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Abstract—Evidence Based Medicine, is a practice, where medi-
cal actions/decisions are undertaken on the basis of best available
evidence-based recommendations. In this context, we propose a
system for automatic grading of evidence.

Evidence grading is approached as a multi-label classification
task. Here, classes represent grades, in a widely used Strength of
Recommendation Taxonomy (SORT). Numerous ensemble meth-
ods are experimented with. It was found that the most successful
one used Support Vector Classifiers, trained on multiple high
level features, results of which are used to train a Random Forest
Classifier. The best achieved accuracy score was 75.41%, which
is a significant improvement over the baseline of 48%, achieved
by classifying all instances as the majority class. It was also
found that the most important predictor is the publication type
of articles comprising the body of evidence. The designed system
is tuned for use with medical publications and SORT. However,
due to it’s generality, it can easily be used with other evidence
grading systems.

Index Terms—evidence based medicine, machine learning,
natural language processing, classification, ensemble techniques,
stacking classifiers, consensus, game theory, neural networks,
multi–label classification

I. INTRODUCTION

In recent years, Evidence Based Medicine (EBM) has
become one of leading approaches to support making medical
decisions. According to the best practices of EBM, any action
concerning patient care should be made according to the best
available evidence-based recommendations [1], [2]. Obviously,
correct recommendation can only come from well-designed
and conducted research. The process of discerning what is
the best recommendation consists of the following steps.
(1) Medical practitioner gathers all available research on the
topic, usually using online medical publications’ databases,
such as MEDLINE [3] and sophisticated search engines, such
as PubMed [4]. (2) Recommendations collected from collected
papers are grouped into “bodies of evidence”, i.e. sets of arti-
cles stating the same recommendation. (3) Quality (strength)
of each recommendation is assessed. (4) The highest quality
recommendation, from the body of evidence, is followed.
Obviously, taking into account the volume of publications,
manual assignment of evidence quality is no longer feasible.

Therefore, crucial for current, and future, EBM are
computer-based methods for evidence quality grading. Only
such methods can, reasonably, provide a systematic way of

assessing quality of evidence, present in the deluge of publi-
cations. There exists a vast selection of techniques designed
specifically for evidence grading. Our current work focuses on
Strength of Recommendation Taxonomy (SORT) [5], which
was first introduced in 2004, and is widely used to this day.
SORT uses a three grade scale to describe the evidence,
by addressing its three most important aspects: (i) quality,
(ii) quantity and (iii) consistency. It is a patient-oriented
(versus disease-oriented) taxonomy, focusing on influence, of
a given treatment, on patient mortality and morbidity rates.
Grades recognized in SORT are: A – evidence of a high qual-
ity (consistent, patient–oriented); B – evidence of moderate
quality (inconsistent, patient–oriented); and C – reserved for
bodies of evidence of low quality (consensus, usual practice,
opinion, disease-oriented, etc).

While assessing quality of a single piece of evidence (e.g.
a publication) is of importance, here, we focus our attention
on estimating the final grade of the body of evidence, only.

II. RESEARCH IN THE DOMAIN OF EVIDENCE BASED
MEDICINE

Let us start from a brief overview of the most pertinent
literature. Of course, there exists much larger body of research
focused on facilitating access to information, for the evidence-
based medical practice, which was omitted, due to lack of
space. Evidence quality estimation, in the field of EBM, can
be described as a classification task [6]–[9] and, as such, is
often approached by other researchers in the field.

In the work reported by Sarker, Molla-Aliod and Paris [6]–
[8], different types of information were extracted from the
abstract, title, and metadata of publications, and converted into
features. Authors experimented with different classifiers and
sets of features, and found that the best accuracy scores, for
a simple classification, can be achieved with the publication
type as the only feature (up to 68% accuracy). However,
medical papers rarely encompass explicit information about
their publication type. Hence, in an endevour to fully automate
the pipeline, a sophisticated rule-based system was developed
to extract the publication type from the paper. Using it,
accuracy score for a classifier trained on publication type
feature dropped to 58.5%. This is reasonable, since the quality
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of publication type estimator itself has influenced the total
performance of the system.

In a simple classification scenario, including more fea-
tures did not significantly improve the classification score.
Subsequently, a sequence of classifiers was introduced, each
specialised on a single feature set, to maximise the final
accuracy. This technique yielded a higher score, of 62.84%.

Current work of Gyawali, Solorio and Benajiba [9] proposes
a different approach. Instead of a pipeline of classifiers, they
used an ensemble technique – a stacking classifier, which
used classifiers trained on high-level features, as its estima-
tors. Here, six disjoint features were explored: publication
type, MeSH (Medical Subject Headings1), abstract title, body,
methods and conclusions sections. None of base classifiers,
tested in their work, yielded an accuracy score higher than
55%. However, experiments with different feature sets, for the
ensemble classifier, showed that an accuracy score of 73.77%
can be achieved. Specifically, this can be achieved by using
five Support Vector Classifiers, each trained on a single feature
(excluding the abstract body feature), as estimators for the
stacking-classifier.

III. THEORY, TECHNIQUES, TOOLS AND ALGORITHMS FOR
EBM RECOMMENDATIONS

Let us now start description of our work, by summarizing
experiment’s steps and continue to list the selected high-
level features, as well as explain the extraction methods and
ensemble techniques used in the classification process.

A. Methodology

The goal of our work was to develop a system that will be
able to accurately assess the quality of a body of evidence.
The starting point was an attempt to reproduce results of
the state-of-the-art approach reported in [9]. All experiments
were conducted on the same dataset as used by both: Sarker,
Molla-Aliod and Paris [6]–[8], as well as Gyawali, Solorio and
Benajiba [9]. In order to reproduce findings reported there, the
following steps were undertaken:

1) Extraction of high-level features from the publications.
2) Experiments with diverse preprocessing and transform-

ing methods.
3) Training of various classifiers on the extracted features

with single-feature trained classifiers.
4) Intermediate feature sets generation.
5) Training stacking classifiers (on intermediate features).

Subsequently, the following techniques were experimented
with:

1) Extracting other promising features from publications.
2) Generating intermediate feature-sets, with multi-feature

trained classifiers.
3) Experimenting with other ensemble techniques.

Let us now summarize our findings.

1https://www.nlm.nih.gov/mesh/meshhome.html

B. Selected high-level features

After careful analysis of the available dataset (explained in
Section IV-A), and examination of features, which have been
used by other researches in the field of evidence quality predic-
tion, eight high-level features have been selected: (1) abstract
text; (2) conclusions section: sentences belonging the con-
clusions section extracted from an abstract; (3) journal title;
(4) MeSH (see, reference, above); PubMed recognizes two
types of MeSH: those that are associated with the main topic
of the article (with label majortopic set to Y), and other MeSH,
which aren’t related to the main topic of a publication (with
label majortopic set to N); (5) methods section: sentences
belonging the methods section of an abstract; (6) publication
type: the type of medical publication; (7) publication year
and (8) title.

C. Extraction algorithms for the selected features

While some features were used “as is”, i.e. abstract text,
or title, others had to be extracted. Hence, let us now briefly
outline the pertinent extraction processes.

• Conclusions and methods sections: if an abstract is
structured, then sentences belonging to the conclusions
and methods sections are used as features. If the abstract
is not structured, then an algorithm, found in [9], is used
to extract sentences that should belong to the relative
sections, based on their place in the abstract.

• MeSH: experiments were run to measure the advantage
of using both types of MeSH, and only those with label
majortopic set to Y were selected; since they yield better
results. Note that the approach found in [9] also uses only
these MeSH.

• Publication type: Sarker, in [8], mentions examples of
regular expressions, used to determine publication type of
a medical paper. Those expressions were used also in our
work, alongside other expression developed to extract the
publication type with better precision. A re-engineered
algorithm, used in [8], was used for extraction.
After preliminary experiments, it became apparent that
development of a system that would accurately extract
publication type from the abstract and metadata is a very
complex task. This information is rarely stated explicitly
in the source texts and often various publication types are
mentioned. Therefore, since this issue is not the focus of
our work, a different strategy was chosen.
Most of evidence items has a human-annotated sentence
explaining why a specific grade in Strength of Recom-
mendation Taxonomy (SORT) [5] was assigned (these
sentences are present in a sibling dataset [10], available
from [11] and they are not used in the state-of-the-
art work). These human-annotated explanations usually
mention publication types of the articles. An example
sentence may be of a form: “based on multiple high
quality randomized controlled trails”. Sarker, et.al. in [6]–
[8], use these sentences in their experiments and achieved
an accuracy score of up to 68%, using only this feature.



However, since such information is not present in “real-
life”, we do not use it in our later experiments. Neverthe-
less, when these, human-annotated sentences were used,
when present, alongside the abstract, title and metadata
of publications during the publication type assignment,
the accuracy scores of up to 70% was observed.

D. Feature’s preprocessing and transforming

All extracted features can be divided into three main cate-
gories: text, categorical and numerical. The text features are:
(1) text of abstract, (2) conclusions, and (5) methods sections,
(3) journal title, and (8) publication title. These features have
to undergo a natural language preprocessing, before they can
feasibly be used as features for the classifiers. Thus, the
following steps were undertaken: (a) stop words and number
removal, (b) stemming/lemmatization and (c) Meta Mapping.
Meta Map [12] is a semantic understanding tool, used to
decrease the vocabulary, by generalizing some domain-related
concepts. Multiple experiments were performed, in order to
determine whether the vocabulary should be processed in this
way, and to what extent. For obvious reasons, this step is
omitted for the journal title. For the remaining features, three
levels of Meta Mapping were chosen:

1) no Meta Mapping
2) replacement of disease or syndrome related terms by

a general tag diseaseorsyndrome. Note that Gyawali,
Solorio and Benajiba ( [9]) also choose to perform
such Meta Mapping. Example of a sentence with the
replacement can be seen in Table I.

TABLE I
DISEASE OR SYNDROME TERMS META MAPPED

Original Meta Mapped

In a prospective, double–blind, ran-
domized trial the efficacy of a
heparinoid in ointment form was
assessed in treating superficial
thrombophlebitis developing after
continuous intravenous infusion.

In a prospective, double–blind,
randomized trial the efficacy of
a heparinoid in ointment form
was assessed treating disease-
orsyndrome developing after con-
tinuous intravenous infusion.

3) all terms with medical connotation are replaced by their
general group tags. This transformation is similar to the
previous one, but this time it is applied to all pertinent
terms. Example of a sentence with this replacement can
be found in Table II.

TABLE II
MOST TERMS META MAPPED

Original Meta Mapped

In a prospective, double–blind, ran-
domized trial the efficacy of a
heparinoid in ointment form was
assessed in treating superficial
thrombophlebitis developing after
continuous intravenous infusion.

In a prospective, double–blind, ran-
domized trial the efficacy of a hep-
arinoid biomedicalordentalmate-
rial form was assessed in treat-
ing diseaseorsyndrome after con-
tinuous therapeuticorpreventive-
procedure.

Next, ngrams were created, using text preprocessed by
previous operations. Finally, count vectorization and term
frequency–inverse document frequency (tf-idf) was applied.

The categorical features are: (3) MeSH, and (6) publication
type. Since these features are already vectors of keywords,
preprocessing, such as stop words removal, is not necessary.
The only transforming steps are count vectorization and tf-idf.

Publication year is the only numerical feature. The mean
value of all publication years, of publications belonging to the
body of evidence, was used to proportionately scale the data.

E. First–level classification

A first step, in an ensemble classification, is training simple
classificators that can be then used as estimators in the en-
semble setting. High-level features obtained within pipelines,
described in the previous section, were used to train the simple
classifiers. Each training instance is a body of evidence: a
set of publications (described by reference ids), and a SORT
grade. A classifier was trained on a union of features of all
publications belonging to a body of evidence.

A variety of classifiers has been trained. For each classifier,
a grid search was performed to find the best set of parameters,
and the results were evaluated by a 10-fold cross validation
on the train and test sets. Chosen classifiers were:

• Support Vector Classifier (SVC) [13]
• Gradient Boosting Classifier [14]
• Extra Trees Classifier [15]
• Random Forest Classifier (RFC) [16]
• Decision Tree Classifier (DTC) [17]
• Gaussian Process Classifier [18]
• MLP Classifier [19]
• K–nearest Neighbors Classifier [20]
• AdaBoost Classifier [21]
• Gaussian Naive Bayes [22]
For all classifiers, the Scikit-learn [23] library was used.

The selected scoring function was accuracy.

F. Ensemble methods

Once simple classificators were tested and the most accurate
ones were selected, their classifications’ probability vectors
were used to generate intermediate feature sets. These were
then used as the input for the ensemble methods.

1) Data preparation for the ensemble methods: Classifiers
yielding the highest accuracy scores, in first-level classifica-
tion, were used to generate intermediate features, which were
then used as an input to ensemble classifiers. The intermediate
features are three-value vectors. The ith value in a vector states
the probability that this particular instance belongs to ith class.

Typically, the dataset would be divided into three data sets:
train, development (dev), and test. Here, first-level classifiers
would be trained on the train set, and probabilities would be
generated by the trained first-level classifiers for the dev and
test sets. Subsequently, ensemble classifiers would be trained
on the dev set, and evaluated on the test set.

However, because the total available dataset is relatively
small, a k-fold cross validation-like method was used to



generate intermediate features. Here, the entire train set was
divided into k folds, each comprising of 10 elements. Each
ith fold was treated as a test set, while the classifier was
trained on the remaining elements. Then, it was asked to
return probabilities of class belonging for the ith fold. Using
this procedure, probabilities for all instances of the train set
have been generated. These were serialised for further usage.
Subsequently, all train data was used to train a classifier,
which generated predictions for the test set. These were also
serialized. This process ensures that there is no “information
leak” between the train and the test set, while maximizing the
utility of the small dataset.

2) Selected machine learning techniques: After input data
for the ensemble techniques was prepared, a varied selection
of ensemble classification methods were experimented with.
There belonged to four main groups:

• Classifiers – a variety of different classifiers from the
Scikit-learn library were chosen.

• Neural networks – several models were designed and
tested and the architecture that performed best in the
preliminary experiments was selected. Chosen model,
depicted on Fig. 1, has an input layer with In nodes
where n depends on the number of features used. Both
hidden layers have 512 nodes and the output layer has 3
nodes, each representing the probability score associated
with a SORT grade. Each of the layers is densely con-
nected. First two layers have activation function Rectified
Linear Units (RELU), whereas the output layer has a
Softmax activation function. As the objective function,
categorical crossentropy was chosen. Keras [24] library
was used to design the neural network. All experiments
were run with six different optimizers: Adadelta [25],
Adagrad [26], Nadam [27], Adam [28], [29], Adamax [28]
and Rmsprop [30].

...

...
...

I1

I2

I3

In

H1

H512

H1

H512

O1

O2

O3

Input
layer

First Hidden
layer

Second Hidden
layer

Ouput
layer

Fig. 1. Representation of neural network used in experiments

• Game theory – an approach that has been proven to be
successful in similar problems [31], [32], where mul-
tiple experts (agents) can be distinguished. Each agent
represents probability vectors (confidence scores) of an
element belonging to a class. This approach can be used
when experts have different “opinions” on the label that
should be assigned. In order to classify an instance, a

game is played by the agents. A game consists of rounds,
which are played between two agents at a time. There are
as many rounds as it is necessary for all agents to agree,
or for only one agent to remain in the game.

• Consensus methods – similar to the game theory method,
also an agent-based technique [31], [32].

IV. EXPERIMENTS

Let us now summarize results of performed experiments.
As it could have been noted, we have run much larger
number of experiments, but we are reporting only the most
interesting/important ones.

A. Dataset

The dataset used in this work was created for the ALTA
2011 Shared Task competition [33]. It was used in both [6]
and [9]. Although this dataset is not freely available online, its
authors were kind enough to provide it. The dataset consists of
three files: train, dev and test, containing bodies of evidence
(references) and assigned SORT grades. Each line comprises
of an evidence id, SORT grade and a list of references
(PubMed ids). The dataset also has publications (as XML
files). Table III represents bodies of evidence distribution
across SORT grades. In this work train and dev sets were
merged into one set, which is further referred to as the train
set. This was done because the dataset is relatively small and,
hence, prone to overfitting. Creating an even smaller train set
would be counter productive.

TABLE III
DISTRIBUTION OF BODIES OF EVIDENCE IN RESPECT TO SORT GRADES

Numeric

Train Dev Test All

A 212 48 56 316
B 311 80 89 480
C 154 50 38 242

All 677 178 183 1038

Percentage (%)

Train Dev Test All

31.3 27.0 30.6 30.4
45.9 45.0 48.6 46.2
22.8 28.1 20.8 23.3

B. Evaluation process

For every experiment, numerous metrics were calculated.
The key metric was accuracy, however balanced accuracy and
AED (which corresponds to the closeness of the predicted
to the actual label), were measured as well. They were used
to make more informed decisions and understand more fully,
which techniques (do not) work and why.

When conducting experiments, the following steps were
performed, in order to make sure the best feature set-classifier
pair was found:

1) Feature subset generation – either subsets that were the
most probable to yield the highest scores were generated,
or, when possible, all subsets were generated.

2) Classifier selection – numerous different classifiers (clas-
sification techniques) were selected and tried.

3) For every feature set and classifier pair, grid search for
the best parameters was performed, with 10-fold cross



validation on the train set. For settings where there were
too many possibilities, grid search was performed only
for the best performing pairs.

4) When evaluating on the test set, mean accuracy was
calculated with 95% confidence intervals (CI) over 10
runs, to show that the reported score is reproducible.

Let us now describe in detail results of our experiments.

C. Experiments with first-level classification

First, experiments with different feature preprocessing steps
were run. For each step, the best performing method was
selected for each feature individually. Stemming, generally,
gave better results than lemmatization, and was used for all
text features, except for the abstract-related ones (abstract,
conclusions and methods sections). No decisive difference
in performance using different Meta Mapping levels was
detected. However, other researchers emphasised importance
of this step, because it reduces the feature sparseness. Hence,
we have generated three parallel features for abstract, methods,
conclusions and title, with three levels of Meta Mapping and
used them in the experiments. Number and stop words removal
were used for all text features. Ngrams of length 1-4 were
generated for abstract and unigrams and bigrams for methods,
conclusions, journal title and title.

Second, experiments with different classifiers and regressors
were run, in order to maximize the accuracy score. For each
feature (Table IV), different classifiers were experimented with
and each classifier’s parameters were tuned.

TABLE IV
FEATURES AND THEIR IDS

No. Feature

1a Abstract (M0)
1b Abstract (M1)
1c Abstract (M2)
2a Conclusions (M0)
2b Conclusions (M1)
2c Conclusions (M2)

No. Feature

3 Journal title
4 MeSH
5a Methods (M0)
5b Methods (M1)
5c Methods (M2)
6 Publication type

No. Feature

7 Publication
year

8a Title (M0)
8b Title (M1)
8c Ttile (M2)

M0 – No Meta Mapping; M1 – Disease or syndrome terms Meta Mapped;
M2 – Most medicine related terms Meta Mapped

The best performing feature was publication type, with
an accuracy score of 70.038%. It was not surprising, since
previous works also showed that this feature was the most
important, in the classification process. Other features yielded
scores in a range 48-55%. MeSH and publication year yielded
the lowest accuracy scores, and, what became evident from the
confusion matrices, in these cases, all elements from the test
set were assigned a majority class label B.

The next phase of experiments involved classifiers trained
on multiple features. First, all subsets of disjoint features were
generated and used to train various classifiers. “Disjoint” refers
to the abstract-related and title features, as these features can
exist in three levels of the Meta Mapped form. For each
feature 1, 2, 5 and 8, only one of variants a-c could be
selected. Moreover, since conclusions and methods sections
are disjoint subsets of sentences of an abstract, these two

could be chosen at the same time, but neither of them could
be selected alongside the abstract. This approach minimizes
the number of subsets, (hence reducing experiments time), and
prevents giving artificially more importance to abstract-related
(or title) features.

Experiments with different parameters were conducted and
whilst most were classifier-specific, approaches where param-
eter class weight = balanced was used, on average, yielded
higher accuracy scores. SVC performed the best of all tested
classifiers. The highest performing feature sets (accuracy score
of up to 69%) included publication type, journal title and
MeSH features, and did not include the publication year
feature. The accuracy almost always rose after removing the
publication year or adding journal title or MeSH to the feature
sets.

It was a surprising finding, as journal title was believed to be
an unimportant feature, and did not yield better than random
results on its own. Also, feature sets with conclusions and
methods sections (either both or one of them) achieved higher
scores than those with the abstract. Approaches with methods
yielded higher accuracy scores than those with conclusions in
their feature set.

D. Experiments with ensemble techniques

In previous works, researchers focused on using classifiers
trained on single features only (in the ensemble setting).
However, since multi-feature trained classifiers performed
significantly better than the single-feature trained ones, we
have decided to experiment with a novel approach: ensemble
technique involving multi-feature trained classifiers. This was
tried in other domains with satisfying results ( [31], [34]).

Moving in this direction, above mentioned best-performing
classifiers became source of intermediate features. The ac-
curacy of created datasets was measured by checking the
probabilities returned by first-level classifiers against true
values of instances.

Since it would not have been feasible to use all possible
subsets of high-level features, only feature sets that yielded
an accuracy score higher than 60% were selected. Table V
shows the resulting combinations. However, for abstract, con-
clusions, methods and title, different levels of Meta Mapping
were also used, so the number of intermediate features was
18 and not 10 as the Table suggests. This information was
stripped for clarity and conciseness.

First, the experiments for the consensus ensemble technique
were run. In these, scaling agent’s confidence score by their
feature set’s accuracy score gave only slightly better results
than not scaling. That means the feature sets with higher
accuracy had more impact on the final score. The best scores
achieved subsets of size 3 and 2. The highest accuracy score
of 73.22% was for a 3-item subset.

Subsequently, experiments with a game theory ensemble
technique were run. The parameters experimented with were:

• scaling agent’s confidence scores vs. no scaling,
• adjusting the dropout score – when the highest confidence

score of an agent drops below a certain value, the agent



TABLE V
ENSEMBLE TECHNIQUES – FEATURE SETS USED

No. Feature

1 abstract, journal title, MeSH, publication type, title
2 conclusions, journal title, MeSH, methods, publication type, title
3 conclusions, journal title, MeSH, publication type, title
4 journal title, MeSH, methods, publication type, title
5 MeSH, publication type
6 MeSH, publication type, publication year
7 MeSH, publication type, publication year, title
8 publication type
9 publication type, title
10 publication type, MeSH, publication type, publication year, title

leaves the round (experimented with values between 0-
30%),

• the number of times an agent can choose the change
action (default: 2; experimented with values 1–10).

The best setup for this experiment was to scale agents’
confidence scores and assign a high value for the dropout
criterion. It is evident that this method needs a lot more
features to generate accurate predictions than the consensus
technique, as the highest performing subsets contained 4-11
feature sets. The highest accuracy score was 73.77%.

A neural network was also trained in the ensemble setting.
Although the highest accuracy scores produced by this method
rose up to 74% on the test set, when cross-validated (10-fold
cross-validation on the train set), mean accuracy scores turned
out not to have exceeded 61.5% with a very high standard
deviation (around 8-10%). Here, the best subsets used an
adadelta optimizer.

The final experiment involved a stacking classifier. Random
Forest Classifier yielded the best results. Almost all accuracy
scores of more than 70% were obtained. Other tree-based clas-
sifiers also yielded comparatively high scores. This approach
gave the highest accuracy scores, with the best one being
75.41%, which is higher than 73.77% reported in [9].

V. ANALYSIS OF RESULTS

Let us now summarize the key observations made on the
basis of obtained results.

A. First-level classification

Experiments with single- and multi-feature trained classi-
fiers were run. Different preprocessing steps, classifiers and
balancing techniques were tried. Dataset balancing did not
improve the accuracy scores, however it did improve the
balanced accuracy score. When intermediate feature sets
were generated using this method, and different ensemble
techniques were tried, returned results were inferior by around
10% for every technique, compared to the approach, which did
not use balancing. This is a statistically significant difference.
However, in most experiments, using a class weight =
balanced parameter, did improve the classification. This pa-
rameter artificially changes the weights of a classifier by the
ratio of class representatives in the train set.

In all experiments, abstract, conclusions, methods and title
features were tested in three different levels of Meta Mapping.
After analysing the results, the only conclusion is that usage
of the Meta Map tool did not, in any statistically significant
way, improve the accuracy of classification.

For the first-level classification, different classifiers, and
neural networks were used. Classifiers yielded superior results
compared to the neural networks. SVC produced better results
than other classifiers, for most feature sets. An SVC was also
used by other researchers, who achieved similar results on this
problem.

Neural network produced accuracy scores that were only
slightly inferior. Moreover, standard deviation of their scores
was significantly higher (around 10%, compared to around
2-5% for classifiers). An attempt to generate intermediate
feature sets with neural networks was undertaken. However,
the resulting accuracy scores were significantly inferior to
the ones generated by classifiers. Hence, this endeavor was
abandoned.

B. Ensemble techniques

When comparing all results of ensemble techniques, across
the two intermediate feature sets, it was evident that techniques
employed on the feature set generated from multi-feature
classification performed better than those that used feature sets
generated from a single-feature classification.

The most significant difference can be seen between results
of the consensus and game theory techniques, where the
highest accuracy scores varied between 66% to 73%, and 68%
to 73% respectively. The higher results achieved in the latter
case may be easily explained. These algorithms, contrary to
classifiers or neural networks, cannot infer “hidden qualities”
of the data – they are simply only “as good as their inputs”.

The difference between the performance of ensemble clas-
sifiers and ensemble neural networks, in the two settings, was
more evident than expected. One could only assume, that
running the experiments on the intermediate features, which
are more accurate, would yield significantly higher scores,
but the difference between the approaches varied by only
around 3-4% between the settings, when comparing the highest
achieved scores.

Classifiers rendered highest accuracy scores on the test set,
in all run experiments. While SVC was the highest performing
classifier in the first phase of the experiments: when dealing
with high-level features, Random Forest Classifier performed
significantly better when trained on the intermediate feature
sets (ensemble approach).

The correlation between high scores on the train and test
sets, across the different methods was also examined. The
technique with the highest correlation ratio was the consensus
method. Next was the game theory technique, which also
had quite high correlation between the scores. Unfortunately,
classifier-feature sets pairs that scored particularly high on the
train set, performed significantly poorer on the test set (74%
and 66% for the best performing pair), whereas the pairs that



achieved highest scores on the test set, yielded low scores on
the train set (65% and 75%).

C. Comparison of results to other works

First set of conducted experiments were meant to reproduce
findings from [9]. The experiment setup was reproduced by
performing the same extraction and preprocessing of features.
Tables VI and VIII compare both result-sets. Here, let us note
that Gyawali, Solorio and Benajiba [9] did not report exact
scores for their base classifiers, instead present results in a
figure – those were approximated. For the sake of comparison,
scores reported by Sarker, Molla-Aliod and Paris ( [6]–[8]) are
also depicted in Table VI.

TABLE VI
COMPARISON WITH OTHER RESEARCHERS – FIRST-LEVEL

CLASSIFICATION (SINGLE FEATURE-TRAINED CLASSIFIERS)

No. Our Results Sarker, Molla-
Aliod and Paris

Gyawali, Solorio
and Benajiba

Accuracy 95% CI Accuracy 95% CI Accuracy
(%) (%) (%)

1a 51.293 50.9–51.7 - - -
1b 50.893 50.6–51.2 49.7 42–57 40.0
1c 50.528 50.3–50.8 - - -
2a 50.893 50.3–51.5 - - -
2b 50.492 49.4–51.6 - - 47.5
2c 50.237 50.0–50.5 - - -
3 49.727 49.7–49.7 47.3 42–53 -
4 48.889 48.5–49.3 - - 48.5
5a 51.913 51.5–52.3 - - -
5b 50.783 50.5–51.1 - - 52.5
5c 51.148 50.3–52.0 - - -
6 70.038 70.0–70.0 58.5 51–66 50.0
7 48.525 48.3–48.8 47.6 42–53 -
8a 55.628 55.3–55.9 - - -
8b 50.128 49.9–50.4 52.5 45–60 54.0
8c 53.588 53.3–53.9 - - -

The accuracy scores per feature, even though not very high,
are in line with results reported by other researchers, with
the only exception for the publication type. In the extraction
process for this feature, data (human-annotated explanation
text) from outside of the competition dataset was used. Sarker,
Molla-Aliod and Paris also used this data in some of their
experiments; Table VII compares these results. It is divided
into two sections: the first section contains results where
they used human-annotated data; results in the second part
are from experiments using a fully automatic approach and
only data from the competition dataset. Gyawali, Solorio and
Benajiba [9] did not use the human-annotated information at
all, and reported an even lower accuracy score of 50% for the
publication type feature.

We have made an attempt to directly compare the stacking
approach to the results reported in [9]. For that, another set of
experiments was performed. Experimental setting was almost
the same as before, but this time human-annotated metadata
was not used for the publication type extraction from the
article. Instead, a fully automated approach was used. The
accuracy score of a classifier trained on a publication type

feature was only 56%, which was still higher than results
reported in [9](50%). This feature was later used to generate
an intermediate feature set and used in the stacking approach.
Surprisingly, even though first-level classifiers depicted in this
work yield higher accuracy scores the accuracy of stacking
classifiers did not exceed 64% (compared to 73.77% reported
in [9]). The cause for the discrepancy has not been diagnosed
and will be further investigated in the near future.

TABLE VII
COMPARISON WITH SARKER, MOLLA-ALIOD AND PARIS – FIRST–LEVEL

CLASSIFICATION (MULTIPLE FEATURE-TRAINED CLASSIFIERS)

Feature Our Results Sarker, Molla-Aliod and Paris

sets Classifier Accuracy (%) Classifier Accuracy (%)

6 DTC 71 KNNC 69
3, 6, 7, 8 SVC 60 DTC 64
6, 7 SVC 58 DTC 67
6, 8 SVC 63 DTC 67
3, 6, RFC 60 DTC 64
3, 7, 8 SVC 48 SVC 51
3, 7 SVC 46 SVC 46
6 DTC 71 DTC 59
1, 6, 8 SVC 54 SVC 60

First part of the table compares results achieved in this work to the ones
where human-annotated data was used; Second part of the table compares
results of this work to the fully automatic approach
DTC – Decision Tree Classifier; SVC – Support Vector Classifier; KNNC
– K-nearest Neighbors Classifier; RFC – Random Forest Classifier;

TABLE VIII
COMPARISON WITH GYAWALI, SOLORIA AND BENAJIBA – FIRST-LEVEL

CLASSIFICATION (MULTIPLE FEATURE-TRAINED CLASSIFIERS)

Feature Our Results Gyawali, Soloria and Bena-
jiba

sets Classifier Accuracy (%) Classifier Accuracy (%)

1, 4, 6, 8 SVC 65 SVC 46
2, 4, 5, 6, 8 SVC 68 SVC 50
4, 6 RFC 61 SVC 53

SVC – Support Vector Classifier; RFC – Random Forest Classifier

Compared to the work of Sarker, Molla-Aliod and Paris,
our results are in line and slightly superior. Similar accuracy
scores on the base features are reported, and the difference
between the highest scoring feature and the end score is similar
– around 5%.

We have to admit that their approach has a significant
advantage, because they develop an automated system to
extract publication types from abstracts and metadata, which
makes their system fully automatic. This work shows that
if a system that would extract publication type with a high
accuracy (around 70% at least, compared to their 58%) was
developed, it would be possible to use system described in
this work in an automatic way as well. That would potentially
yield even better results.

VI. DISCUSSION AND LESSONS LEARNED

The overarching goal of this work was to help medical
practitioners make better informed decisions in the limited



time they have for each patient, by helping them focus only
on high quality research. In this context we have investigated
methods that would predict evidence quality from raw publi-
cation abstracts and metadata by classifying the evidence into
three grades: A, B or C.

As a result of our work, some discoveries about the features,
previously mentioned by other researchers, were confirmed,
namely

• the importance of accurate publication type assignment,
• lack of importance of publication year as a feature,
• observation that relevant parts (methods and conclusions

sections) extracted from the abstract are better predictors
than whole abstract texts.

An observation contradictory to the existing research was also
made: journal title, previously believed to be insignificant, was
often among the feature sets yielding high(er) accuracy scores.

A novel approach was also proposed – to use different, high
accuracy yielding feature set-classifier pairs, as estimators for
different ensemble techniques. The ensemble approach per-
formed significantly better than the baseline (75% compared
to 48%). Out of all tested ensemble approaches, classifiers
yielded the highest accuracy score (75%), whilst consensus
method gave the most consistent results, with only a slightly
lower accuracy (72%). Here, upon reflection, one may note
that better consistency may, in fact, be more useful in some
real-life scenarios.

Due to the generality of the approach, it can easily be used
for evidence quality estimation in other grading systems than
SORT, though that would require a new dataset with annotated
examples, which, to our best knowledge, does not exist. Future
research would also benefit from enlarging the existing dataset,
as the currently available dataset is quite small (while access
to digital libraries of medical texts is very expensive). Another
possible point of interest for researchers in the domain may be
focusing on improvement of semantic tools such as MetaMap,
which could be useful in finding relevant information in the
publications, such as study group size or publication type.
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