
Control plane systems tracing and debugging –
existing problems and proposed solution

Gleb Peregud1, Maria Ganzha1[0000−0001−7714−4844], and Marcin
Paprzycki2[0000−0002−8069−2152]

1 Warsaw University of Technology, Warsaw, Poland
M.Ganzha@mini.pw.edu.pl

2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

Abstract. Hierarchical control plane systems are hard to debug and
reason about, among others, because of prevalence of intent-driven actu-
ation. Moreover, an industry adopted distributed systems tracing model,
called OpenTracing, does not handle activity tracing in presence of co-
alescing effects, materializing in control plane systems, e.g. cloud plat-
forms and build systems. The goal of this contribution is to outline a so-
lution for reasoning about such systems, by creating a novel distributed
systems tracing mechanism, based on an extension of the OpenTracing
model.

Keywords: Distributed systems tracking · Provenance tracking · Hier-
archical control plane systems · Build systems.

1 Introduction

Complexity of computer systems is growing [11], and results in individuals’ los-
ing ability to fully comprehend systems they create/use. Today, programs may
be developed by tens of thousands developers [31,12]. Moreover, there exist ser-
vices with millions of lines of code, with hundreds of Remote Procedure Call
interfaces [1]. Growth of system complexity is followed by increasing complexity
of software automation. Today, it ranges from simple build systems (Make [13]),
through imperative automation systems (Puppet [22]), to complex multi-cloud
systems (Terraform [5]), which become too complex for individual developers.
For instance, understanding a complex service deployment would require ex-
pertise in Terraform, Docker [25], Linux kernel, Kubernetes [7], cloud provider
API(s), and deployment requirements of the servers. Among the most complex
automation systems, are the cloud services [23,44]. They serve public APIs to
cloud customers and drive the cloud infrastructure.

1.1 Intent-driven actuation

Deployment systems are shifting from an imperative execution model (like Ansi-
ble), to a declarative-first model (like Terraform). They follow a scheduling pol-
icy to reach an intended state, executing a sequence of, usually small/restricted,



2 G. Peregud, M. Ganzha, M. Paprzycki

imperative steps. We call these intent-based systems, and their execution an
intent-driven actuation. For example, Kuberentes is an intent-based system: its
API objects [21] describe the desired state (user intent) and the system match
updates the cluster to match it. Furthermore, deployment systems (NixOps [10])
and modern build systems ([27,24]) employ intent-driven actuation. They build
a new instance of a target object from the scratch, based on the specification,
and replace the current object with the new one (imperative operation).

1.2 Coalescing effects

Systems which employ intent-driven actuation exhibit the coalescing effects. In
general, coalescing occurs when work units (from multiple requests), are batched,
before joint execution [34]. In build systems, coalescing effect occurs in a “di-
amond dependency graph”, since the shared dependency is built in response
to both incoming requests. Here, no single attribution of causality is possible.
Overall, coalescing effects change relationship, between requests and activities is
the system, from one-to-many to many-to-many.

In intent-driven actuation, coalescing effects appear as actuation aggregates
“multiple intents”. Here, actuation can take an “arbitrary path” between the
current state and the desired state. The system can choose to batch user requests
and satisfy them all at once, to execute multiple actions based on a single request,
or do “something in-between”. Let us illustrate this with a few examples:

– If two consecutive requests desire the same state, only one is acted upon.
– If two consecutive requests modify the same property, in a quick succession,

only the latter actuation is likely to occur, due to the, so called, debouncing.
– If three requests modify the state in quick succession from A to B, to C,

and back to B, typically only actuation from A to B will be executed.
– If a request considerably changes a desired state, automation system will

perform a series of actions over long period of time. For example to deliver
10,000 VMs the cloud will not start them instantaneously, but over time.

Observe that a combination of such behaviours results in arbitrary relation-
ships between requests and actuations. This makes majority of debugging tools
inaccurate. In this context, a widely adopted industry approach to reasoning
is distributed systems tracing, and the most popular tools follow OpenTracing
model [29] based on Google’s Dapper. However, this model does not handle
coalescing effects (see [34]).

1.3 Control plane systems

Coalescing effects are present in control plane systems, in upper layers of cloud
service stacks. Cloud APIs can be imperative, declarative, or both. Imperative
API allows direct actions on cloud resources. Declarative API allows users to de-
clare an arbitrarily complex intent with a single call. An example of such desired
intent is a shape of a service deployment, e.g. size and regional distribution of a



Control plane systems tracing and debugging 3

group of virtual machines. Typically, declarative API calls trigger asynchronous
work changing the deployment to match the desired state.

Additionally, in Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS) solutions, deployment systems may be provided as services. For example,
any PaaS offering Kubernetes API, exposes an intent-based solution. It can be
assumed that PaaS offerings from Amazon Web Services, Google, or Azure com-
bine their systems scale with complex execution model of intent-based systems.

1.4 Hierarchical control plane systems

In deployment practice, some cloud service APIs are implemented on top of
other cloud services. For example, Google Cloud Functions (GCF) runs on top
of Google Cloud Run (GCR), which runs on top of Google Kuberentes En-
gine (GKE). In turn, GKE runs on top of Google Cloud Engine (GCE). Hence
control plane system may be hierarchical, and the hierarchy can have quite a
complex structure of dependencies making it hard to be reasoned about.

1.5 Build systems in control plane systems

Let us now consider that control plane systems, with declarative APIs, need to
be provided with the desired state. Build system outputs are often used for this
purpose. For example, Infrastructure-as-Code (IasC) model recommends treat-
ing service deployment as any other code – to be be built and tested using build
systems. Here, Bazel build system can define desired shape of Kubernetes de-
ployments [3]Immutable infrastructure [26] model often prescribes use of Docker
containers and Docker’s primitive build system [27].

Furthermore, build/build-like systems are often parts of control plane sys-
tems. For example, Terraform Cloud [16] and EPAM Cloud [37] execute Ter-
raform planning process as part of their API. Tools like NixOps [10] and Dis-
nix [41]define deployments end-to-end, starting with individual binaries, through
the VM/container images, to the “shape of the cloud”.

2 Problem statement

Hierarchical control plane systems employing intent-driven actuation (HCPS)
are hard to reason about. These are multi-layered systems, with a large number
of servers. Hence, reasoning about them requires tracing both their activities
and mutations of the state, managed by any layer of the system. A control plane
system in a cloud service is inevitably multi-tenant. Behaviour of individual ten-
ants can affect how other tenants are being served, and can affect the health
of the system. Since such interactions are difficult to reproduce, tools providing
information about the control plane system must be always on. Understand-
ing system behavior requires observing related activities and associated state
changes across many services and machines. Given that these systems are devel-
oped by large organizations with multiple teams, it may not be obvious which
services are in use.



4 G. Peregud, M. Ganzha, M. Paprzycki

The aim of undertaken work is to propose a debugging solution, applicable to
hierarchical control plane system employing intent-driven actuation.

3 Related work

To address this problem, it is necessary to collect data about the state of a
HCPS. Here, two main approaches can be identified: distributed systems tracing,
monitoring and logging, provenance tracking, and build systems.

3.1 Distributed systems tracing

The state-of-the-art solutions for distributed tracing closely follow the Open-
Tracing model. The OpenTracing approach uses “tainting”, where an incoming
request is “tainted” with a unique identifier. It is propagated across all activities
participating in handling the request. This has been standardized by W3C as
the Trace Context recommendation [20].

Tainting propagates a single identifier only, hence it cannot deal with coa-
lescing effects. None of OpenTainting open source implementations solve to this
problem. Let us note that intent-driven actuation cannot be faithfully recorded
using tree-shaped execution traces, where an actuation may be linked with more
than one incoming request. Hence intent-based systems necessitate a more
flexible model. Note also that the tainting model cannot be extended by prop-
agating of a set of trace identifiers instead of a single one, due to super-linear
storage requirements and duplication of spans.

3.2 Monitoring and logging

Monitoring and logging mechanisms allow capturing metrics and unstructured
log entries. Metrics are most suitable to capture aggregated statistics of the
system. They can be labeled with additional information, allowing finer-grained
view, but they still deliver aggregated numbers [38]. Logging mechanisms are
typically based on unstructured log entries. Neither mechanism is suitable to
track relationships between incoming requests and individual work units.

3.3 Provenance tracking

Coalescing effects are associated with shared mutable states. Hence, provenance
tracking becomes relevant, as it allows tracking state objects, their mutations
and relations. It is related to database provenance (data lineage tracking). Prove-
nance traces [8] track provenance at query time. This is a bottom-up approachus-
ing the proposed formal language. The solution generates very large traces, as all
transformations are recorded. If applied naively, this approach is not feasible for
large-scale control plane system, since it (1) requires writing from scratch, and
(2) does not allow precise specification, which tracking data is to be gathered.



Control plane systems tracing and debugging 5

It has been recognized [19] that provenance tracking in clouds requires aggre-
gation across multiple layers of the environment. Provenance tracking has been
applied in intent-based control plane systems in networking. Intent-based net-
working (IBN) concerns automated and policy-aware network management [35].
ProvIntent [39] is a framework extension for the SDN control plane that accounts
for intent semantics. It extends the ProvSDN [40], to explicitly incorporate intent
evolution in provenance tracking. It uses W3C PROV data model.

W3C PROV expands on OpenProvenance model (OPM) [28] as data model
for provenance on the Web. It is sufficiently expressive to represent coalescing
effects – it can represent non-tree-shaped activities and it can record objects as
triggers for activities. However, the PROV model is not suitable since: (1) Most
activities in HCPSs do have a tree-shaped control flow. Here, PROV Activities
have to be represented using wasStartedBy and wasEndedBy relations, causing
substantial storage overhead. (2) While [15] proposes use of OPM to represent
message passing in distributed systems, proposed representation is verbose com-
pared to OpenTracing. (3) PROV model is expressive and complex much beyond
OpenTracing. This complexity could hinder its adoption in industry. Systems
like SPADE [14] do use PROV model to capture provenance data in distributed
settings. SPADE is focused on gathering low-level information from OS audit
logs, network artifacts, etc. Therefore, SPADE’s syscall and library call level
instrumentation would not scale for a large production system.

Provenance tracking has been researched from the perspective of formal sys-
tems. Here, Souilah et.al. [36] presented a formal provenance, based on the π-
calculus. The approach is based on enriching exchanged data with provenance
information, similar to the tainting approach. Hence, this approach is not suit-
able for our problem. Why-across-time provenance ([43]) provides state machines
based mechanisms to track data provenance in time-varying stateful distributed
systems. However, wat-provenance requires determinism, while large scale dis-
tributed systems involve a fair share of non-determinism in load balancing, bin-
packing, resource allocation, load shedding, etc. Additionally both this and π
-calculus-based formalism depart from the well-established OpenTracing.

Provenance tracking in security is focused on threat detection. This puts
constraints on available approaches. ProTracer [33] uses a mix of logging and
tainting, and is focused on Advanced Threat Protection. Hence, it uses kernel-
level audit logging and syscall interception, as a black-box, zero-trust approach.
ProTracer does not use a general data model, making it impossible to repre-
sent abstract entities, e.g. cloud resources. CamFlow [30] automates provenance
capture, as a Linux Security Module (LSM), designed for single-machine system
auditing. It outputs results in W3C PROV format.

Security-focused provenance tracking addresses different issues than these in
HCPSs. Security requires zero trust, while the HCPSs case allows for full trust.
It restricts security provenance solutions to use observed provenance. However,
provenance tracking in large-scale control plane systems cannot be based solely
on observed provenance, due to use of abstract entities and their scale [32].
Provenance tracking in HCPSs should rather apply disclosed provenance.



6 G. Peregud, M. Ganzha, M. Paprzycki

Provenance has been approach in the context of workflow management sys-
tems and data transformation pipelines. RAMP is a data intensive scalable com-
puting (DISC) provenance framework [18]. It is restricted to data intensive com-
putations, over static data. Therefore, it cannot be applied to components, like
storage systems, coordination services, load balancers, etc., where control flow
evolves with the system, and data passes via a large set of mechanisms (RPCs,
databases, pubsub systems, etc). LogProv is a provenance logging system, im-
plemented for Apache Pig and Apache Hadoop [42]. It supports dynamically
shaped big data workflows and pipelines. It uses structured logging and the
ElasticSearch. Overall, RAMP is a very specialized framework for DISC prove-
nance tracking, while LogProv is less specialized and more flexible. Here, we
believe that LogProv approach can be generalized.

3.4 Build systems

As discussed, build systems play important role in HCPSs, while reasoning about
build systems combines tracing and provenance tracking. Build systems are
inherently intent-based, since a build target is described declaratively. More-
over, memorization and incremental recomputation are coalescing effects, used
to achieve a minimality property [27]. Here, build systems, like Bazel [2] or
Nix [9], provide mechanisms to reason about, debug and optimize operations.
These mechanisms are implementation-specific, informal, and not introperable.

Separately, tracing build processes has been used to uncover licence compli-
ance inconsistencies [6], which is a form of provenance tracing. This approach
does not address hierarchical nature of control plane systems, and captures only
two specialized levels of provenance for build tasks and files used in builds.

Finally, build system dependency tracking can be seen as provenance track-
ing, for build targets based on their inputs (disclosed provenance in [4]). However,
at best, it works at the level of the build graph, which is too high level of granu-
larity. For instance, when build systems operate within a control plane system,
ability to track relationship between build system inputs and actions of a control
plane components taken based on build system outputs is necessary.

4 Solution outline

We will now outline the requirements towards a system that can solve the posed
problem. Here, we believe that the solution should extend OpenTracing (to fa-
cilitate adoption). Hence, such solution lies between the OpenTracing and the
OpenProvenance in the design space of debuggability tools. Hence, based on
analysis of literature and existing industrial tools, the proposed solution should
have the following properties:

1. Coalescing effects support – to support tracing of intent-driven actuation;
2. Support for abstract entities – essential to align with cloud APIs;
3. Support for composite entities – to support objects like archives, VM images,

container images, etc. which are prevalent in cloud APIs;



Control plane systems tracing and debugging 7

4. Low storage overhead – necessary for large-scale systems;
5. Full coverage – for all tracked activities and resource state mutations;
6. Gradual fidelity execution tracing – to selectively apply execution tracing;
7. Gradual fidelity provenance tracking – to selectively track provenance;
8. Minimal mental burden – to support adoption in industry;
9. Cross-host tracking – for distributed systems tracing support;

10. Multi-layer systems support – to allow tracking across hierarchical layers;
11. Asynchronous data intake – to support data ingestion in presence of unreli-

able network, unpredictable latencies, and lack of ordering guarantees;
12. Event-based data production – to deal with faults and to avoid buffering;
13. Flexible control flow support – to deal with pre-existing control flows.

We believe that a system, which satisfies these requirements, will be able
to trace (1) non-ultra-large on-line serving systems, and (2) hierarchical control
plane systems employing intent-driven actuation. Note that existing solutions,
like Dapper or CamFlow, satisfy only a subset of these requirements.

4.1 Provenance-enhanced distributed systems tracing model

We propose Provenance-Enhanced Distributed Systems Tracing (PEDST) model,
as a foundation for the solution. PEDST extends the OpenTracing model to
record interactions between actions in the system and objects the system inter-
acts with. Hence, the following concepts are used in PEDST model. Execution
(similar to the OpenTracing “span”), tracks operations on entities, which are
recorded. Entity is “anything” that is “important-enough” to track. Read and
write operations, performed by an execution, allow tracking provenance of objects
they operate on. Each write operation, on an entity, gives rise to a new incarna-
tion (immutable entity revision). Entities are mutable. Executions of the same
logic are grouped, by association with a process, which describes a procedure.
A pair of executions can interact. Recorded interaction consists of messages. A
message may carry an incarnation as a payload.

The PEDST model supports both activity tracing and provenance tracking.
The vehicles of tracing are executions and their parent-child relationships [34].
Correspondingly, the vehicle for provenance tracking are read and write opera-
tions performed by incarnations. This puts the proposed approach in the “data
provenance” class [17]. Capability to dynamically track provenance of objects
(e.g. files, configs, resources, etc.) contributes to “support for abstract entities”.

Concepts of executions, incarnations, and operations, are sufficient to perform
both execution tracing and provenance tracking. Concepts of process and entity
allow improving the usability of envisioned tools. Annotations are necessary
for the model to be a superset of OpenTracing. Interactions and messages are
necessary to track provenance propagation through RPCs and other message
passing mechanisms found in distributed systems.

Furthermore, use of OpenTracing as the foundation, allows to partially satisfy
the “minimal mental burden” requirement, due to familiarity with this model.
Nevertheless PEDST is more complex than OpenTracing. However, this com-
plexity is inherent to the problem. Here, the entities concept, and versioning



8 G. Peregud, M. Ganzha, M. Paprzycki

with incarnations, and operations as a link between activity tracing and prove-
nance tracking, are the minimal extension of the OpenTracing model, to make
it comply with other requirements.

4.2 Architecture

Finally, to solve the problem the model needs to be implemented as part of a soft-
ware system. We propose to use an architecture akin go Dapper’s or LogProv’s,
but extended accordingly. The data model described above is used to represent
the final processed data, while data collection from individual servers is done
with a distributed structured logging mechanism, using a logging data model.
The logging data model needs to support aggregation into the PEDST model,
by a log-tailing processors. Processor ingests data from the logging mechanism
and stores it into the PEDST storage. Optionally, data can be transformed into
a graph-based representation, for a more flexible querying support. Additionally
a visualization tool needs to expose the processed data to a user of the system.

5 Conclusions

In this work we have identified characteristics of hierarchical control plane sys-
tems, with intent-driven actuation, which makes their debuggability an unsolved
problem. Next, we have identified provenance as a possible solution. We have
introduced main aspects of a provenance-enhanced distributed systems tracing
model; an extension of the Dapper tracing model, with elements of provenance
tracking. Finally an architecture of a software implementation was suggested.
Further work on research, implementation and application of the proposed model
is under way and will be reported in subsequent publications.

References

1. Barroso, L.A., Ranganathan, P.: Datacenter-scale computing. IEEE Micro 30,
6–7 (2010), http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.63,
special issue of the IEEE Micro Magazine

2. Optimizing performance (May 2020), https://docs.bazel.build/versions/master/
skylark/performance.html, [Online; accessed 30. May 2020]

3. This repository contains rules for interacting with kubernetes configurations / clus-
ters. (2020), https://github.com/bazelbuild/rules k8s, [Online; accessed 30. May
2020]

4. Braun, U., Garfinkel, S., Holland, D.A., Muniswamy-Reddy, K.K., Seltzer, M.I.:
Issues in automatic provenance collection. In: International Provenance and An-
notation Workshop. pp. 171–183. Springer (2006)

5. Brikman, Y.: Terraform: Up & Running: Writing Infrastructure as Code. O’Reilly
Media (2019)

6. van der Burg, S., Dolstra, E., McIntosh, S., Davies, J., German, D.M., Hemel, A.:
Tracing software build processes to uncover license compliance inconsistencies. Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering pp. 731–742 (9 2014). https://doi.org/10.1145/2642937.2643013

http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.63
https://docs.bazel.build/versions/master/skylark/performance.html
https://docs.bazel.build/versions/master/skylark/performance.html
https://github.com/bazelbuild/rules_k8s
https://doi.org/10.1145/2642937.2643013


Control plane systems tracing and debugging 9

7. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Queue 14(1), 70–93 (2016)

8. Cheney, J., Acar, U., Ahmed, A.: Provenance traces. arXiv preprint
arXiv:0812.0564 (2008)

9. Dolstra, E.: The purely functional software deployment model. Utrecht Uni. (2006)
10. Dolstra, E., Vermaas, R., Levy, S.: Charon: Declarative provisioning and deploy-

ment. In: 2013 1st International Workshop on Release Engineering (RELENG).
pp. 17–20. IEEE (2013)

11. Dvorak, D.: Nasa study on flight software complexity. In: AIAA Infotech@
Aerospace Conference and AIAA Unmanned... Unlimited Conference. p. 1882
(2009)

12. Facebook Engineering: 9.9 million lines of code and still moving fast -
facebook open source in 2014 (2014), https://engineering.fb.com/core-data/
9-9-million-lines-of-code-and-still-moving-fast-facebook-open-source-in-2014/

13. Fowler, G.: A case for make. Software: Practice and Experience 20(S1), S35–S46
(1990). https://doi.org/10.1002/spe.4380201305, https://onlinelibrary.wiley.com/
doi/abs/10.1002/spe.4380201305

14. Gehani, A., Tariq, D.: Spade: support for provenance auditing in distributed envi-
ronments. In: ACM/IFIP/USENIX International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing. pp. 101–120. Springer (2012)

15. Groth, P., Moreau, L.: Representing distributed systems using the Open
Provenance Model. Future Gener. Comput. Syst. 27(6), 757–765 (Jun 2011).
https://doi.org/10.1016/j.future.2010.10.001

16. HashiCorp: Terraform (Aug 2020), https://www.terraform.io/docs/cloud/index.
html, [Online; accessed 1. Sep. 2020]

17. Herschel, M., Diestelkämper, R., Lahmar, H.B.: A survey on provenance: What
for? what form? what from? The VLDB Journal 26(6), 881–906 (2017)

18. Ikeda, R., Park, H., Widom, J.: Provenance for generalized map and reduce work-
flows. CIDR pp. 273–283 (01 2011)

19. Imran, M., Hlavacs, H., Khan, F.A., Jabeen, S., Khan, F.G., Shah, S., Alharbi, M.:
Aggregated provenance and its implications in clouds. Future Generation Com-
puter Systems 81, 348–358 (2018)

20. Kanzhelev, S., McLean, M., Reitbauer, A., Drutu, B., Molnar, N., Shkuro, Y.:
Trace Context (2 2020), https://www.w3.org/TR/trace-context, [Online; accessed
1. Sep. 2020]

21. Understanding kubernetes objects (2020), https://kubernetes.io/docs/concepts/
overview/working-with-objects/kubernetes-objects/, accessed on 2020-05-13

22. Loope, J.: Managing infrastructure with puppet: configuration management at
scale. ” O’Reilly Media, Inc.” (2011)

23. Low, C., Chen, Y., Wu, M.: Understanding the determinants of cloud computing
adoption. Industrial management & data systems (2011)

24. McNerney, P.J.: Beginning Bazel. Apress, Berkeley, CA (2020).
https://doi.org/10.1007/978-1-4842-5194-2

25. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux journal 2014(239), 2 (2014)

26. Mikkelsen, A., Grønli, T.M., Kazman, R.: Immutable infrastructure calls for im-
mutable architecture. In: Proceedings of the 52nd Hawaii International Conference
on System Sciences (2019)

27. Mokhov, A., Mitchell, N., Peyton Jones, S.: Build systems à la carte:
Theory and practice. Journal of Functional Programming 30 (1 2020).

https://engineering.fb.com/core-data/9-9-million-lines-of-code-and-still-moving-fast-facebook-open-source-in-2014/
https://engineering.fb.com/core-data/9-9-million-lines-of-code-and-still-moving-fast-facebook-open-source-in-2014/
https://doi.org/10.1002/spe.4380201305
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380201305
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380201305
https://doi.org/10.1016/j.future.2010.10.001
https://www.terraform.io/docs/cloud/index.html
https://www.terraform.io/docs/cloud/index.html
https://www.w3.org/TR/trace-context
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://doi.org/10.1007/978-1-4842-5194-2


10 G. Peregud, M. Ganzha, M. Paprzycki

https://doi.org/10.1017/s0956796820000088, https://oadoi.org/10.1017/
s0956796820000088

28. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., et al.: The open provenance model core speci-
fication (v1. 1). Future generation computer systems 27(6), 743–756 (2011)

29. The OpenTracing project (1 2020), https://opentracing.io, [Online; accessed 7.
Jun. 2020]

30. Pasquier, T., Han, X., Goldstein, M., Moyer, T., Eyers, D., Seltzer, M., Bacon, J.:
Practical whole-system provenance capture. In: Symposium on Cloud Computing
(SoCC’17). ACM (2017)

31. Potvin, R., Levenberg, J.: Why google stores billions of lines of
code in a single repository. Commun. ACM 59(7), 78–87 (Jun 2016).
https://doi.org/10.1145/2854146, https://doi.org/10.1145/2854146

32. Raju, B., Elsethagen, T., Stephan, E., Van Dam, K.K.: A scientific data provenance
api for distributed applications. In: 2016 International Conference on Collaboration
Technologies and Systems (CTS). pp. 104–111. IEEE (2016)

33. Shiqing, M., Zhang, X., Xu, D.: Protracer: Towards practical provenance
tracing by alternating between logging and tainting. In: NDSS (01 2016).
https://doi.org/10.14722/ndss.2016.23350

34. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,
D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing in-
frastructure. Tech. rep., Google, Inc. (2010), https://research.google.com/archive/
papers/dapper-2010-1.pdf

35. Sivakumar, K., Chandramouli, M.: Concepts of network intent. Internet Research
Task Force, Internet Draft, Oct (2017)

36. Souilah, I., Francalanza, A., Sassone, V.: A formal model of provenance in dis-
tributed systems. In: Workshop on the Theory and Practice of Provenance. pp.
1–11 (2009)

37. Terraform as a service (2020), https://cloud.epam.com/site/competency center/
e=p=c services/terraform as a service(=t=a=s), accessed on 2020-05-30

38. Turnbull, J.: Monitoring with Prometheus. Turnbull Press (2018)
39. Ujcich, B.E., Bates, A., Sanders, W.H.: Provenance for intent-based networking.

In: Proceedings of the IEEE Conference on Network Softwarization (2020)
40. Ujcich, B.E., Jero, S., Edmundson, A., Wang, Q., Skowyra, R., Landry, J., Bates,

A., Sanders, W.H., Nita-Rotaru, C., Okhravi, H.: Cross-app poisoning in software-
defined networking. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. pp. 648–663 (2018)

41. Van Der Burg, S., Dolstra, E.: Disnix: A toolset for distributed deployment. Science
of Computer Programming 79, 52–69 (2014)

42. Wang, R., Sun, D., Li, G., Atif, M., Nepal, S.: Logprov: Logging events as prove-
nance of big data analytics pipelines with trustworthiness. In: 2016 IEEE Interna-
tional Conference on Big Data (Big Data). pp. 1402–1411. IEEE (2016)

43. Whittaker, M., Teodoropol, C., Alvaro, P., Hellerstein, J.M.: Debugging distributed
systems with why-across-time provenance. In: Proceedings of the ACM Symposium
on Cloud Computing. pp. 333–346 (2018)

44. Wood, K., Anderson, M.: Understanding the complexity surrounding multitenancy
in cloud computing. In: 2011 IEEE 8th International Conference on e-Business
Engineering. pp. 119–124. IEEE (2011)

https://doi.org/10.1017/s0956796820000088
https://oadoi.org/10.1017/s0956796820000088
https://oadoi.org/10.1017/s0956796820000088
https://opentracing.io
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2854146
https://doi.org/10.14722/ndss.2016.23350
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://cloud.epam.com/site/competency_center/e=p=c_services/terraform_as_a_service(=t=a=s)
https://cloud.epam.com/site/competency_center/e=p=c_services/terraform_as_a_service(=t=a=s)

	Control plane systems tracing and debugging – existing problems and proposed solution

