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Abstract. Zero-shot learning is applied, for instance, when properly la-
beled training data is not available. A number of zero-shot algorithms
have been proposed. However, since none of them seems to be an “over-
all winner”, development of a meta-classifier(s) combining “best aspects”
of individual classifiers can be attempted. In this context, state-of-the-
art zero-shot learning methods are compared for standard benchmark
datasets. Next, multiple meta-classifiers are applied to the same datasets.
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1 Introduction and Literature Review

Many real-world applications require classifying “entities” not encountered ear-
lier, e.g., object recognition (where every object is a category), cross-lingual
dictionary induction (where every word is a category), etc. Here, one of the
reasons is lack of resources to annotate available (and possibly systematically
growing) datasets. To solve this problem, zero-shot learning has been proposed.

While multiple zero-shot learning approaches have been proposed ([9,19]),
as of today, none of them emerged as “the best”. In situations like this, meta-
classifiers, which “receive suggestions” from individual classifiers and “judge”
their value to select a “winner”, can be proposed. The assumption is that such
meta-classifier will perform better than the individual ones.

Let us start from the formal problem formulation. Given a dataset of image
embeddings X = {(xi, yi) ∈ X × Y|i = 1, ..., Ntr + Nte}, each image is a real
D-dimensional embedding vector comprised of features xi ∈ RD, and each class
label is represented by an integer yi ∈ Y ≡ {1, ..., N0, N0 + 1, ..., N0 + N1}
giving N0+N1 distinct classes. Here, for generality, it is assumed that X def

= RD.
The dataset X is divided into two subsets: (1) training set and (2) test set.
The training set is given by Xtr = {(xtr

i , ytri ) ∈ X × Y0|i = 1, ..., Ntr}, where
ytri ∈ Y0 ≡ {1, ..., N0}, resulting in N0 distinct training classes. The test set is
given by Xte = {(xte

i , ytei ) ∈ X × Y1|i = Ntr + 1, ..., Nte}, where ytei ∈ Y1 ≡
{N0 + 1, ..., N0 +N1} providing N1 distinct test classes.

The goal of zero-shot learning is to train a model (on dataset Xtr) that
performs “well” for the test dataset Xte. Obviously, zero-shot learning requires
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auxiliary information associating labels from the training and the test sets, when
Y0∩Y1 = ∅. The solution is to represent each class label y (1 ≤ y ≤ N0+N1) by
its prototype π(y) = p ∈ P def

= RM (semantic embedding). Here, π(·) : Y0 ∪Y1 →
P is the prototyping function, and P is the semantic embedding space. The
prototype vectors are such that any two class labels y0 and y1 are similar if and
only if their prototype representations π(y0) = p0 and π(y1) = p1 are close in
the semantic embedding space P. For example, their inner product is large in
P, i.e, ⟨π(y0), π(y1)⟩P is large. Prototyping all class labels into a joint semantic
space, i.e., {π(y)|y ∈ Y0 ∪ Y1}, results in labels becoming related. This resolves
the problem of disjoint class sets, and the model can learn from the labels in the
training set, and predict labels from the test set.

Multiple algorithms have been proposed to solve the zero-shot learning prob-
lem. Here, DeViSE [6], ALE [2], and SJE [3] use a bilinear compatibility func-
tion. They follow the Stochastic Gradient Descent (SGD), implicitly regularized
by early stopping. The ESZSL [12] uses square loss to learn the bilinear compati-
bility function, and explicitly defines regularization with respect to the Frobenius
norm. Kodirov et al. in [8] proposes a semantic encoder-decoder model (SAE ),
where the training instances are projected into the semantic embedding space
P, with the projection matrix W , and then projected back into the feature space
X , with the conjugate transpose of the projection matrix W ∗. Another group
of approaches adds a non-linearity component to the linear compatibility func-
tion [18]. Third set of approaches uses probabilistic mappings [9]. Fourth group
of algorithms expresses the input image features and the semantic embeddings
as a mixture of seen classes [21]. In the fifth approach, both seen and unseen
classes are included in the training data [20].

In this context, a comparison of five state-of-the-art zero-shot learning ap-
proaches, applied to five popular benchmarking datasets, is presented. Next,
explorations into meta-classifier for zero-shot learning are reported. Extended
version of this work, with additional details and results, can be found in [14].

2 Selection of Methods and Experimental Setup

Based on the analysis of the literature, five robust zero-shot learning approaches
were selected: (1) DeViSE, (2) ALE, (3) SJE, (4) ESZSL, and (5) SAE. Moreover,
the following, popular in teh literature, datasets have been picked: (a) CUB [17],
(b) AWA1 [9], (c) AWA2 [19], (d) aPY [5], and (e) SUN [11]. Finally, five
standard meta-classifiers have been tried: (A) Meta-Decision Tree MDT [16],
(B) deep neural network DNN [7], (C) Game Theory-based approach GT [1],
(D) Auction-based model Auc [1], (E) Consensus-based approach Con [4], and
(F) a simple majority voting MV [13]. Here, classifiers (C), (D), (E) and (F)
have been implemented following cited literature. However, the implementation
of (A) differs from the one described in [16] by not applying the weight condition
on the classifiers. However, effects of this simplification can be explored int he
future. Finally, the DNN has two hidden layers and an output layer. All of them
use the rectified linear activation function. The optimization function is the
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SGD, with the mean squared error loss function. All codes and complete list of
hyperparamer values for the individual classifiers and the meta-classifiers can be
found in the Github repository3. While hyperparameter values, were obtained
through multiple experiments, no claim about their optimality is made. The
following standard measures have been used to measure the performance of the
explored approaches: (T1) Top-1, (T5) Top-5, (LogLoss) Logarithmic Loss, and
(F1) F1 score. Their definitions can be found in [19,10,15].

Separately, comparison with results reported in [19] has to be addressed. To
the best of our knowledge, codes used there are not publicly available. Thus, the
best effort was made to re-implement methods from [19]. As this stage, the known
differences are: (1) feature vectors and semantic embedding vectors, provided in
the datasets were used, instead of the calculated ones; (2) dataset splits for the
written code follow the splits proposed in [19], instead of the “standard splits”.
Nevertheless, we believe that the results, presented herein, fairly represent the
work reported in [19].

3 Experiments with Individual Classifiers

The first set of experimental results was obtained using the five classifiers applied
to the five benchmark datasets. Results displayed in Table 1 show those avail-
able from [6,2,3,12,8] (in the O column). The R column represents results based
on [19]. The I columns represents the in-house implementations of the five mod-
els. Overall, all classifiers performed “badly” when applied to the aPY dataset.

Table 1. Individual Classifier Performance for the Top-1 Accuracy

CLF CUB AWA1 AWA2 aPY SUN
O R I O R I R I O R I O R I

DeViSE – 52 46.82 – 54.2 53.97 59.7 57.43 – 37 32.55 – 56.5 55.42
ALE 26.3 54.9 56.34 47.9 59.9 56.34 62.5 51.89 – 39.7 33.4 – 58.1 62.01
SJE 50.1 53.9 49.17 66.7 65.6 58.63 61.9 59.88 – 31.7 31.32 – 52.7 52.64
ESZSL – 51.9 53.91 49.3 58.2 56.19 58.6 54.5 15.1 38.3 38.48 65.8 54.5 55.63
SAE – 33.3 39.13 84.7 53.0 51.5 54.1 51.77 – 8.3 15.92 – 40.3 52.71

Next, comparing the results between columns R and I, out of 25 results, methods
based on [19] are somewhat more accurate in 15 cases. Hence, since performances
are close, and one could claim that our implementation of methods from [19] is
“questionable”, from here on, only results based on “in house” implementations
of zero-shot learning algorithms are reported.

While the Top-1 performance measure is focused on the “key class”, other per-
formance measures have been tried. In [14] performance measured using Top 5,
LogLoss, and F1 score have been reported. Overall, it can be stated that (A) dif-
ferent performance measures “promote” different zero-shot learning approaches;
(B) aPY is the “most difficult dataset” regardless of the measure; (C) no individ-
ual classifier is clear winner. Therefore, a simplistic method has been proposed, to
3 https://github.com/Inars/Developing_MC_for_ZSL

https://github.com/Inars/Developing_MC_for_ZSL
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gain a better understanding of the “overall strength” of each classifier. However,
what follows “should be treated with a grain of salt”. Here, individual classifiers
score points ranging from 5 to 1 (from best to worst) based on the accuracy
obtained for each dataset. This process is applied to all four accuracy measures.
Combined scores have been reported in Table 2. Interestingly, SAE is the weak-

Table 2. Individual Classifier Combined Performance; “winners” marked in bold font.

CLF CUB AWA1 AWA2 aPY SUN Total
DeViSE 8 8 17 16 11 60
ALE 19 11 7 15 18 70
SJE 12 19 18 15 8 72
ESZSL 17 14 14 11 17 73
SAE 4 8 8 7 6 33

est method for both the individual datasets and the overall performance. The
combined performance of ALE, SJE, and EZSL is very similar.

3.1 Analysis of the Datasets

Since it became clear that the performance of the classifiers is directly related
to the datasets, their “difficulty” has been explored. Hence, an instance (in a
dataset) is classified as lvl 0 if no classifier identified it correctly, whereas lvl
5 if it was recognized by all classifiers. The results in Table 3, show how many
instances (in %) belong to each category, for each dataset. Here, the aPY dataset

Table 3. Analysis of Instance Difficulty (represented in %)

CLF lvl 0 lvl 1 lvl 2 lvl 3 lvl 4 lvl 5
CUB 23.86 15.98 13.11 12.4 15.23 19.41
AWA1 20.47 15.67 11.29 12.19 19.33 21.04
AWA2 21.88 12.95 13.46 14.62 12.26 22.84
aPY 36.37 25.76 15.75 11.75 9.53 0.85
SUN 19.31 12.78 10.69 12.5 16.88 27.85

has the largest percent of instances that have not been recognized at all (36.37%),
or by one or two classifiers (jointly, 41.51%). At the same time, only 0.85% of its
instances have been recognized by all classifiers. The SUN dataset is the easiest:
27.85% of instances were correctly recognized by all classifiers and about 55% of
its instances are “relatively easy”.

Approaching the issue from different perspective, the “influence” of individ-
ual attributes has been “scored”. For each correctly recognized instance, its at-
tributes have been given +1 “points”. For incorrectly recognized instances, their
attributes were given -1 “points”. This measure captured which attributes are the
easiest/hardest to recognize. Obtained results can be found in Table 4. The most
interesting observation is that attributes: “has eye color black” and “metal” are
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Table 4. Analysis of the Datasets

CLF Easiest Attribute Individual Classifier Hardest Attribute
CUB has eye color black all has eye color black

AWA1

old world DeViSE; SAE group
fast ALE ocean

old world SJE; ESZSL ocean
quadrupedal total swims

AWA2 old world DeViSE; ALE; SJE; SAE; total group
old world ESZSL ocean

aPY metal DeViSE; ALE; SJE; ESZSL metal
head SAE metal
furry total metal

SUN no horizon all man-made

associated with so many instances that they are classified (in)correctly regardless
if they actually “influenced” the “decision” of the classifier.

4 Meta-Classifiers

Let us now move to meta-classifiers. Here, note that the number of hard in-
stances, found in each dataset (see, Section 2), establishes the hard ceiling for:
DNN, MDT, and MV. Specifically, if not a single classifier gave a correct answer,
in these approaches, their combination will also “fail”. In Table 5, the performance
of the six meta-classifiers is compared using the Top-1 measure, where the Best
row denotes the best result obtained by the “winning” individual classifier, for a
given dataset (see, Table 1). Results using the F1 score, can be found in [14].

Table 5. Meta-classifier performance; Top-1 accuracy

CLF CUB AWA1 AWA2 aPY SUN
MV 53.43 58.71 56.56 32.72 61.94
MDT 47.89 56.43 51.89 33.40 62.08
DNN 48.63 57.56 54.72 34.89 60.63
GT 46.58 56.75 59 32.63 59.51
Con 46.82 53.97 57.43 32.55 55.42
Auc 47.89 56.34 51.89 33.40 62.01
Best 56.34 58.63 59.88 38.48 62.01

Comparing the results, one can see that: (a) the best individual classifier
performed better than the best meta-classifier on CUB, AWA2, and aPY (2.91%,
0.88%, and 3.59% better); (b) the best meta-classifier performed better than the
best individual classifier on AWA1 and SUN datasets (0.08% and 0.08% better).

Finally, the “scoring method” was applied jointly to the meta-classifiers and
the individual classifiers, for the Top-1 and the F1 score accuracy measures.
Obviously, since 11 classifiers were compared, the top score was 11 points. Table 6
displays the results. It can be noticed that (1) meta-classifiers performed better
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Table 6. Meta-Classifier and individual classifier combined performance

CLF CUB AWA1 AWA2 aPY SUN Total
DeViSE 13 12 20 12 13 70
ALE 21 15 11 17 21 85
SJE 17 20 22 16 10 85
ESZSL 21 16 16 16 15 84
SAE 10 10 11 7 11 49
MV 20 21 17 18 20 96
MDT 15 16 11 18 22 82
DNN 17 18 15 17 18 85
GT 10 14 15 11 13 63
Con 13 10 13 12 13 61
Auc 15 15 11 18 21 80

than the individual classifiers (averaging 77.83 vs. 74.6 points). (2) Combining
results from the individual classifiers using a simple majority voting algorithm
brought best results. At the same time, (3) use of basic versions of more advanced
meta-classifiers is not leading to immediate performance gains.

5 Concluding Remarks

In this contribution, performance of five zero-shot learning models has been
studied, when applied to popular benchmarking datasets. Moreover, the “nature
of difficulty” of these datasets has been explored. Finally, six standard meta-
classifiers have been experimented with. The main findings were: (1) there is
no single best classifier, and results depend on the dataset and the performance
measure; (2) the aPY dataset is the most difficult for zero-shot learning; (3) stan-
dard meta-classifiers may bring some benefits; (4) the simplest methods obtained
best results (i.e., the individual classifier ESZSL and the meta-classifier MV ).
The obtained prediction accuracy (less than 70%) suggests that a lot of research
is needed for both the individual classifiers and, possibly, the meta-classifiers.
Moreover, datasets similar to the aPY, which are particularly difficult achieve
good performance, should be used. Finally, some attention should be devoted to
the role that individual attributes play in class (instance) recognition.
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