed that, with the exception of the cases =12, 14 [or
the bive subdomain  decomposition, one step ol iterative refinement
improves the quality ol solution. More steps ol the process may {bul
usually do not) lead to further reduction in the error. Further, the error
amost never reaches the size 1t had belore the fterative refincment. These
abwervations are consistent with the relevant renuarks in Higham {1996)
and Yaliamow {1998
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1 OF-09 EFFECTS OF ITERATIVE REFINEMENT: 5 subdomains

1 DE- 1

5
E
o
10E. 11
- 14
18
TOE1Z b oo _— i = e L - . . pm .
0 _ 2 3 1 5 5 7 3 g
¥ ol ilerations
Fig. 2. Eflect of nine steps ol iterative refinement for live subdomain decomposition.
1.0E 06 .
EFFECTS OF ITERATIVE REFINEMENT: 7 subdomains
TOEQY h----- - -1 it mmmmmmmmnnaaa L T T T A e e e e e
1GE-O% 1 --%-- e e e e e e e e e mm e ettt L e h e e e L LR e e e e oo
m._n_m._u.m ..... A T . [
E L
TOE-40 |- oo B T .
10E-11 e e C S - L T e
—t— 15
18
VOE-Y2 — - . — —n e . : , .
o 4 2 3 /| 5 5 7 8 $

# ol ileratinnsg

Fig. 3 Eflect of mine steps of Herative refioement tor seven subdomain decomposition.
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Foe0s EFFECTS OF ITERATIVE REFINEMENT: S subdomains
|

1 0E

LT
w 1aL 0a
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1oL 09

14E10

' OE 11

o i 2 K| | R & T A 9
i ol lerations

Fig. d - Effecr of nine steps of fleratise refinement for nine subdomain decomposition,

7. CONCLUISIONS

The performance of vartous direct methods of solution of the systems
resulting from psendospectral conforming approximalions lor certain non-
conforming domain decompaositions in rectangular domains was examined.
When solving fourth order problems, the matrices involved in the solution
of the resulting systems sufler frem poor conditioning and the accuracy of
the approximation is greatly affected by the method of sotution, Tt was
abserved that the NAG routine FO4ATYE, which uses LU factorization with
partil mvotng, wird the NAG least-squares routine FO4AME performed
extremely well, producimg accurate results even for very badly conditioned
matrices. Both these routines use iterative relinement 1o improve the
gquality of the sofution and assure backward stability ¢in contrast 1o the
other routines we experimented  with and which performed relatively

poorly ).

In the solution of the system with a capacitance technique we com-
parcd the performance of the two sets of NAG routines FO4ATI and
FITADE2Z-AEL The quality of the solution was much poorer than in the
case of the full system techniques. This problem, however, can be partly
overcome by applying one step of nerative relinement 1o the sotution. This
leadds to i recovery of between one and three digits of accuracy. This
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method was particularly effective for (he systems with the largest number

ot clements i the decomposition and for the largest numbers of degrees ol
hreedom.
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