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Abstract: Solution of systems of nonlinear equations is a relatively complicated problem for
which a number of different approaches have been proposed. The aim of this note is to attempt at
a comparison between some of them when applied to a number of test problems. A discussion of
the properties of the solvers and the interrelationship between the solvers and the test problems
will be presented.
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1. Introduction

The solution of systems of algebraic equations has a well-developed mathematical and
computational theory when the equations are linear, or when a single nonlinear equation
is to be solved [1]. The situation is much more complicated for systems of nonlinear
algebraic equations. Both the mathematical theory and computational practice are far
from a complete understanding of the solution process. When systems of linear equations
are considered, libraries of subprograms solving standard problems have been developed.
These libraries may not provide the most efficient way of solving certain special problems,
but they should be robust enough to effectively solve most problems. In addition, sets
of test cases have been developed which can be used as benchmarks against which the
newly developed software is to be tested. These benchmarks allow for establishing the
quality of the new approach and a comparison with existing software targeting the same
problem. No such development can be observed when the solution of nonlinear systems
15 concerned.

The aim of this note is to report on the initial steps in the direction of building a
library of nonlinear solvers and compiling a set of test problems. These test problems are
used to compare the performance of existing nonlinear solvers. In section 2 we briefly de-
scribe the software that we have performed experiments. Section J presents and discusses
the results of our numerical experiments. Directions for future research are discussed.
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2. Algorithms for the Solution of the System of Nonlinear Al-
gebraic Equations

This section contains a brief summary of algorithms behind nonlinear soivers that we
have performed experiments {in all cases the references cited should be consuited for the
details). Ve assume that a system of n nonlinear algebraic equations F(z) =01is to be
solved.

Newton’s Method

The Newton's Method for a system of equations i1s a natural extension of the Newton’s
Method for a single equation [2]. Let us assume that the function G is defined by

Glz) =z~ J(z)"'F(z),

and the functional iteration procedure is: select starting vector ry and generate a series
of vectars

Ly = G(.I_J:-1) = Le_y J(Ek-I)—lF(Ek-I)

where J(z) is the Jacobian matrix.

The convergence rate for this method is fast, but the success of the method depends
on a good starting vector z,.

Brown's Method

Brown’s Method is a modification of Newton's Method (3]. Here, we replace the Jacobian
matrix with its difference quotient approximation. For each iteration, only one function
from the system at a time is evaluated (function f, for use with fiv1)- A successive
substitution scheme is being used for treatment of fi. As in case of Newton’s Method,
the convergence is fast, but it requires a good starting vector z,.

Secant (Broyden’s Method)

Broyden's Method belongs to the general category of quasi-Newton methods [4]. Here,
matrix By is updated at each iterate so that the new approximation By, satisfies the
general quasi-Newton equation:

Bk+1(£k+1 — Ek) = F(EJ:-H) — F{z:).

Thus given an initial matrix By (e.g. the finite-difference approximation to the Jacobijan
matrix), the subsequent matrices are generated by:

(Ek - Bik)if
sk lt3,

Biey1 = B +

where sg = 2+ 1 — 24, yp = F{zear) - F(zy).
The convergence of Broyden’s Method is fast, but as in the case of Newton’s Method
It requires a good choice of the initial vector Tg.
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Steepest Descent Method

In the Steepest Descent Method the problem of solving a system of nonlinear algebraic

equations is transformed into a minimization problem {53]. A relative minimum z* of the

. o d of . .
function f{z,y) with known partial derivatives g = —f-, h = —f- 1s located starting from

Oz Oz
a given initial guess (zq,yo). Using a given step size ¢ a sequence of steps is generated

according to:

Cf
In = In— = 5!
\/£2+£
ch
Y. = 4.~
- g% + A’

The stopping criteria is met when the relative minimum z* is located and

x{/_g‘?‘l‘i?{E.

The convergence rate of the steepest descent method is slow, but it works for any choice
of starting vectors.

Trust Region Method

In the Trust Region Method we replace the Jacobian matrix with its approximation [6].
Then we calculate

mind|[f{zx) + Bibll : || Diblla <= A},

where Dy is a scaling matrix and Ay is the trust region radius. The solution to this min-
imization problem Is an approximate solution to the original problem. Stopping criteria

15 met when
_ [fCzedll = NS {ze + &)
1Az )l = 1 flzk + Bibic) |l

1s smaller than some constant og (typically .0001). Otherwise, we decrease the radius of
the trust region and re-solve the minimization problem.

The convergence rate of this method is slow, but it can use an arbitrary starting
solution vector.

Lk

Experimental Results

We have experimented with the algorithms described above. We used two implemen-
tations of the Brown's method, our own implementation (based on {7]) and the SOS
algorithm from [8]. Two hybrid methods, an algorithm by Kucaba-Pietal 9, 10] and the
HYBRDI algorithm { a combination of Trust Region, Steepest Descent, and Newton's
methods) from [8]. All algorithms were Fortran-based implementations and the experi-
ments were run in double precision on a PC with a Pentium Pro 200 MHz processor. For
the numerical tests we have used 17 problems found at [11, 12, 13]. These problems come
from the three collections of test problems (with complete source code) for the solution of
Systems of nonlinear algebraic equations that we were able to locate. VWhile some of the
problems come from the real applications, others are artificially generated with properties
not typical for real life applications. The problems used were {see the references for the
complete formulation):
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1. Rosenbrock’s function [11] 2. Powell singular function [11]

3. Powell badly scaled function [11] 4. Wood function [11]

5. Helical valley function [11] 6. Watson function {11]

7. Chebyquad function [11] 8. Brown almost-linear function [11]

9. Discrete boundary value function [11] 10. Discrete integral equation function (1]
I1. Trigonometric function [11] I2. Variably dimensioned function [11]

13. Broyden tridiagonal function [11] 14. Broyden banded function [11]

15. Exponential/Sine Function [12] 16. The Freudenstein-Roth function [13]

17. Semiconductor Boundary Condition [12]

Table 1: Comparison of performance of nonlinear solvers for the test problems.

QUASI_A HYBRD SOS BROWN
# n IT FC IT FC IT FC [T FC
1 2 8 33 8 22 1 10 G 20
2 4 85 164 83 108 11 168 18 238
3 2 87 266 87 181 13 55 14 63
4 4 52 142 32 94 16 188 820 11466
5 3 14 38 14 27 19 174 8 63
6 6 38 127 38 96 23 648 36 987
6 9 57 180 57 182 8 486 30 1629
[ J 11 24 11 17 3 a0 10 180
{7 6 10 34 10 25 7 111 12 297
7 7 11 27 11 20 3 84 20 665
[ 8 20 153 20 120 14 660 88 3884
7 9 19 7 19 43 8 486 i3 918
8 10 8 37 8 31 9 280 g 520
§ 30 1 110 1 85 & 2130 10 4455
8 40 1 130 I 105 g 4500 10 7740
0 10 6 20 6 16 2 140 6 325
10 1 6 11 6 7 2 J S 8
10 10 6 20 b 16 2 140 S 260
11 10 30 160 20 130 4 270 8 455
12 10 27 75 27 60 4 985 9999 9999
13 10 11 27 11 21 3 205 8 455
14 10 20 41 20 30 4 270 7 390
Ia | 12 22 12 15 1 32 4 29
16 3 11 3 9 1 54 5 108
17 2 1 7 1 5 1 126 3 36
Table 1 summarizes the results obtained for the test problems for the four codes
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tested. Here, IT denotes the number of iterations, FC the number of times the func-
tion was evaluated. 9999 denotes lack of convergence while results italicized bold and un-
ageritned represent the lack of solution due to the lack of significant improvement over
the previous five Jacobian evaluations. Some of the problems have been run varying the
number of equations. In each case a number of starting points has been tried and the
best results are reported. All problems converged for some starting point except #2 {for
n = 2) and #7 (for n = 8). In addition to runs reported in the table, problems 6-14 were
run for n = 10, 20, 40, 80, and 100 with multiple initial starting points. Al converged
except #b, #7, and #12 for n = 40, 80 and 100. Problems #15 and #17 for SOS ended
because the Jacobian matrix was singular.

From the results presented in the table and the discussion above it is clear that the
difhculty of the system increases with the number of equations. The svstem either becomes
unsolvable or the solution requires more iterations (and thus function evaluations). The
numbers also show that the hybrid methods require much less function evaluation {while
they require more irerations) than the implementations of the Brown’s method ({which
require fewer iterations, but substantially more function evaluations).

In all experiments we have observed extreme sensitivity of the solvers to the selection
of the starting vector zy. This becomes more of a problem as the number of equations
INncreases.

At this moment it is difficult to assess which of the test examples should be kept when
a librarv of test cases will be compiled. The tests used here clearly cover a wide spectrum
of functions but they clearly do not exhaust the possibilities arising in practica] engineering
applications. It should also be stressed that In real-life engineering applications systems
of 100’s of nonlinear algebraic equations have to be solved for the method to have a real
predictive power (see for instance 19, 10]). Only few of the examples found can be even
extended to this many equations.

Conclusions and Future Woaork

In this note we have presented an initial report of our comparisons between solvers for
systems ol nonlinear algebraic equations. We have found that methods based on similar
algorithms behave similarly and the implementation detajls have only a minimal impact
on the performance. All methods, regardliess of their underlving algorithm, showed high
SENSILIVItY to the starting vector and this sensitivity increased as the number of equations
in the svstem increased. We were not able to come to firm conclusions on the quality of
the collection of test sets.

In the near future we plan to proceed in three directions. First, we will expand the
test set by including additional recently located test problems. We wil] experiment with
the described above codes on these sets We will also use the Homotopy and Continuation
methods on all test problems. Second, we will use the experimental data to attempt at
evaluating the test set and to develop a library of test problems. Finally, we plan to
Investigate various methods for finding the starting vectors.
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