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Abstract. Nowadays, precise data of movements of public transport
can be collected. Specifically, for each bus, geoposition can be regularly
obtained and stored. In this context, an attempt to build a model to
represent behavior of busses, and predict their delays, is discussed.

1 Introduction and related work

Recently, Warsaw, Poland, opened its data resources, including regularly col-
lected, location of city buses. Based on this information an attempt was made to
predict delays in public transport. This problems has been discussed in the litera-
ture. Applied methods can be divided into groups. First, statistical methods, such
as k-NN [8, 2], regression [2], prediction based on sequence patterns [10] or time
series [11], and application of Kalman filter [6]. Second, methods based on obser-
vations, which include the historical means approach [1, 5]. Next, methods based
on machine learning, which include: back propagation neural network [12], radial
basis function network [13], multilayer perceptron [5, 1]. The last group consists
of hybrid methods that combine multiple algorithms into a single model [4, 14].
Let us now present selected results, while [16] contains detailed discussion.

The Pattern Sequence-based Forecasting was used in [10], to model bus trans-
port in Chennai (India). Overall, K-means algorithm delivered best performance.
Predictions have been tested on sections with low, medium and high travel time
variability. For sections with large time variance, results were not “satisfatory”.

Time series approach was used in [11] to forecast bus travel time in Lviv
(Ukraine). The average error, for travel time towards city center was approxi-
mately 3 minutes, and 2 minutes in the opposite direction.

In [13], authors used Radial Basis Function Neural Network (RBFNN) to
model bus transport in Dalian (China). The model was trained on historical
data, with additional correction of results (using Kalman Filter). Overall, the
best reported mean absolute percentage error (MAPE) was at 7.59%.

Work described in [14], is based on deep learning and data fusion. Models
used multiple features, including: stop ID, day of the week, time, bus speed
(based on GPS), stopping time at a stop, travel time between stops. Data came
from Guangzhou and Shenzhen (China) for single line in each city. Predictions
were compared with historical averages. Proposed model outperformed other
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approaches with MAPE of 8.43% (Gangzhou). Moreover, MAPE for the peak
hours was 4-7% lower than that reported for other solutions.

In [1], dynamic model was developed, to predict bus arrival times at subse-
quent stops. GPS data, from Macea (Brazil), for a bus line with 35 stops, was
used. Here, Historical Average (HA, Kalman Filtering and Artificial Neural Net-
work (ANN) were tried. The 3-layer perceptron achieved best MAPE (18.3%).

In [2], review of methods modeling bus transport, found in [3], was extended.
Authors used: k-NN, ANN, and Super Vector Regression (SVR) to predict bus
travel times in Trondheim (Norway). To study influence of individual time in-
tervals, 423 different data sets were created. Depending on data set, (best)
MAE varied between 61 and 86 seconds. Separately, additional attributes, e.g.:
weather, football matches, tickets, were tried, with no visible improvement.

In [4], an ANN was used, with historical GPS data and an automatic toll
collection system data. Moreover, impact of intersections with traffic lights was
taken into account. Data came from Jinan (China), for a single bus line. To deal
with travel time variation, a hybrid ANN (HANN) was developed, with separate
subnets, trained for specific time periods, e.g. working days, weekends, peak
hours. Overall, ANN and HANN were more reliable than the Kalman Filter.
Moreover, HANN was better suited for short-distance prediction.

Separately, comparison of methods modeling tram travel in Warsaw (Poland),
on the basis of historical GPS data, is presented in [5].

Main findings from the literature can be summarized as follows. (a) Re-
ported results concern a single city. Only in one case two cities have been
studied. (b) In all cases a single bus line was used. (c) There is no “bench-
mark” data for the problem. (d) The main methods that have been tried
were: (i) statistical methods – k-NN, regression model, Kalman filter, (ii) histor-
ical observation methods (HA), (iii) machine learning methods – BPNN, RBFN,
multilayer perceptron (MLP), and (iv) hybrid methods combining the above al-
gorithms into one model (HANN). Among them, best results have been reported
for HANN, HA, RBFN and MLP. However, it was reported that HANN requires
substantially larger datasets. (e) Quality of predictions has been measured
using: (i) mean absolute error (MAE; in seconds); (ii) mean percentage absolute
error (MAPE); (iii) standard deviation (STD; in seconds). (f) The simplest ap-
proaches used GPS data alone. Other popular data elements were: information
about sold tickets and about bus speed. Additionally, effects of non-travel events
(e.g. games or weather) have been (unsuccessfully) tried. (g) Best accuracy was
reported in [2], where MAE was 40s. However, this result was obtained for 1 to
16 stops only. For a “longer bus line” best MAE was of order 60s-70s. Finally,
for long Warsaw tram lines (more than 40 stops), best MAE was at 123s.

2 Data, its preprocessing, and experimental setup

As a part of the project Open data in Warsaw3, exact location of public buses,
reported in real time, is available. From there, 30 days of data about bus move-

3 https://api.um.warszawa.pl/
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ments was harvested (total of about 10 GB of data).Data was filtered, retaining:
(1) line number, (2) departure time from the last stop, (3) current percentage of
distance traveled between adjacent stops, (4) time of the last GPS signal, (5) cur-
rent time, (6) driving direction. Additionally, file containing timetable of buses,
their routes, including list, and GPS coordinates, of stops, and departure times
from each stop, was downloaded from the ZTM site4. After preprocessing, file
with: line number, time, vehicle and brigade number, driving direction, number of
the next stop to visit on the route, information whether the vehicle is at the stop,
the percentage of distance traveled between consecutive stops, was created. All
preprocessed data is available from: https://github.com/lukaspal97/predicting-
delays-in-public-transport-in-Warsaw-data.

From available data, 29 bus lines have been selected. Based on “manual”
analysis of their routes (in the context of Warsaw geography) selected bus lines
have been split into eight semi-homogeneous groups:

1. Long routes within periphery North-South: bypassing the City Center, run-
ning on the western side of the Wis la River; lines: 136, 154, 167, 187, 189.

2. Long routes within periphery West-East: bypassing the City Center, crossing
the Wis la River; lines 112, 186, 523.

3. Centre-periphery: routes with one end in the City Center, running to the
peripheries; not crossing the river; lines 131, 503, 504, 517, 518.

4. Long routes through Center (with ends on peripheries); lines 116, 180, 190.
5. Express: a fairly straight long lines with small number of stops (typically

around 1/3 stops of “normal” lines); lines 158, 521, 182, 509.
6. Centre-Praga: short routes starting in the City Center; crossing the Wis la

River; lines 111, 117, 102.
7. Short lines within peripheries: in Western Warsaw; lines 172, 191, 105.
8. Short lines within the Center: not crossing the river; lines 128, 107, 106.

Travel time distribution differs between days of the week (e.g. working days
vs. weekends). Therefore, following [2], all models were trained on data from
the same day of the week, from three weeks, and tested on data from the last
(fourth) week. For each model, the best results are reported. In general, methods
that use “extra features” were compared to these that use only GPS location.
Accuracy was measured using MAE and STD.

3 Experimental results and their analysis

Let us now summarize experimental results5. We start with Total travel time
prediction. Here, two methods have been tried: “recursive” and “long distance”.
In the recursive method, the model is trained on data that includes travel time
to the nearest stop. Hence, estimating travel time from stop n to n + k con-
sists of predicting k-steps using the trained model, i.e. result from the previous

4 https://www.wtp.waw.pl
5 All reported models have been implemented in Python, using Keras library
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stop is included, as the input data, for the next prediction. The long distance
method is based on prediction of travel time to a specific stop. Here, training
dataset includes information about total travel time. The assumption was that
this approach would be worse for short distances, but better for long(er) trips.

The comparison was made for bus line 523. Training data originated from:
March 11, 18, 25. Testing data was from April 1. The number of records in the
training set was over 1 million, and in the test set over 300,000. Both approaches
used MLP with two hidden layers consisting of 6 and 24 neurons, with ReLU
activation function. Results are presented in Table 1. As can be seen, for travel

Table 1. Prediction of total travel time (bus line 523)

Using the recursive method

distance
time 7:00 - 10:00 10:00 - 14:00 14:00 - 19:00 19:00 - 23:00

MAE STD MAE STD MAE STD MAE STD

1 - 3 58.24s 62.76s 60.01s 79.94s 59.51s 75.74s 47.02s 54.01s

4 - 8 125.52s 129.44s 130.89s 141.44s 131.74s 124.96s 92.10s 88.65s

9 - 15 211.36s 165.19s 214.10s 179.41s 240.66s 170.14s 156.74s 121.10s

16 - 20 294.83s 188.44s 310.42s 219.57s 344.49s 201.74s 222.66s 137.57s

21 - 27 360.19s 200.56s 398.48s 266.61s 407.73s 217.13s 277.52s 154.40s

Using long distance method

1 - 3 56.72s 66.06s 59.97s 69.67s 59.07s 64.44s 54.82s 51.11s

4 - 8 81.07s 97.31s 85.59s 106.85s 78.52s 87.18s 66.44s 68.93s

9 - 15 107.01s 121.46s 101.93s 129.62s 105.89s 113.19s 85.65s 87.78s

16 - 20 130.41s 144.66s 140.38s 170.57s 130.76s 138.80s 113.58s 106.45s

21 - 27 153.70s 161.04s 170.72s 205.03s 155.09s 152.63s 172.30s 135.29s

longer than 4 stops, the long distance method was more accurate than the recur-
sive method. Moreover, for distances longer than 8 stops, most results were more
than twice as accurate. For 1-3 stops, results of both methods were comparable.

Architecture comparison Here, effectiveness of four different RBFN and
five MLP architectures was compared. Training dataset included the same work-
ing days of the week from three consecutive weeks (e.g. March, 10, 17 and 24).
The test data was from the following week (March 29 to April 2). Only data from
working days was used. The RBFN architectures were implemented using the
RBF [15] code. The hidden layer used Gaussian radial basis function: exp(−βr2).
The tested architectures had M = 10, 15, 25, 35 neurons in the hidden layer (de-
noted as RBFN M). As can be seen in [16], for short routes (Center–Praga, short
within Center, short within periphery) and Express routes, the most accurate re-
sults were obtained by “smaller” RBFN architectures (RBFN 10 and RBFN 15).
For the remaining routes, RBFN 25 and RBFN 35 performed better. Overall, if
one model is to be selected, RBFN 25 seems to be the “best architecture”.

For MLP, five architectures have been tried: networks with 2, or 3, hidden
layers and: [6, 12], [12, 32], [6, 8, 12], [8, 8] neurons. Here, ReLU and tanh were
also compared, as activation functions. The results are presented in Table 2.

Overall, the most effective, and stable, architecture, for all groups, had two
hidden layers (12 and 32 neurons), with ReLU as the activation function. Since,
the [12, 32] ReLU was the “overall winner”, its performance is reported in what
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Table 2. MLP-based prediction results

grupa
model MLP 6, 12 ReLU MLP 12, 32 ReLU MLP 12, 32 ReLU tanh MLP 6, 8, 12 ReLU MLP 8, 8 tanh

MAE STD MAE STD MAE STD MAE STD MAE STD

Center–Praga 112.33s 143.9s 96.43s 119.94s 94.08s 118.30s 114.5s 147.78s 115.93s 146.75s

Center–periphery 101.54s 133.53s 106.9s 135.26s 110.86s 146.74s 110.69s 145.8s 143.31s 180.73s

Long within periphery North-South 139.06s 178.95s 119.79s 159.51s 114.39s 164.76s 120.05s 164.01s 136.25s 173.61s

Long within periphery East–West 122.47s 167.79s 113.67s 151.78s 133.6s 181.72s 124.23s 162.63s 154.59s 196.67s

Long through the centre 109.35s 146.14s 97.71s 128.49s 118.17s 153.16s 105.89s 139.59s 109.16s 143.21s

Express 127.52s 168.45s 92.46s 123.74s 118.71s 157.53s 116.61s 154.02s 132.97s 174.49s

Short within center 97.02s 130.73s 95.42s 121.13s 108.07s 139.06s 106.31s 132.19s 101.55s 135.38s

Short within periphery 107.13s 133.08s 90.24s 122.65s 96.44s 124.07s 99.89s 129.8s 104.84s 139.98s

All groups 114.55s 150.32s 101.57s 132.81s 111.78s 148.16s 112.27s 146.97s 124.82s 161.35s

follows. Additional results, comparing performance of RBFN 25 and MLP [12,32]
ReLU, can be found in [16].

Next experiment used HA method [1, 5], which applies average travel times
from previous days to estimate the current travel time. For each bus line, data
from the training sets (i.e. all working days from March, 8-26) was divided into
20-minute groups (i.e. records from 10:00-10:20 belonged to one group). The
average travel times between current locations and all stops, till the end of the
route, were calculated. Average travel times, determined using this algorithm,
have been stored as the training sets. Next, for each bus line, for all test sets
(i.e. data for working days from March, 29 to April, 2), travel time predictions
were calculated using the HA algorithm. In addition, analogous calculations were
carried out, while the average travel times were calculated for the same day of
the week only. For example, travel time predictions for March 31 (Wednesday)
were based on data data from March 10, 17, 24. Table 3 summarizes the MAE
values of travel time predictions using the HA method. As can be seen, HA based

Table 3. Prediction MAE for timetable, HA for same days, HA for working days.

group time table HA(the same day ) HA(all days )

Long within periphery North-South 79.22s 81.53s 71.94s

Long within periphery West-East 80.85s 75.02s 62.38s

Center–periphery 64.76s 62.02s 61.62s

Long through the centre 71.58s 68.75s 67.64s

Express 60.38s 64.65s 52.70s

Center–Praga 64.56s 52.89s 50.22s

Short within periphery 55.87s 50.92s 35.65s

Short within centre 60.41s 53.02s 49.02s

on data from all working days provides better accuracy then when using data
from the same day of the week only.

Next, a hybrid model was developed, consisting of: (1) RBFN 25 or MLP [12,
32], using predicted travel time based on schedule data and delay at the last stop;
and (2) RBFN 25 or MLP [12, 32], using estimated travel time using HA. When
making predictions, depending to which group given bus line belonged, and the
distance for which the prediction was performed, the hybrid approach used model
that was expected to be the best for that combination (bus+distance).
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The created hybrid model was compared with: MLP and RBFN models that
used basic set of features, the HA algorithm, and predictions based on data from
timetables only. Figure 1 represents comparison of MAE values (in seconds) of
the predictions made by the hybrid model with the remaining methods, depend-
ing on the distance (number of stops). Due to space limitation, only two, very
different, cases are reported. Bus lines belonging to the same group had different
lengths of routes. Therefore, black triangles mark distances for which the predic-
tion of travel time ends for specific bus lines, belonging to the group described by
the graph. For this reason, the graphs report rapid changes in MAE for adjacent
distances, as in the case of Long within periphery group, where lines have total
of 30, 35, 36 and 38 stops. Results represented in both figures, and the remain-

Fig. 1. Comparison of the MAE value of prediction methods at different distances

ing experimental results (see, [16]), show that for short-distance predictions, for
all groups, the HA algorithm combined with distribution times, delivered better
accuracy than the hybrid model.

4 Concluding remarks

Now, let us consider top 5 lowest MAE values found in the literature vis-a-vis
results reported here: (1) ANN from [2]; MAE at 40s; for distances of up to 16
stops. (2) Hybrid model reported here; MAE at 67.17s; for the Short through the
center group, for time interval 19:00 to 23:00. (3) ANN from [1]; MAE at 70s.
(4) BP from [12]; MAE at 125s; for morning rush hours. (5) MLP from [5]; MAE
at 138.40s; for travel time of trams for noon hours.

In this context recall that in each article, results were obtained for bus (or
tram) lines from different cities, with very different road and traffic structures,
and public transport characteristics. For example, in more populated cities,
or those with less developed infrastructure, there may be more delays due to
the heavy traffic, which may influence the accuracy. Moreover, Trondheim (city
population is around 200 thousands, while metropolitan population is around
280,000) is much smaller than other cities. Further, Warsaw is split by a river,
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with limited number of bridges. Besides, analyzed bus/tram lines had differ-
ent lengths. Finally, no other work used data for multiple bus lines “jointly”
(combined into groups). Taking this into account, it can be argued that the re-
sults reported in this contribution (and in [16]) are very competitive and worthy
further explorations.

Separately note that additional experiments confirmed that use of auxiliary
features, e.g. number of busses moving between stops, or number of crossings
with lights, did not visibly improve accuracy of prediction for any of the tried
models. This fact seems to be somewhat counter intuitive, but it supports results
reported in [2].
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