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Abstract. The vast body of scientific publications presents an increas-
ing challenge of finding those that are relevant to a given research ques-
tion, and making informed decisions on their basis. This becomes ex-
tremely difficult without the use of automated tools. Here, one possible
area for improvement is automatic classification of publication abstracts
according to their topic. This work introduces a novel, knowledge base-
oriented publication classifier. The proposed method focuses on achieving
scalability and easy adaptability to other domains. Classification speed
and accuracy are shown to be satisfactory, in the very demanding field of
food safety. Further development and evaluation of the method is needed,
as the proposed approach shows much potential.
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1 Introduction

In modern science we are confronted with a fast-growing body of publications,
where finding the “relevant ones” is becoming increasingly challenging. To ad-
dress the problem, evidence-based decision making (EBDM) [3] was proposed,
where one of the forms of research used is the systematic review (SR), which uses
scientifically rigorous methods to identify, select, assess, and summarize multiple
works [20]. Systematic reviews are increasingly used to summarize the state-of-
the-art and to guide the direction of future research [2]. While SRs are very
reliable, due to the required time and expertise, producing them quickly proved
to be a challenge [26]; e.g. a study is typically included in a systematic review
2.5–6.5 years after publication [14]. Hence, the need for automation. While some
parts of an SR require creativity and expertise, others can be automated [26].

This work discusses the use of semantic technologies and natural language
processing to aid automation of SR in the field of food safety. More specifically,
the described system facilitates relevance screening by classifying articles ac-
cording to their topic(s). Having an article described by its title, abstract, and,
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optionally, unstructured keywords, the aim is to assign to it topics drawn from
a knowledge base (KB). Here, potential advantage of using a semantic KB is
explored, because of the meaning and the context provided by the ontology [22].

The proposed solution was evaluated in the food safety domain, which presents
a unique challenge in automatic SR, as it involves a wide variety of topics from
multiple fields of science necessitated by the integration of heterogeneous sources
of information [4, 27]. On the other hand, there are numerous ontologies available
for biology, chemistry, and medicine domains [28], which can be incorporated to
reason about food safety.

2 Related works

Food safety is a relatively unexplored domain in text classification-oriented re-
search. However, documents in this domain draw terminology from numerous
biomedical sciences. Thus, one may expect to encounter similar characteristics
to those present in related areas. For diseases and drugs, issues with entity link-
ing usually stem from the many ways in which a single entity can be represented
in text [18]. There are examples of similar morphology but different meaning:
“ADA-SCID (adenosine deaminase deficiency)” and “X-SCID (X-linked com-
bined immunodeficiency diseases)”. There are also examples of entirely different
morphology, but similar semantic meaning, e.g. “kaplan plauchu fitch syndrome”
and “acrocraniofacial dysostosis”. Moreover, the numerous obscure abbreviations
can vary between publications, bringing importance to the context. Finally, very
few labeled datasets are available, making supervised methods unfeasible [30].

On the other hand, in biomedical sciences there are many well-structured on-
tologies that may be used in entity linking [1, 30]. There is a relatively large body
of research concerning entity linking for medical reports and publications [18].
However, these works usually focus on linking text to thesauri or taxonomies,
such as MeSH3 that are less expressive than full ontologies. Moreover, these
methods are often evaluated using benchmark datasets that provide researchers
with training data for supervised models. Nonetheless, even very sophisticated
methods, based on BERT, can struggle to correctly perceive context and resolve
ambiguous entities. Especially hard are situations where the model is asked to
identify terms that occur rarely within the training corpus [10]. Finally, modern
supervised approaches have very high hardware requirements.

Furthermore, there a a few solutions addressing the classification problem in
the biomedical domain. Here, we outline most relevant to the presented work.

NCBO Annotator4 is an ontology-based tool for entity linking in biomedicine.
Being a part of the BioPortal5, it supports all ontologies published there. The
Annotator uses basic string matching to find entities with names similar to
those occurring in the text. Results are further enhanced with concept expansion
and ontology mappings [15]. Here, the method is unsupervised and can handle

3 https://www.nlm.nih.gov/mesh/introduction.html
4 https://bioportal.bioontology.org/annotator
5 https://bioportal.bioontology.org/

https://www.nlm.nih.gov/mesh/introduction.html
https://bioportal.bioontology.org/annotator
https://bioportal.bioontology.org/
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hundreds of ontologies at the same time. However, the system lacks the ability
to handle morphological variants and more complicated disambiguation cases.

Neural Concept Recognizer [1] links entities from medical ontologies. It is
based on the idea that both text and ontologies can be embedded into a vector
space and one can compute similarity metrics between vectors to find matching
terms. Text is vectorized using word embeddings and a convolutional neural
network. Concept embeddings are established with respect to the taxonomical
structure of the ontology. Training is performed on an artificially made dataset,
derived from labels present in the ontology. The approach allows training the
classifier based only on the ontology and allows easy adaptation to a different
domain. It is also claimed that the system can handle novel synonyms, contrary
to rule- or dictionary-based solutions. However, the authors point to the inability
of the model to perceive context and a relatively slow performance.

The CSO Classifier [22] is an automatic classification system for computer
science publications. Although it does not focus on the biomedical sciences, its
general idea seems applicable to other domains as well. It uses the Computer
Science Ontology of research topics, with a taxonomical structure [23]. The sys-
tem consists of three modules. The syntactic module preprocesses the text and
searches for n-grams, with high Levenshtein similarity to terms in the ontology.
This is to find topics that are explicitly mentioned in the document. The se-
mantic module aims at retrieving topics that are semantically related, but not
explicitly mentioned. Part of speech tagging and a simple grammar rule are used
for extracting candidate text spans to be analyzed. Next, word embeddings (via
word2vec) are used to find semantically similar terms in the ontology. The most
relevant topics are selected by ranking them using a metric that considers the
frequency with which they occur in the document and how “diverse” were their
mentions. Finally, in postprocessing, the terms most frequently occurring in the
corpus are discarded and the remaining list of topics is enhanced by including
direct ancestors of the terms from the ontology. According to the authors, the
CSO Classifier outperforms other topic detection methods in terms of recall, by
also in including topics that are only implied in text but not explicitly stated.

3 Dataset preparation

Let us now describe datasets that were used in our work. For constructing a
corpus of food safety publications, two popular sources were used: PubMed6

and the European Food Safety Authority (EFSA) Journal7. For both sources,
articles relevant to food safety were found and their metadata retrieved.

3.1 PubMed

To retrieve the metadata from PubMed, the Entrez API client, from the Biopy-
thon package, was used [5]. Articles in PubMed are described using MeSH, which

6 https://pubmed.ncbi.nlm.nih.gov/
7 https://www.efsa.europa.eu/en/publications

https://pubmed.ncbi.nlm.nih.gov/
https://www.efsa.europa.eu/en/publications
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through its hierarchical structure groups descriptors into categories. Our search
was limited to articles that use the “food safety” MeSH descriptor, and any of
its children; 77 348 articles were found, of which 61 941 had available abstracts.
Table 1 shows how often descriptors from a given MeSH category were used
to point to articles in the corpus. The analysis was performed using SPARQL
queries on MeSH and article metadata, imported into a Blazegraph quad store8.

Table 1. Descriptor usage by category for PubMed articles

Category # descriptors

Anatomy [A] 26 050
including: Fluids and Secretions 4 790

Cells 4 691
Plant Structures 3 770
Digestive System 2 519

Organisms [B] 119 840

Diseases [C] 45 388
including: Infections 15 672

Animal Diseases 5 046
Digestive System Disorders 4 205

Chemicals and Drugs [D] 209 783

Analytical, Diagnostic and Therapeutic Techniques (...) [E] 101 766
including: Investigative Techniques 81 670

Psychiatry and Psychology [F] 5 513

Phenomena and Processes [G] 128 724

Disciplines and Occupations [H] 12 752

Anthropology, Education, Sociology (...) [I] 8 712

Technology, Industry, and Agriculture [J] 69 369
including: Food and Beverages 35 432

Technology, Industry, and Agriculture 31 536

Humanities [K] 1 079

Information Science [L] 6 161

Named Groups [M] 9 822

Health Care [N] 111 808

Geographicals [Z] 30 474

It can be observed that food science is not the dominant area. Even in [A]
and [C] categories, terms associated with the digestive system are not the most
frequent. Among frequent terms, not related to food science, are: organisms,
chemicals, investigative techniques, phenomena and processes, health care, and
geo-location. Thus, it is obvious that food safety touches upon a very diverse
set of topics and involves complex relations. Hence, when choosing ontologies for
describing this domain, a very wide spectrum of topics has to be included.

8 https://blazegraph.com/

https://blazegraph.com/
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To identify additional keywords that were not provided explicitly with the
publications, named entity linking (NEL) of abstracts, against the UMLS metathe-
saurus, was performed with the scispaCy [21] library. The used model was based
on BERT architecture (en core sci scibert), and the linker was targeting a
∼785k entity subset of UMLS. Finally, entity occurrence frequency in abstracts
was summarized. The method identified 48 083 unique entities in 61 941 ab-
stracts. The results contain some obvious misclassifications – for example 28 253
abstracts are to refer to mental concentration (attention concentration), which is
a very uncommon topic in food safety. These occurrences most likely refer to the
concentration of substances, which is a frequent topic in food safety literature.
Barring the misclassifications, many of the frequently identified keywords refer
to investigative techniques, risk assessment, and statistics (e.g. levels, concentra-
tion, detection, contamination, association, significance, prevalence). Most other
entities are typically within the scope of MeSH (biology, chemistry, medicine).

3.2 EFSA

EFSA metadata is available via a free API9, which allows retrieving abstracts
and associated keywords. As the primary focus of EFSA is food safety, all avail-
able articles were retrieved. Of 10 088 publications, 6 684 had available abstracts.

Provided keywords are not structured, which prohibits analysis that was
performed using MeSH descriptors. On the other hand, these keywords are not
restricted by a controlled vocabulary and thus a rudimentary frequency analy-
sis may show often used terms that were not identified previously. Among the
most common keywords that are not directly within the scope of food science,
are: risk assessment, safety, health claims, MRL (maximum residue levels), QPS
(qualified presumption of safety), exposure, quarantine, children, data collection,
confirmatory data, European Union member states, and various EU legislative
documents. The latter appeared in contributions dealing with regulation com-
pliance. It should be noted that nearly 67% of keywords appear only once, while
14% appear twice. These rarely-appearing terms are mostly specific chemicals,
processes, and organisms.

Entity linking against UMLS was performed for the retrieved abstracts, using
the same method as with the PubMed corpus. For 6 684 abstracts, 13 200 unique
entities were found. As in PubMed, there were many misclassified terms that
are unlikely to appear frequently in the corpus. The used NEL method is based
on simple n-gram vectorization of mentions and lacks the necessary context re-
quired to successfully disambiguate some terms. Additionally, it failed to identify
terminology specific to the EFSA dataset (e.g. European Commission, MRLS,
MON ), due to UMLS lacking these terms. On the other hand, typical biomed-
ical terms were identified easily. Often found were references to food products,
ingredients, organisms, age groups, chemicals, and diseases.

9 https://openapi-portal.efsa.europa.eu/

https://openapi-portal.efsa.europa.eu/
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3.3 Summary

From the preliminary analysis it is obvious, that dictionaries (ontologies) used in
food safety should span a wide scope of biomedical topics. Moreover, the prelim-
inary NEL results obtained using scispaCy strongly suggest that disambiguating
of named entities in texts may require the system to better perceive the context
in which the term appears and how is it related to other terms.

4 Ontologies

While initial results suggest that the use of semantic technologies could be bene-
ficial to the task of publication classification, there is no public food safety ontol-
ogy available. However, there are ontologies describing related fields, such as food
science. One example is FoodOn – a comprehensive food ontology [9], available
through NCBO’s BioPortal [28]. FoodOn has numerous mappings to other on-
tologies in the BioPortal10, which allows them to be used jointly. FoodOn is also
a part of OBO Foundry11, guaranteeing application of several quality-improving
guidelines [25], especially important when using multiple ontologies at a time.

As shown previously, food safety publications touch upon many diverse topics
within the biomedical domain. The number of available biomedical ontologies is
also high – NCBO’s BioPortal claims to host 846 ontologies. Without the help of
domain experts, the only viable method for ontology selection (and use) would
have to be based on data-driven analysis of topics found in publications. Such
analysis can be based on data gathered from PubMed, thanks to the presence
of structured MeSH descriptors. Those descriptors can be mapped to related
entities in other ontologies, using mappings from the BioPortal.

For each of the 11 693 MeSH descriptors, present in the corpus, mappings to
all BioPortal ontologies were retrieved. The initial focus was on ontologies from
the OBO Foundry. Actively maintained ontologies with comprehensive documen-
tation were prioritized. Additionally, several upper level ontologies were included
(e.g., BFO, IAO, RO). The selected OBO ontologies are listed below, ordered
alphabetically by their abbreviations.

– Anatomical Entity Ontology (AEO)12

– Agronomy Ontology (AGRO)13

– Apollo Structured Vocabulary (APOLLO-SV)14

– Basic Formal Ontology (BFO)15

– BRENDA tissue / enzyme source (BTO)16

10 https://bioportal.bioontology.org/ontologies/FOODON/?p=mappings
11 http://obofoundry.org/
12 http://www.obofoundry.org/ontology/aeo.html
13 https://github.com/AgriculturalSemantics/agro
14 https://github.com/ApolloDev/apollo-sv
15 http://basic-formal-ontology.org/
16 http://www.obofoundry.org/ontology/bto.html

https://bioportal.bioontology.org/ontologies/FOODON/?p=mappings
http://obofoundry.org/
http://www.obofoundry.org/ontology/aeo.html
https://github.com/AgriculturalSemantics/agro
https://github.com/ApolloDev/apollo-sv
http://basic-formal-ontology.org/
http://www.obofoundry.org/ontology/bto.html
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– Common Anatomy Reference Ontology (CARO)17

– Chemical Entities of Biological Interest (CHEBI)18

– Chemical Methods Ontology (CHMO)19

– Cell Ontology (CL)20

– Human Disease Ontology (DOID)21

– Drug Ontology (DRON)22

– Human developmental anatomy ontology (EHDAA2)23

– Environment Ontology (ENVO)24

– Food-Biomarker Ontology (FOBI)25

– FoodOn26

– Gazetteer (GAZ)27

– Gene Ontology (GO)28

– Human Phenotype Ontology (HP)29

– Information Artifact Ontology (IAO)30

– Mammalian Phenotype Ontology (MP)31

– NCBI organismal classification (NCBITaxon)32

– Ontology for Biomedical Investigations (OBI)33

– Phenotype And Trait Ontology (PATO)34

– Population and Community Ontology (PCO)35

– Plant Experimental Conditions Ontology (PECO)36

– Plant Ontology (PO)37

– Relation Ontology (RO)38

– Symptom Ontology (SYMP)39

– Uberon40

17 https://github.com/obophenotype/caro/
18 https://www.ebi.ac.uk/chebi/
19 http://obofoundry.org/ontology/chmo.html
20 https://obophenotype.github.io/cell-ontology/
21 https://disease-ontology.org/
22 https://github.com/ufbmi/dron
23 http://obofoundry.org/ontology/ehdaa2.html
24 http://environmentontology.org/
25 http://www.obofoundry.org/ontology/fobi.html
26 https://foodon.org/
27 http://obofoundry.org/ontology/gaz.html
28 http://geneontology.org/
29 http://www.obofoundry.org/ontology/hp.html
30 https://github.com/information-artifact-ontology/IAO/
31 http://www.informatics.jax.org/vocab/mp ontology/
32 http://obofoundry.org/ontology/ncbitaxon.html
33 http://obi-ontology.org/
34 http://obofoundry.org/ontology/pato.html
35 https://github.com/PopulationAndCommunityOntology/pco
36 http://www.obofoundry.org/ontology/peco.html
37 http://www.obofoundry.org/ontology/po.html
38 https://oborel.github.io/
39 http://symptomontologywiki.igs.umaryland.edu/
40 http://uberon.github.io/

https://github.com/obophenotype/caro/
https://www.ebi.ac.uk/chebi/
http://obofoundry.org/ontology/chmo.html
https://obophenotype.github.io/cell-ontology/
https://disease-ontology.org/
https://github.com/ufbmi/dron
http://obofoundry.org/ontology/ehdaa2.html
http://environmentontology.org/
http://www.obofoundry.org/ontology/fobi.html
https://foodon.org/
http://obofoundry.org/ontology/gaz.html
http://geneontology.org/
http://www.obofoundry.org/ontology/hp.html
https://github.com/information-artifact-ontology/IAO/
http://www.informatics.jax.org/vocab/mp_ontology/
http://obofoundry.org/ontology/ncbitaxon.html
http://obi-ontology.org/
http://obofoundry.org/ontology/pato.html
https://github.com/PopulationAndCommunityOntology/pco
http://www.obofoundry.org/ontology/peco.html
http://www.obofoundry.org/ontology/po.html
https://oborel.github.io/
http://symptomontologywiki.igs.umaryland.edu/
http://uberon.github.io/
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– Units of measurement ontology (UO)41

– Experimental condition ontology (XCO)42

This set of ontologies covers 4 031 out of 11 693 (34.5%) MeSH descriptors
present in the corpus (271 714 out of 872 838 (31.1%) descriptor occurrences).
This relatively low coverage contrasts with the very wide range of topics these
ontologies cover. This is possibly due to MeSH being designed for indexing pub-
lications, and thus having terms oriented toward more general topics instead
of granular concepts. For example, one of the frequently occurring MeSH de-
scriptors is Fishes, an imprecise term that does not have a strict definition. The
NCBITaxon ontology includes many species of fish (and their biological taxon-
omy), but not this particular term. Other OBO Foundry ontologies also describe
specific terms very well, but lack the more general/imprecise ones.

One way to cope with this issue would be to include an additional, “meta-
level” biomedical ontology. MeSH could play this role, but it has several signif-
icant drawbacks. First, being a thesaurus, it is less expressive than ontologies.
Second, its non-standard structure hinders its reuse with OWL ontologies that
adhere to different design principles. Ultimately, the Systematized Nomencla-
ture of Medicine Clinical Terms (SNOMED CT) was selected. It covers well the
“general” biomedical terms and contains very expressive relations [8].

To integrate it with OBO Foundry ontologies, the terminology was converted
to OWL43 and inserted into a knowledge base. Next, connections between iden-
tical (or related) terms in OBO Foundry ontologies and SNOMED CT were
created, using two sources of mappings. Some OBO ontologies already con-
tained cross-database references to SNOMED CT – these references were nor-
malized and converted to skos:closeMatch relations. Additionally, all map-
pings for SNOMED CT were retrieved from the BioPortal API. In total, 43 595
unique mappings were inserted into the KB, covering 37 999 of all 354 318 en-
tities (10.7%) in SNOMED CT. From here, the combined OBO Foundry with
SNOMED CT knowledge base will be referred to as OBO/SNOMED.

MeSH descriptor coverage was then re-evaluated. The new set of ontologies
covers 7 696 out of 11 693 (65.8%) MeSH descriptors, which constitutes 569 104
out of 872 838 (65.2%) descriptor occurrences. The twenty most frequently oc-
curring, yet uncovered MeSH descriptors include: food contamination, food mi-
crobiology, food safety, pesticide residue, and other terms directly related to food
safety. This implies that the constructed ontology is still incomplete in this re-
gard. This problem is not solvable with the immediately available resources, and
solving it is out of scope of this contribution.

The knowledge graph was inspected for inconsistencies and other issues that
may hamper the classification algorithm. The first discovered issue was the lack
of consistency among cross-ontology references. They are supposed to connect
similar/identical terms originating from different ontologies. Some such refer-

41 https://github.com/bio-ontology-research-group/unit-ontology
42 https://rgd.mcw.edu/rgdweb/ontology/view.html?acc id=XCO:0000000
43 https://github.com/IHTSDO/snomed-owl-toolkit

https://github.com/bio-ontology-research-group/unit-ontology
https://rgd.mcw.edu/rgdweb/ontology/view.html?acc_id=XCO:0000000
https://github.com/IHTSDO/snomed-owl-toolkit
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ences are specified with loose annotation properties pointing to textual iden-
tifiers, not their URIs. Some target terms did have their identifiers attached
using another annotation property, but many did not. These problems were mit-
igated with SPARQL UPDATE queries that transformed OBO references into
traversable skos:closeMatch properties. Note that these issues are known and
their detailed discussion can be found in the work of Laadhar et al. [16]. Other
issues, e.g. triples with properties pointing to erroneous URIs, object properties
referring to literal values, and annotation properties referring to objects, were
also fixed with SPARQL queries. Such errors would decrease the accuracy of the
method, due to it relying on the ontology for domain knowledge.

At the end, the OBO/SNOMED graph became relatively large, containing
almost 49 million triples. Handling such a large dataset presents significant chal-
lenges. Therefore, the graph was inspected for triples of little value to text-based
information retrieval. Unnecessary information was removed including prove-
nance information, metadata, links to external databases, and more. This re-
sulted in a graph with approximately 25 million triples.

5 Proposed approach

Let us now describe the method used to perform topical publication classifica-
tion. Proposed approach is based on the following assumptions. (1) Classification
should be as accurate as possible. (2) Solution should be fast and scalable, as
target ontologies, depending on the discipline, can have tens of millions of triples.
(3) The method should robustly cope with larger-than-memory datasets, with-
out significant performance degradation. (4) Solution should be easily applicable
to any domain. This implies reliance on the information contained in the KB,
while “domain-specific code” should be limited to a minimum.

Figure 1 presents an overview of the method. First, using named entity recog-
nition (NER), mentions are identified in the text (Sect. 5.1). Then, for each
mention, a set of candidate entities is produced, based on a full-text query to a
search engine (Sect. 5.2). Neighborhoods of candidates are taken into account,
using an algorithm that exploits the semantic meaning of relations between en-
tities (Sect. 5.3). Candidates are compared to the mention, and each is assigned
a similarity score (Sect. 5.4). Additionally, connections between candidates are
used to discard the least coherent choices (Sect. 5.5). Finally, the list of entities is
enhanced using information from the KB, and the final set of terms most relevant
to the publication is returned (Sect. 5.6). Let us now describe each operation in
more detail.

5.1 Named entity recognition

The first stage of the method identifies mentions, in publication abstracts that
may correspond to “entities of interest”. In later stages, these mentions will be
linked to the entities in the knowledge base. There are several ready solutions to
this problem in the biomedical domain, such as the scispaCy biomedical pipeline
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Fig. 1. Overview of the method

(en core sci lg), which achieves a 69% F1 score in NER, on the very demanding
MedMentions dataset [21] and it was chosen to be used here. The final set of
mentions is additionally extended with explicitly provided keywords, which are
available for the EFSA corpus.

5.2 Candidate generation

Selecting candidate entities for a mention is not trivial when the number of
entities in the KB is large; e.g. OBO/SNOMED is too large to be loaded into
memory of a standard computer. Thus, Elasticsearch44 was used for candidate

44 https://www.elastic.co/what-is/elasticsearch

https://www.elastic.co/what-is/elasticsearch
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generation. Specifically, an Elasticsearch index was constructed, fields of which
depended on types of text properties present within the KB. The unique identifier
for each record in the index is simply the entity’s URI. For each type of text
property, a numeric weight was assigned for use when searching, to indicate how
relevant the field is expected to be. Additionally, several fields are included for
caching results of compute-intensive operations, described in detail in Sects. 5.3
and 5.6. Finally, the constructed index for the OBO/SNOMED knowledge base
consists of 3 739 476 valid entity linking targets.

5.3 Graph expansion

A candidate entity does not provide context information by itself – it is nec-
essary to look at related entities to obtain a better sense of what it describes.
This “graph expansion” approach was used successfully in a textual entailment
system [29]. Before attempting to design an algorithm for this problem, KB was
examined and several observations were made.

O1: Traversing the graph only along the edges’ original directionality may be too
limiting. For example, with the rdfs:subClassOf relations this would result
in only traversing the class hierarchy upward. Thus, the algorithm should
traverse edges in both directions.

O2: Processing large graphs with long-tail distributions of node degrees is chal-
lenging [11]. Encountering a vertex with a large number of neighbors forces
the algorithm to visit all of them. Moreover, the relative amount of informa-
tion a neighbor provides can vary considerably. Within large KBs one can
find entities with numerous connections (e.g. many instances of one class),
which makes the meaning of such an entity intuitively less “concentrated”.
Conversely, an entity with fewer connections is more likely to have a more
concrete and relevant meaning.

O3: Similarly, if an entity has many connections of type A, but very few of
type B, the B-type edges are likely provide more “focused” information. For
instance, the analgesic class from CHEBI is connected to 65 substances that
can be used as analgesics. When expanding from the analgesic entity, they
may introduce “noise”. On the other hand, connections such as analgesic is
a subclass of drug do provide important contextual information.

O4: Finally, different types of properties have different meanings and can be
intuitively translated to connections of varying importance. For example, the
skos:closeMatch relation implies greater similarity than rdfs:subClassOf

or obo:RO 0002604 (is opposite of).

Based on these observations, the following formula for calculating edge weights
(wrel) was proposed (3).

l(o) = |(s′, p′, o) ∈ KB∪ (o, p′, o′) ∈ KB| (1)

g(s, p, d) =

{
|(s, p, o′) ∈ KB| if d = ’spo’

|(s′, p, s) ∈ KB| if d = ’ops’
(2)
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wrel(s, p, o, d) = wp l(o)
fl g(s, p, d)fg (3)

Here s, p, o (subject, predicate, object) is a triple from the KB that may be
inverted to allow traversing the graph in either direction (O1). In such case, the
d parameter is set to ops to indicate the inversion, otherwise it is spo. The final
weight consists of three components:

– wp – the constant base weight for property p (O4). The base weights have to
be picked manually, based on the user’s expertise, ontology documentation,
and the use of the property in practice. The value typically ranges from 0.1
for very close, identity-like ties to 4, for the loose connections.

– l(o) – the total number of links to and from the object of the triple (O2). By
considering only the number of links of the object, the algorithm discourages
visiting nodes with high cardinality, while leaving the node is not penalized.
This is additionally scaled by a tunable parameter, fl (0.5 by default).

– g(s, p, d) – the number of links from subject s, through predicate p, in direc-
tion d (O3). This is also scaled by a parameter, fg (0.5 by default).

In the equations, s′, p′, o′ refer to (respectively) any subject, predicate, and
object matching the given triple pattern. Expressions in the form of (s, p, o)
indicate triple patterns present in the KB.

To compute wrel effectively, the following approach is used. First, for each
node x in the KB, l(x) is calculated and the result inserted back into the graph.
Next, a list of all (s, p, o) triples in the KB is generated, along with their l(s)
and l(o). The list is enhanced with inverted triples, to enable traversing edges in
both directions. This results in a list that may be much larger than the system
memory available, which necessitates careful processing of the data (in parts). To
be able to perform grouping operations effectively, the list is sorted on disk and
repartitioned by s, producing partitions that can be safely grouped in isolation.
Then, it is grouped by s, p, and d, which corresponds to the g(s, p, d) function.
Computing wrel is straightforward now, and is done by iterating over all obtained
groups. For each group only cmax (4 by default) connections with lowest weights
are kept. The partitioned data is processed in parallel using the Dask Python
library [6].

The algorithm outputs a list of triples with weights that when inserted into
the KB yield a weighted, traversable graph. A weighted graph can be more
generally framed as an attribute graph, where any edge between two nodes (a
triple) can be annotated with additional information. Blazegraph implements a
solution to this called Reification Done Right (RDR), in which any triple can be
either the object or the subject of another triple [12].

Perhaps the most obvious solution to finding neighboring entities in the
knowledge graph would be to employ SPARQL queries, however, this would be
hardly a typical use case for this language. A better fit would be a Gather-Apply-
Scatter (GAS) algorithm, similar to the PowerGraph approach [11]. GAS allows
one to write high-performance, parallel graph analytics algorithms. Blazegraph
implements this approach45 via a Java API. The graph expansion algorithm

45 https://github.com/blazegraph/database/wiki/RDF GAS API

https://github.com/blazegraph/database/wiki/RDF_GAS_API
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was implemented using this method and compiled as a Blazegraph plugin. The
algorithm obtains edge weights of triples using RDR. The code is a modified
version of the breadth-first search algorithm, taking into account maximum al-
lowed traversal depth and maximum distance of found neighbors. The search is
executed in parallel, across multiple threads.

As the neighborhood of an entity depends solely on the ontology, and not the
particular search being made, it is possible to perform graph expansion for each
possible candidate beforehand, to speed up classification. Then, the neighboring
entities are saved to the Elasticsearch index, along with the distances to them
(in the related entities and related entities weights fields). This removes
the need to run and query Blazegraph during runtime, improving classification
speed and reducing the overall memory footprint.

5.4 Candidate ranking

Obtained candidate entities are then rated by their relevance to the mention.
The algorithm should consider both the context in which the mention appears,
as well as the neighborhood of the candidate entity within the KB. The proposed
solution uses two types of text vector representations – semantic and lexical. The
semantic component employs word embeddings provided by the scispaCy library.
While word embeddings have superior performance to lexical-based methods, one
must also consider that out-of-vocabulary words will not produce a vector and
thus cannot be compared. Here, for scientific texts, it is unreasonable to expect
the embedding model to cover all possible words, some of which may be highly
specialized and/or rarely occurring. Hence, the lexical component is introduced,
based purely on character-level similarity between text fragments. To construct
a lexical vector, the text fragment is split into 3-4 character n-grams. Next, the
unique n-grams are grouped by their hashes and counted.

To compute the score of a candidate, its and all of its neighbors’ text prop-
erties are vectorized. This produces two matrices, Ln×ml

and Sn×ms
, for lexical

and semantic vectors, respectively. Here n is the number of all text properties
from all entities that are taken into account. The number of columns depends
on the length of the vectors. The matrices are L2-normalized row-wise, with the
exception of zero-length vectors. Additionally, a vector of distances to related
entities is retrieved (we), with values starting from zero (for the candidate entity
itself). As described in Sect. 5.2, text properties can have varying importance,
which is considered here in the form of wp, a vector of property weights. Finally,
the similarity between the mention and other text fragments is calculated in
bulk using (4).

d = wp
wl a (Ll) + wsm a (Ssm) + wsc a (Ssc)

1 + we
(4)

a(x) = (1 + exp (α− βx))
−2

(5)

Here l, sm, sc refer to the lexical vector of the mention, its semantic vector,
and the semantic vector of the sentence the mention is in (its context), respec-
tively. It is assumed that these vectors are L2-normalized. Moreover, wl, wsm,
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wsc are tunable weights for the three components. Next, raw cosine similarity
values are put through the activation function a, presented in (5). It is a case of
the generalized logistic function. Its purpose is to discard low similarity scores
and “promote” good matches. The α and β parameters can be tuned to control
its steepness and translation along the X axis. The function will return values
from the (0, 1) interval. Equation (4) produces an n-length vector of similar-
ity scores between the mention and each of the considered text fragments. The
score is accumulated by simply summing the elements of the vector d. The actual
code for calculating this formula uses several performance optimizations, such
as a lookup table for the activation function. Additionally, numerically-heavy
routines were compiled using the Numba JIT compiler [17].

To further speed up classification, the feature vectors for text from the KB
are precomputed during indexing. They are then stored and retrieved during
classification, minimizing the amount of text processing at runtime. The cached
vectors can take up large amounts of memory. For the OBO/SNOMED KB
problems occurred even on a computer with ∼32GB of memory, and for other
KBs required memory may increase further. This is solved by storing the vectors
using the Lightning Memory-Mapped Database (LMDB)46, which offers very
high random-read performance and supports concurrent reads. This approach,
however, necessitates the use of an SSD as the backing storage medium, as
traditional hard drives are unsuitable for rapid random reads.

As a result of this step, for each mention, an ordered list of candidates with
assigned scores is obtained. The greater the score, the more likely the candidate
is to be a good match for the mention.

5.5 Entity-entity coherence

To help disambiguate named entities, the entity-entity coherence algorithm, in-
troduced by Hoffart et al. [13] is used, albeit with several modifications – most
notably the preprocessing stage is different. Original entity-entity coherence val-
ues are based on Wikipedia article similarity, which produces a dense similarity
matrix. This would be hard to implement efficiently here, given the high com-
plexity of algorithms computing all-pairs distance matrices in graphs.

Therefore, first, the highest scoring candidate entities across all mentions are
selected, to discard noisy low-confidence scores. A sparse similarity matrix is
constructed, which represents how closely candidates are related to each other.
This is established by effectively approximating the shortest path between each
pair of the candidates, using their cached neighborhoods from the graph expan-
sion step. Resulting matrix will not be very dense. However, the most important
connections should be present. Finally, the set of candidates is narrowed down
by greedily removing the least strongly connected candidates. The algorithm
outputs a mapping of candidate entities to boost values, scaled to be greater or
equal to 1. This boost is used to multiply the scores of those entities, possibly

46 https://symas.com/lmdb/

https://symas.com/lmdb/
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changing the ordering of candidates for each mention. The candidate ranking
lists are then sorted again, to account for this change.

To enhance the performance of the method, several additional “bookkeeping”
data structures and optimizations are introduced. Additionally, the last stage of
the algorithm, being heavy in numerical computations, is compiled using the
Numba JIT compiler.

5.6 Candidate selection and results enhancement

Having identified and ranked candidate entities for each mention, the final step
is to determine the most relevant terms that describe the publication. The clas-
sification result should also include concepts that are not explicitly mentioned
in the text. This is achieved by using a technique similar to the one employed in
the CSO Classifier [22], where the final set of terms is enhanced with “parent”
entities, higher up in the “semantic hierarchy”. Depending on the ontology this
may translate to, for example, a subclassing relationship or the skos:broader

property. The list of parent entities is established using a SPARQL query with
parameters, which allow for specifying parent properties or inverse parent prop-
erties, to accommodate both approaches to expressing such relationships. Ad-
ditionally, each parent is given a weight wp = links−α, where α ∈ (0, 1). Here
links is the total number of links the parent has and α is a scaling factor, set to
0.3 by default. These parent entities along with their weights are saved to Elastic-
search during indexing, in the parent entities and parent entities weights

fields. This information is later retrieved during classification.
Similarly to the CSO Classifier, the ranking algorithm aggregates the top-

scoring candidates across mentions, increasing their score based on how fre-
quently they were identified in text and with what diversity (number of unique
mention lemmas). From the final list of candidates only a portion is kept using,
which is by finding the “knee point” in the distribution of scores. The knee is
established using the Kneedle algorithm, which can adjust to different situations
robustly [24] and is shown to perform significantly better than any fixed cutoff
value.

5.7 Summary

The presented method makes extensive use of preprocessing to offload most of the
computationally intensive tasks to run-only-once jobs and in turn, speed-up clas-
sification. Part of the data is cached in Elasticsearch, which is accessed over an
HTTP API, with only two batch requests per classified document. The encoded
text vectors’ significant size would make transporting them over HTTP ineffi-
cient. Thus, they are stored in an embedded database (LMDB), which achieves
zero-copy reads, owing to its memory-mapped architecture.

Adaptability to other domains is achieved through the extensive use of con-
figuration settings and modular design. One can easily create new mention de-
tectors, semantic vector encoders, and lexical vector encoders, with a few lines of



16 P. Sowiński et al.

Python code. Other aspects of the classifier, such as the various tunable parame-
ters of algorithms presented above, can be changed using a YAML configuration
file. The process of retooling the entire pipeline to an entirely new domain is
largely reduced to changing the configuration file and providing an appropriate
ontology.

6 Experimental results

A thorough quantitative classification accuracy evaluation of the classifier could
not be performed, due to the lack of a labeled dataset. Thus, the scope of the
assessment was limited to identifying obvious misclassifications that would neg-
atively impact the precision metric. For this purpose, articles from the EFSA
and PubMed datasets were classified and selected results examined manually.
Table 2 presents example output of the method, with two identified errors high-
lighted in bold.

It can be observed that the method performs generally well, albeit it tends
to frequently return terms that do not seem to have much importance, such as:
species, application, food, population. Usually, it is able to perceive context, but
can still fail in some cases when understanding of the entire sentence is needed
for correctly identifying the mention. Unfortunately, this is hard to achieve with
simple word embeddings. However, rarely occurring and very specific terms such
as taxa, geographic locations, and chemicals are identified easily and seemingly
with good accuracy.

The performance of the method was measured on a modern Linux worksta-
tion with a 3.6 GHz 6-core CPU, 32 GB of system memory and an NVMe SSD
rated at 480 000 IOPS. From the EFSA and PubMed corpora 50 publications
were selected randomly and classified in batch. Only the wall clock time taken
by classification was measured, excluding the time required to load the code and
the models into memory. The experiment was repeated ten times. Classifying
the entire EFSA batch took 78.48 s in average, with the mean time to classify a
publication at 1.57 s. For PubMed, classifying the batch took 80.49 s on average.

To examine possible bottlenecks, the classification of a batch of 50 EFSA
publications was profiled using cProfile. The results are presented in Fig. 2, with
only the most important calls included.

Over 60% of the program’s execution time is spent generating candidates,
which seems counter-intuitive, as this should be simply a matter of querying
Elasticsearch. Querying is indeed present here (taking up only 3.4% of the total
time), but for efficiency reasons several other operations are performed as well.
LMDB is queried for the stored lexical and semantic vectors (11.9%). These
vectors have to be then decoded with the pickle protocol to Python objects
(11.5%). Finally, the found candidates and their neighbors are rearranged into
data structures optimized for the later stages (33.8%).

This last step can be especially confusing, raising question why such seem-
ingly simple operation requires so much time. The main reason is that code
compiled with Numba, in later stages, requires its input data structures to be
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Table 2. Example classification of a food safety PubMed article [7]

URI Label Mention lemmas Score

obo:CHEBI 26208 polyunsaturated fatty
acid

blood fatty acid, plasma
fatty acid, fatty acid
profile

82.88

obo:NCBITaxon 29073 Ursus maritimus polar bear, polar bear
intake

43.93

obo:CHEBI 35366 fatty acid fatty acid 33.97

obo:ENVO 02500036 environmental pollution pollution 33.86

obo:GAZ 000527661 Illoqqortoormiut East Greenland,
Ittoqqortoormiit

32.30

obo:CHEBI 5692 hexachlorobenzene hexachlorobenzene 31.69

obo:OBI 0000181 population population 29.20

obo:GAZ 00001507 Greenland Greenland 27.75

obo:NCBITaxon 9709 Phocidae seal 25.13

snomedct:19314006 Seal (organism) seal 22.48

obo:FOODON 03411343 whale whale 22.45

snomedct:7334460012 Canadian (ethnic
group)

canadian 22.18

snomedct:226365003 N-3 fatty acid
(substance)

n-3 fatty acid 19.81

obo:CHMO 0002820 concentration concentration 19.73

obo:CHEBI 34852 mirex mirex 17.69

obo:CHEBI 61204 docosapentaenoic acid docosapentaenoic acid 17.29

obo:CHEBI 34623 chlordane chlordane 16.85

obo:CHEBI 27208 unsaturated fatty acid blood fatty acid, plasma
fatty acid, fatty acid
profile

16.62

snomedct:2235030043 North America
(geographic location)

North 16.27

obo:PATO 0000025 composition composition 14.90

obo:UBERON 0001969 blood plasma plasma 14.72

obo:FOODON 03412406 bear polar bear, polar bear
intake

14.49

obo:GAZ 00228284 Northwest Atlantic
Ocean coastal waters of
Greenland

Greenland 13.87

5 more results omitted
1 Illoqqortoormiut is an alternative name of Ittoqqortoormiit. The classification is
correct.

2 Misclassification: the text refers to the “Canadian guideline levels”, not the ethnic
group of Canadians.

3 Misclassification: the text refers to Northern Greenland (the North), not the North
America. Although Greenland is in fact considered to be a part of North America,
this “technically correct” entry is probably just the result of coincidence.
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135.2 s 100%Total:

5.8 s 4.2%Total: 129.1 s 94.2%Total:

85.9 s 62.7%Total:

4.6 s 3.4%Total: 16.3 s 11.9%Total: 15.7 s 11.5%Total: 46.3 s 33.8%Total:

31.2 s 22.8%Total: 6.8 s 5.0%Total:

31.0 s 22.6%Total: 5.2 s 3.8%Total:

Fig. 2. Profiler diagram for classifying 50 EFSA publications in a batch

Numba-compatible. This necessitates “boxing” of Python objects to be per-
formed at some point, which incurs a performance hit. Another option would
be not to use Numba, but that would make the program even slower. Another
compute-intensive step is candidate ranking, where most of the time is spent in
optimized numerical routines.

7 Conclusions

The proposed method is an adaptable, scalable, and performant solution to
the topical publication classification problem, easily handling KBs containing
millions of entities. Classification results seem satisfactory, although a detailed
evaluation remains to be performed on a labeled dataset. The method is robust,
modular base which can be iteratively improved, to achieve better accuracy. In
particular, further research into candidate generation and how the algorithm
perceives the context of both the abstract and the knowledge base is needed.

Regarding classification speed, substantial improvements could be made by
parallelizing the code. However, currently this could not be easily done, due
to the Python Global Interpreter Lock (GIL), which prevents the simultaneous
execution of multiple Python interpreter threads [19]. There is also a significant
amount of overhead involved at several steps, necessitated by transitioning from
interpreted to native code. The only reasonable solution to these problems would
be to drop pure Python as the implementation language altogether in favor of
C++ or Cython, which will be investigated in future research.

Additional materials and data related to this work, as well as the most im-
portant algorithms mentioned above, were published on GitHub47.

47 https://github.com/Ostrzyciel/food-safety-classif

https://github.com/Ostrzyciel/food-safety-classif
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