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Abstract

To make Robotic Process Automation more
attractive, it needs to become more “intelligent”.
In this context, a modification of the Form-to-Rule
approach, based on identifying data types of form fields,
is proposed. Moreover, multi-domain named entity
recognition is used, for field value identification. These
techniques, used jointly, allow software robots to adapt
to interface changes. Experimental results are reported
and verify viability of the proposed approach.

1. Introduction

The purpose of Robotic Process Automation (RPA)
is to create, so called, software robots that systematically
repeat simple users’ actions, such as logging into a
system, receiving and processing e-mails, or transferring
data between applications [1]. RPA systems can
also aid businesses in data mining – for example, by
extracting information from legacy systems [2]. Here,
key differences between proposed solutions, are the
level of human involvement, and type of source data.
Naturally, solutions should limit human-in-the-loop
presence by, e.g., handling multi-domain data, and
be flexible with regard to possible data sources.
Specifically, considering that many systems have web
interfaces, the concept of web content mining (mining
information from web documents, often using NLP
techniques) is applicable [3]. The solution, outlined
in this work, extends web content mining, since
it is applicable to screenshots that can originate
from any system, supporting business analytics and
process mining [4]. Moreover, the proposed approach
to information extraction is independent from any
pre-configured structure of the sources.

Recently, it has been stipulated that RPA systems
can be substantially improved, by inclusion of
self-learning [5]. One of the first attempts to do this

was proposed in [6]. Namely, the Form-to-Rule (F2R)
approach was proposed. Overall, the F2R life-cycle
consists of the following steps:

1. A human identifies forms in the IT system.

2. RPA robot collects process logs and deduces
applicable rules.

3. Rules are applied to achieve business goals.

4. A human verifies (and, possibly, adjusts) rules
that have been identified by the RPA robot.

In this context, a form is as a set of fields that
are treated jointly. Each field is identified by a
unique identifier (ID). Moreover, a process consists of
a sequence of actions that can be translated to changes
of form fields. Each change is called a Form Action
(FA). In F2R, a rule consists of two parts: a condition
and a response. A condition indicates whether an FA
satisfies certain requirements. A response triggers an
appropriate, new FA. In such a way, rules implement an
RPA definition using “if . . . then . . . ” statements [7].

The F2R approach reduces the “human-dependent”
aspect of an RPA-based system, by increasing the
responsibilities of the robot. In this work, the possibility
of moving one more step in this direction (that is,
shifting work from humans to RPA robots) is explored.

Consider the form definition step. The F2R approach
assumes that a person, who defines a form, is familiar
with the program’s interface. Moreover, assigning IDs
to individual form fields requires an interface that allows
a robot to identify the fields that were changed by
the user. Notice that if one were to use a different
application at a given step of the process (following a
different “branch”), it would be impossible to apply the
previously learned rules. Thus, the RPA rules would
have to be recreated from scratch.

The aim of this contribution is to show that a form
can also be identified not by an ID, but by the type
of the stored data. Moreover, the datatype of a field

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 940
URI: https://hdl.handle.net/10125/102746
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



can determined by applying Named Entity Recognition
(NER). Furthermore, it is sufficient to provide a
screenshot as the input to the system performing rule
creation, as standard OCR software can translate a
screenshot into text. Afterwards, a NER subsystem
can extract the field data, including corresponding data
types. This information can be used in subsequent steps
of the F2R approach.

The feature extractor, for the proposed NER system,
was introduced in [8]. There, the key role was played
by local context features of an n-gram, which turned out
to be very important for recognizing the “meaning” of
an entity. Here, the feature extractor has been integrated
into the F2R process and progress in its development is
reported. Namely, the developed system has been tested
with several classifiers, i.e.: decision trees, random
forest, and boosting techniques; obtaining satisfactory
results (see, Section 5).

It should be stressed that the proposed system
is assumed to be multi-domain, as the user works
with multiple different applications, installed on the
computer. However, in RPA practice, the domains of
operation are likely to be similar, since applications
process tasks within “the same office”. Therefore, a
use case in which a company is processing invoices
from companies and schools has been considered to
be reasonable, to experimentally validate the proposed
approach. For this use case, three datasets have been
prepared: Companies 400, Companies 500 (containing
company data) and School (containing similar data,
but related to schools). Obviously, these sets have
at least one common part, the address. More details
about the datasets used in experiments, can be found in
section 4.2.

The remaining content is organized as follows. In
Section 2, a short survey of related work, from both
RPA and NER domains, is presented. Next, the form
detection step in the F2R process is redefined. In the
new definition, a form is uniquely identified by the types
of its fields. In this context, a modified NER system,
based on the feature extractor presented in [8], was
implemented and tested. Details on the data set and
the experimental setup are given in Section 4. Obtained
results are described in Section 5. Finally, a discussion
of experimental results, conclusions and an outline for
future work conclude the text.

2. Related works

Robotic Process Automation has recently gained a
lot of attention both in the scientific community and in
businesses. However, the adoption of RPA tools requires
a lot of manual effort, e.g., in identification and precise

definition (in some programming language specific to
the RPA platform) of the to-be-automated tasks. In this
context, the Form-to-Rule approach has been proposed
(see, [9]) to automatically identify tasks, deduce, and
apply rules. It is easy to observe that, when instantiating
an RPA-based system, one of core challenges is for the
robot to “understand” what data is transferred by the
user from one application/form/file to another. Note that
none of the existing RPA tools, analyzed in the recent
survey [5], have a self-learning capability. Such ability
would allow an RPA robot to gain understanding of the
data it is working with, possibly without the need for
human intervention.

Reflecting on the problem at hand, it can be
observed that Named Entity Recognition (NER) may
support the implementation of self-learning. NER is
a relatively “old” field of computer science, as it can
be traced to the end of last century [10, 11]. It
has been developed to locate and categorize important
fragments (called named entities) within unstructured
texts. Typical examples of named entities are dates,
city names, money amounts, etc. NER is an important
component of tasks within information retrieval [12,
13], entity linking, query answering [14, 15], machine
translation [16, 17], relation extraction, and sentiment
analysis. It is also noteworthy that NER methods have
been adapted to work with many languages [18, 19],
including Polish [20, 21, 22]. In this context, in [23]
authors described and AI-based system for business
documents (e.g. letters, e-mails, images) processing, for
a debt collecting use case.

A typical NER pipeline was described in [10, 11].
First, if necessary, given text is turned into a digital
format (e.g., using OCR-based digitization and
text extraction) and pre-processed. Pre-processing
may involve, among others, removal of tags
and/or stop-words, stemming, etc. Here, specific
pre-processing steps are application (and document)
dependent. Next, the resulting text is divided into
n-grams. Then, each n-gram is converted into a feature
vector. Finally, feature vectors are used to train a
classifier, which is tasked with categorizing n-grams
appearing in a production system. It should be noted
that such a NER pipeline is classifier-independent,
which is the main reason for experimenting with
multiple classifiers in this contribution.

Typically, NER research has been focused on
designing models for a specific dataset and/or single
knowledge domain. The challenge that started being
addressed recently, is applying NER to multiple
domains at once. Here, note that since collecting (and
labeling) extensive datasets is time-consuming, it would
be beneficial to have cross-domain NER models that
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could be transferred to a target domain by using as few
training samples as possible. In other words, it would
be beneficial if techniques similar to transfer learning
(see, [24]) could be applied to NER systems.

The multi-domain NER problem is actively
studied [25, 26, 27]. However, authors of mentioned
works emphasise that a NER system trained, and
relatively successful, in one domain, usually shows
(very) poor performance in another. While a similar
phenomenon has been observed in experiments reported
in what follows, one should keep in mind that it is very
natural for the RPA-based scenarios to involve humans.
In other words, real-world RPA applications differ from
other areas, where NER has been considered, in that
human users systematically monitor/supervise/correct
RPA-obtained results. Therefore, the proposed solution
is realistic as one can assume that a user will correct the
mistakes of the NER system (in a new domain), and the
corrected data will be added to the training set. This can
be seen as an example of so-called active learning [28].
As a matter of fact, experiments reported in Section 5.2
indicate that NER systems can adapt to a new domain
using the active learning-inspired approach.

Interestingly, the order in which knowledge is
infused into a multi-domain NER system matters. For
instance, the idea to utilize NER knowledge learned
from high-resource domains and then adapt it to
low-resource domains (which is called cross-domain
NER) is explored in [29, 30] (for an unsupervised
scenario) and in [31, 32] (for a supervised one).

An important question is how to evaluate the
performance of a NER pipeline. Authors of [33]
introduce three experimental setups that provide a
framework for evaluating the robustness of NER
models. In [27] authors propose a framework and a
corpora of texts to analyze and discuss the performance
of state-of-the-art tools in terms of their robustness
and reliability. In [26] the drawbacks of often-used
datasets are identified, and a new cross-domain dataset
is introduced – a fully-labeled collection of NER
data, spanning five diverse domains, with specialized
entity categories for different domains. Next, existing
cross-domain NER models are evaluated on that data set,
and explored using different levels of domain corpus and
masking strategies.

Since this work is based on Polish-language
documents, let us note that an example of NER
application to Polish stock exchange reports is given
in [25] (recognition of persons and companies). A
cross-domain evaluation on a small corpus of police
reports was also presented, however the results are
significantly worse.

3. Redefinition of the form identification

Proceeding toward the description of the proposed
solution, let us briefly summarize the main concepts
introduced in [6]. The original article should be referred
to for more details and formal definitions. The basic
notion, in the F2R process, is a form. It is defined as
a set of form fields and is identified by its name. The
form name uniquely defines the set of fields. Here, the
business process log consists of a series of Form Actions
(FA), i.e. changes of the form field values.

An RPA agent learns rules on the basis of process
logs. Here, the rules are in the form if condition
then response, where the condition is an FA that can
be automatically verified, and the response is an FA that
can be automatically performed.

In this work, a modification of the notion of a form
is proposed. Namely, the form can be identified by the
set of its fields. More precisely, by the set of types of
its fields. Even though the notion of a form is to be
modified, the remaining part of the self-learning RPA
process coincides with that introduced in [6].

To formally redefine the F2R process, the following
definitions are modifications of Definition 1 from [6].
Here, the notation from this reference is preserved.
Specifically, for an arbitrary set X we denote by P(X)
the power set of X , i.e. P(X) = {X ′|X ′ ⊂ X }. A
multiset that allows its elements to occur multiple times
is written in brackets, e.g. [a2, b]. The set of all possible
multisets for X is denoted by B(X).

Definition 1 (Form field) Let Utp be the universe of all
form field types, UVal denote the universe of possible
form fields values. A form field is a pair (t, V ) ∈
Utp × P

(
UVal

)
, where t ∈ Utp is the type of the field,

V ⊂ UVal is a set of field values. Denoted by Ufld is the
set of all possible form fields in the system, for which

∀F = (t, V ), F ′ = (t′, V ′) ∈ Ufld (t = t′ ⇒ V = V ′),

is enforced, i.e. the type of a form field uniquely defines
the set of values associated with it.

The type of a form field is understood in the sense of
named entities, and consists of pre-defined categories,
such as person name, organization, location, monetary
value, etc.

Definition 2 (Form) Let Ufrm be the universe of all
form field types. A form is defined as a multiset of form
fields f ∈ B(Utp). Denoted by Ufrm is the set of all
possible forms in the system.

The difference between the proposed definition of
a form, and the definition from [6] is that the original
definition required an ID of a form to identify it. In the
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proposed definition, the form is completely identified by
the set of it fields, i.e. by the set of its field types.

The evident advantage of the proposed approach is
the resulting stability, with respect to interface changes.
Once a rule is learned, it can be applied, even after
change of the applications used in the process (as long as
the filled form types remain unchanged). On other hand,
it can be assumed that an RPA robot can identify the
type of a form field in an application. This is particularly
so, since in what follows we illustrate (on the level of a
proof of concept) that this can be successfully achieved
by the application of NER techniques.

4. Experimental setup

As stated, the core of the proposed approach is to use
multi-domain NER in the F2R pipeline. Therefore, let
us now describe the setup of the experiments that were
used to validate the utility of such an approach.

4.1. NER pipeline for the RPA systems

In the experiments, we adopted the same NER
pipeline (figure 1) as the one that was used in [8].

screenshot

OCR
��

entities

hOCR
feature extractor // feature

vector

classifier

OO

Figure 1. NER pipeline

In general, it is assumed that any OCR software can
be used within the first step of the pipeline. In the
reported experiments, the Tesseract software [34] with
Polish language recognition interface was used as the
OCR program. It turned out that the Tesseract option
-psm 4 delivered the best output results, with respect
to the text segmentation.

The same feature extractor, which has been used
in [8] has been applied. There, the most of commonly
used NER features [10, 11] have been extracted, as well
as the local context (see, [8] for all details).

Three classifiers were tested in the proposed
NER pipeline: (1) decision tree, (2) AdaBoost, and
(3) random forest. In each case, the standard
implementation from the Scikit-learn library [35]
has been used. Hence, the documentation of
Scikit-learn should be consulted for details concerning
the classifiers.

4.2. Data preparation

The second core contribution of this work is the
exploration of the performance of the proposed NER
pipeline in the multi-domain context. For this purpose
the following datasets were prepared, and used in the
experiments:

• Companies 400 – extracted from the official
database of business organizations registered in
Poland, maintained by Statistics Poland; 21
screenshots.

• Companies 500 – extracted from an alternative
database of Polish business organizations
maintained by the “Foundation ePaństwo”; 28
screenshots.

• Companies 0 – data from arbitrarily chosen
company websites; 56 screenshots.

• Schools – school information in the original
layout; 92 examples.

• Schools flipped – flipped school information
(columns to rows); 75 screenshots.

• Schools shuffled – school information with
randomly shuffled field order; 84 examples.

The first three datasets were partially used in previous
work [8], while the remaining have been added to
represent the multi-domain settings. Specifically, for
schools, an entirely new dataset has been prepared. The
source of used data for schools is publicly available
at https://rspo.gov.pl/, “Polish registry of
schools” (Rejestr Szkół i Placówek Oświatowych).

For the Schools dataset, the syntactic Schools flipped
dataset, as a dual one, was generated. The Companies
0 and Schools shuffled datasets were introduced to avoid
model overfitting, and they were used only for model
training (not for testing).

Contrary to the Companies datasets, the process of
the School dataset generation was automated. First, for
each school to be included in the dataset, a screenshot
of its entry in the registry had to be obtained. To make
the process faster, a browser extension was developed. It
automatically scrolls the page and identifies each visible
entry and saves the screenshot. Additional datasets,
i.e. Schools shuffle and Schools flipped, were generated
from the original Schools dataset, using HTML DOM
manipulation. An example screenshot from the Schools
dataset is presented in Figure 2.

Collected screenshots were fed to the OCR
software. To avoid having to manually annotate the
OCR-processed screenshots (specifying the selected
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Figure 2. Example screenshot from the School dataset (original layout)

fields), an automatic approach was used instead. A
CSV file, containing all data about the schools was
retrieved. Next, using a Python script leveraging
fuzzy string matching, the text fragments present in
the OCR-processed screenshot were matched with those
from the ground truth CSV file. Finally, for each
screenshot, annotations were generated. Hence, the
entire dataset generation process was fully automatic.

Taking into account the nature of the collected
data (information about named institutions), all
datasets have common entities: addressLocality,
streetAddress, postalCode, name, average.
Moreover, the Companies 400 dataset contains
additional taxID entity. The Companies 500 dataset,
additionally, includes two entities: taxID and
addressRegion. Finally, the Schools dataset defines
four new entities: email, regon, foundingDate
and telephone.

Note that all considered entities are defined in the
Schema.org vocabulary, except for the regon entity,
which is an official statistical identifier of business
entities registered in Poland.

The School dataset, produced as a result of this
work, is published on Zenodo and GitHub under an open
license. It is available at https://zenodo.org/
record/6091666.

5. Experimental results and their analysis

Overall, two groups of tests have been performed.
Firstly, the standard 20% cross-validation test was done
(section 5.1). Here, 80% of data has been used for
model training and the remaining 20% for testing. The
second group of tests, described in section 5.2, models
the situation when the application interface changes.
Here, the system is trained on a part of data and then
tested on data that was not used in the training process.

Obviously, some entities will have a poor recognition
score. This being the case, the experiment was extended
by adding to the training set from one to ten screenshots
from the test dataset. This corresponds to the scenario in
which the user corrects the NER system (active learning)
and “rebuilds” the classifier. As expected, the results
of experiments demonstrate an increasing trend in the
recognition rate.

As a measure of correctness of entity recognition
the, commonly found in NER-related literature, F1
measure [10] has been applied.

As noted, three different classifiers were tested:
decision tree, random forest, and AdaBoost. In the
case of decision trees, each experiment was repeated
20 times, to overcome the inherent instability present
in these models. For this classifier, the average score
is reported.

Note that in some tests classifiers delivered false
positive results for entities that were not a part of the
particular dataset. For instance, AddressRegion
was incorrectly recognized in one screenshot of the
Companies 500 series. However, such cases were
very rare, and did not have a significant impact on the
experiment statistics. Therefore, for the sake of clarity,
they were not included in figures 3–12.

5.1. Cross-validation test

The first test is a standard 20%-fold cross-validation
test. The data was randomly split into two groups: one
for training (80%), with the remaining part kept for
testing. The second group contained only data from
Companies 400, Companies 500 and School datasets.
Specifically, ten screenshots from Companies 400 and
Companies 500 datasets, and 20 from the School
datasets have been randomly selected for testing.

In figure 3, the first column for each entity represents
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the F1 recognition score for the decision tree, the second
one for AdaBoost, while the third for the random forest
classifier.
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email
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addressLocality
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average for entities:  88.38 %

Average

decition tree
ada boost
random forest

Figure 3. Results of the 20%-fold cross-validation test.
Average F1 scores for the three classifiers are presented

It is easy to observe that simple entities, such
as addressRegion, postalCode, taxID,
and foundingDate, are stably recognized, with
100% accuracy. The remaining entities (but one)
also have satisfactory, high (above 80%), recognition
rate. As could have been expected, random forest and
AdaBoost deliver a slightly better recognition rate than
the decision tree.

The relatively low F1 score for the name entity
(about 60%) can be explained by the fact that the name
entity has no rigid internal structure, while the length of
it in the datasets varies from one to seventeen words.
Moreover, sometimes it is placed across two lines.
Obviously, situations like these need to be take into
account during requirements analysis, when a real-world
RPA system is to be instantiated. However, this is out of
the scope of this contribution.

5.2. Modeling change of interface

In this series of experiments, the case of an interface
change has been investigated. Assume that the user
performs the same process as above, at one of the stages
they decide to use a different application. Here, the NER
system that has learned one interface, should recognize
entities in the other interface. In general, this problem
can be conceptualized as a case of a multi-domain NER.
As mentioned, this problem is still investigated and, in
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F
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re

, %

0 1 2 3 4 5 6 7 8 9 10
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addressRegion
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Figure 4. Adaptive test for 400 series data, decision
tree classifier

the most general case, NER systems often show poor
performance when the domain changes.

However, in the case of RPA systems, an assumption
can be made that the two domains are not too distant
from each other, and this assumption is, implicitly,
guiding the performed experiments. Specifically, the
following modification for real-world RPA applications
is proposed. Assume that the user corrects the system,
after spotting a mistake. Then the system re-learns the
F2R rule. For the purpose of this work, this process is
called adaptation.

Considered interface change was modelled in the
following way. The Companies 400 and Companies 500
datasets have been considered as interfaces to different
applications. For the School dataset a new domain has
been created. Namely, for some School screenshots rows
and columns have been swapped with each other. This
new dataset was treated as a new interface.

The NER system has been trained on all data except
the selected interface set (different interface), and then
tested on this data. To model the adaptation process, one
to ten randomly chosen screenshots from the different
interface have been moved from the test dataset to the
train dataset.

In the first test, Companies 500 and Companies 0,
Schools and Schools shuffled dataset were used for
training. The Companies 400 dataset was used
for testing. The experimental results are shown in
figures 4–6.

As can be seen, “simple” entities are stably
recognized at the rate of 100%. More complicated
entities, such as name, addressLocality or
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Figure 5. Adaptive test for 400 series data, AdaBoost
classifier

streetAddress, have a smaller recognition rate, but
have a clear upward trend (result of active learning).
Note also that the decision tree classifier demonstrates
the most stable growth of F1 score.

In the second set of tests, Companies 400,
Companies 0, Schools and Schools shuffled datasets
were used for training, while Companies 500 was used
for testing. The results are shown in figures 7–9.

Similarly to the previous experiments, entities
name, addressLocality, and streetAddress,
have a lower recognition rate with respect to other
entities. However, a clear and stable upward trend can
also be observed.

In the final tests Companies 400, Companies 500,
Companies 0, Schools, and Schools shuffled datasets
were used for training. The Schools flipped dataset
was used for testing. Experimental results are shown
in figures 10–12.

In this case, although it is still visible, the
increasing trend is not as pronounced as in the previous
experiments. One can observe a particular problem
with the entity name, which is very poorly recognized.
In this case, the same explanation as above, related
to the long and unstructured text within this entity,
applies. The random forest classifier encounters a
similar problem (for the same reasons) in the case of the
streetAddress entity.

6. Discussion

The presented tests confirm the main thesis: a
modification of the F2R approach, involving the NER
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Figure 6. Adaptive test for 400 series data, random
forest classifier

technology, is promising. The results of the 20%
cross-validation test, applied to the proposed approach,
show that an RPA system can be defined in terms of
form (data) type, rather than form fields ID and the
corresponding API, extending the robot-responsibility
aspects of an RPA pipeline.

Moreover, the suggested approach covers the
situations when the application changes in a specific step
of the process. Experiments, described in section 5.2
demonstrate that, for simple entities, the NER system
copes with this issue very well. As what concerns other
entities, the proposed adaptation process (based on the
ideas from active learning), can help in most situations.

Let us also discuss some benefits of the proposed
approach in comparison to other ways of addressing the
problem. Firstly, the proposed solution seems to be the
first attempt to join two fields of, broadly understood,
data mining: NER and process mining. The need of such
a conjunction arises from the effort to create an RPA
system with a self-learning ability. Recall, that none of
existing RPA system has such a feature [5].

The initial attempt at implementing an RPA system
with self-learning, through form-to-action techniques,
was reported in [6]. The approach presented in
this contribution improves the form definition step,
by changing form fields definition. Instead of IDs,
using the field’s datatype is proposed. This allows
to formulate rules without the access to the internal
structure of the program’s interface. Specifically, once
learned, the rule is relatively stable, with respect to
interface modifications or even a change of application.
Moreover, use of active learning-based techniques
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Figure 7. Adaptive test for 500 series data, decision
tree classifier

further stabilizes the process, as long as the domains
remain reasonably closely-related.

The form field datatype, in turn, is discovered by
using NER techniques. Here, the significant difference
from the standard approaches (see surveys [5, 11]) is the
format of input data. Instead of text, the NER system
uses an application screenshot, which is processed by
an OCR tool. Note that this format of input data forces
changes in the standard NER algorithm. In particular,
importance of features used in recognition changes.
Therefore, a new local context feature was introduced.
This feature appears to play an important role in the
recognition of the context (see [8] for more details).

7. Conclusion and Future Work

In this work, a modification of the F2R approach
to self-learning RPA system has been proposed. This
modification is based on identifying data type of form
fields. The multi-domain NER technique is used for
field value recognition. Experiments show that this is
a promising direction of the RPA development.

Based on conducted research, it is clear that
further automation can be achieved by applying
semi-supervised, or unsupervised learning. Hence the
next step will be joining the proposed NER system with
the actual F2R pipeline, developed in [6].

Note also, that typical RPA systems, by design,
are soft real-time applications. Hence, learning and
recognition time is important. Tree-based classifiers,
especially such as random forest, or boosting methods,
are known for large computation times. Hence, it worth
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Figure 8. Adaptive test for 500 series data, AdaBoost
classifier

to explore other, not tree-based, classifiers.
Finally, as a side effect of our work, a large dataset

of Polish language screenshots, with corresponding
hOCR and metadata files has been developed. This
dataset can be used by other investigators in the field
of multi-domain NER.
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