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TESTING CONVERGENCE OF NONLINEAR SYSTEM SOLVERS
DEBORAH DENT’, MARCIN PAPRZYCKI' aNp ANNA KUCABA-PIETAL'

Abstract. Solution of systems of nonlinear algebraic equations is a relatively complicated problem with few
definite answers. The situation becomes even more complex when the number of equations increases. In this note we
cempare the performance of several solvers applied to a number of popular test cases. We concentrate our attention on
the robustness of the solvers and the properties of the test problems.

1. Introduction. The solution of systems of algebraic equations has a well-developed mathematical
and computational theory when the equations are linear, or when a single nonlineéar equation is (o be solved
| 15]. When systems of linear equations are considered, libraries of solvers have been developed (see e.g.
[5]). These libraries may not provide the most efficient way of solving a particular special problem, but thcy
should be robust enough to effectively solve a broad class of problems. In addition, sets of test cases have
been developed which can be used as benchmarks against which the newly developed software is to bc
tested (this i1s especially the case for linear systems with large sparse matrices; see e.g. [2]). These
benchmarks allow for e¢stablishing the quality of the new approach and a comparison with existing softwarc
aiming at the same problem.

The situation is much more complicated for systems of nonlinear algebraic equations. Both the
mathematical theory and computational practice are far from a complete understanding of the solution
process. No only we lack a library of solvers, but also no agreed upon sets of test problems exist (different
researchers use different test problems with only a minimal overlap). It should be also pointed out that until
recently, in the engineering practice, only systems with relatively few equations have been solved. The
increasing computer power resulted in a renewed interest in engineering and optimization problems
consisung of a large (and very large) number of equations [8]. This points out to a potential problem with
the existing “popular” test cases. Most of them are characterized by a very small number of equations (2-4)
and only very few reach 10 equations. In our literature and Internet search we have not located test cases
corresponding to the real-life engineering problems of 100+ equations. Finally, it may be worth mentioning
that in the engineering computing (e.g. in electrical engineering) practical problems arise which involve
non-smocth functions (e.g. functions with the absolute value). These problems are also not represented in
the test sets we encountered. However, since our interest is in solving large systems of equations, the non-
smooth cases will be omatted from our considerations.

The aim of this note is to report on the progress of our investigations in the direction of building a
library of nonlincar solvers and compiling a set of test problems. A survey of methods, software
implementations, and standard test problems is presented and the results of experiments discussed. Section
2 briefly describes various algorithms for solving nonlinear systemns of algebraic equations. In section 3 we
describe the engineering origins of our research, summarize the algorithm implementations used in our
study and introduce the test problems used. Section 4 presents and discusses the resulis of our numerical
experiments. The Appendix contains complete definitions of all test problems used.

2. Algorithms for the solution of systems of nonlinear algebraic equations. This seclion contains a
brief summary of algorithms behind nonlinear solvers that we have experimented with (in all cases the
references cited and the book by Rheinboldt [15] should be consulted for the details). We assume that a
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system of n nonlinear algebraic cquations F (x) = @ 15 to be solved where x is n-dimensional vector and 0is
the zero vector.

2.1. Newton's method. The Newton's method for a system of equations is a natural extension of the
Newton's method for a single equation [8]. Let us assume that the tunction G is defined by

G(x) = x - J@ ' F(p),
and the fimctional iteration procedure 1s: select starting vector x, and generate a series of vectors

&= G = Ky - F) Flag )
where J(x) is the Jacobian matrix. The convergence rate for this method is fast, but the success of the
method depends on a good starting vector x,.

2.2, Brown's method. Brown's method is a modification of Newton's method [3], Here. we replace the
Jacobian matrix with its difference quotient approximation. For each iteration, only one function from the
system at a time is cvaluated (function f; for use with Jiv1). A successive substitution scheme is used for
treatment of f,. As in case of Newion's method, the convergence is fast, but it requires a good starting vector
Al

2.3. Characteristic Bisection Method. A generalized bisection, known as the characteristic bisection
method (191, can be applied to systems of cquattons. 1l is based on the topological degree theory, which
locates at least one root of the system within an n-dimensional polyhedron. The algorithm only makes use
of the algebraic sign of F(X) where F(X) = @ = (0,0,...00 e R”, and ¥ is a given continuouos mapping of a
bounded region D in R" into R”, in a polyhedron P in £. One method for obtaining at kast one root of a
system 15 1o compute the wpological degree of F at © relative to a P. This method is very time-consuming
and cannol be accurately achieved unless the modulus of continuity of ¥ on P is known. Another concept
allows the use of what is called a characteristic n-polyhedron, CP, by which all calculations concerning the
topological degree can be avoided. This method requires the bisection of CP in such a way that the new
refined n-polyhedron is also a characteristic one. First, a vector of signs of F is compuied. Next we lel

( X, X j) be a proper 1-simplex of CP, and let B=(X+X,)/2 be its midpoint. The characteristic bisection is
repeatedly applied to the diagonals, starting with (Xk,X;) <XpXp until sign F((X, + X,/2) becomes

different from sign F(X,) and from sign F(x). If a point, AS, is obtained so that ” F{AS}" <107" then AS is

considered the final approximate solution. Otherwise the process 1s repeated until a solution if found or the
maximuwm number of iterations are exceeded,

The Bisection method, though conceptually clear, has significant drawbacks. It is very slow in
converging (that is, 2 may become quite large before the convergence criteria is met) and, moreover, a good
intermediale approximation may be madvertently discarded. However, the method has the important
property that it always converges to a solution (if the computational limits, e.g. number of allowed
ticrations, are set high enough) and is often used as a “starter” for other methods {4].

2.4. Steepest Descent Method. In the Steepest Descent Method the problem of solvin g the system of
nonlinear algebraic equations is transformed into a minimization problem [4]. A relative minimum x* of the

¥

[unction f{x,¥) with known partial derivatives 3=§ » A=——15 located starting from a given initial guess

"~ ax
(Xo Yo). Using a given step size ¢, a sequence of steps 15 generated according 1o:
€8
n = Mg - =k
g +h’
ch
Yo = ¥n -

Jéz+éz

The stopping criteria is met when the relative minimum x* is located and
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.J g+ h * <k
The convergence rate of the steepest descent method is slow, but it works for any choice of starting vectors.

2.5, Trust Region. In the trust region mcthod we replace the Jacobian matrix with an approximation
[6]. Then we calculate

min‘["f(ﬂ )+ BB [DeB], <A )

where I is a scaling matrix and A, is the trust region radivs. The solution to this minimization problem is
an approximate solution to the original problem. Stopping criteria is met when

el -]+ 80
Py =
||| (xs +Bodi)|

15 smaller than some constant &, (typically .0001), Otherwise, we decrease the radius of the rust region and
re-solve the minimization problem, The convergence ralc of this method is slow, but it can use an arbilrary
starting solution vector.

2.6, Continuation Method. The Continuation Mcthod is supposed o be able to target more
complicated problems and is the subjccts of current research [1, 17]. This method cxpected to be slower
(than line-search and trust-region methods, but it is to be useful on difficult problems for which a good
starting pomt is difficult to establish. The method defines an casy problem for which the solution is known
along with a path between the casy problem and the hard problem that is 10 be solved. The solution of the
casy problem is gradually transformed (o the solution of the hard problem by tracing this path. The path
may be defined as by introducing an addition scalar parameter A inio the problem and delining 4 function

A(x A) = f1x) - (1-1*Tx),
where X, is a given point in R™ The problem

hix, ) =0

15 then solved for values of A between 0 and |, When A=0, the solution is clearly x= x,. When A= [, we
have that

hix 1) = fix),

and the sofution of A(x, A) coincides with the solution of the original problem flx) = 0.
The convergence rale Continuation Methods varics, but the method does not require a good choice of
the tnitial vectior x;,.

J, Experimental setup. The initial aim of our research was to find an efficient solution to an
engingermg problem arising in avionics {9, 10]. After initial experiments we have found out that with Lhe
increasing number of equations (64, 128, ...} it was extremely difficult to obtain solution. We have thus
decided to obtain a general pictlure of the existing software that can be possibly used to solve the original
problem. Thus far we have experimented with the following methods:

- 1mplementation of the Biscction Method,

- implementation of the Brown's Method,

- implementation of combination of Trust Region, Steepest Descent, and Newton's methods,
- 1implementation of the Continuation Method.

For the bisection method we used the CHABIS software package [18]. We uscd (wo versions of Brown's
Method; an in-house implementation based on |14] (code BROWN) and a well-tested mature
implementation of the Brown’s method (code $OS). We have also used two versions of the hybrid
algorithm, An in-house version based on [13] (code QUASI_A) and an another well-tested mature
implementation, {(code HYBRDI). For the Continuation Method we used the software package, CONTIN
[16]. The codes for CHABIS, CONTIN, HYBRDI and SOS were all obtained from the NETLIB
Repository [7]. All algorithms and codes were Fortran-based implementations and were run in double
precision on a PC with a Pentivm Pro 200 MHz processor,
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For the numerical tests we have used 24 problems found in [11,12,19]. These problems come from the
three collections of test problems for the solution of systems of nonlinear algebraic equations, Whale some
of the problems come from the real life applications, others are artificially generated with propertics not
lypical for rcal life applications. The problems uscd were (sec the references and the Appendix for the
complete formulation):

|. Rosenbrock’'s function [12] 13. Broyden tridiagonal function[ 12]

2. Powell singuiar function [12] 14. Broyden banded function[12)]
3.Powecll badly scaled function |12] 15. Exponential/Sine Function[20]

4. Wood function [12] 16. The Freudenstein-Roth [unction| 1 1]
5. Helical valley Tunction] 1 2] 17. Semiconductor Boundary Condition[20]
6. Walson function[12] 18. Gulf Research and Development[11]
7. Chebyquad function[12] 19. Brown Badly Scaled[11]

8. Brown almosl-lincar [unction| 1 2] 20. Beale Function[11]

9. Discrete boundary value function[12] 21, Jennrich and Sampson[11]

10. Discrele inlegral equation function| {2 ] 22. Bard[13]

Il. Trigonometric function|12] 23. Gaussian|11]

12. Variably dimensioned function[ 12] 24. Linear  Hull Rank|[ 1]

4, Experimental resulls, In our experiments we were able to find out that some of the problems
appearing among the 24 test problems studied arc relatively easy 1o solve. In these cases codes usually
converged immediately for random data used in the slarting vector, or only a minimal amount of work was
required [or the convergence to be obtained. Table | summarizes the results. Here, # denotes problem
number (s¢e above), N number ol equations, [T number of iterations, and FC number function evaluations,

1IYBRIJI QUASI A 5085 BROWN CONTIN CHABIS

# N 't iCC I'T @ T 1’ Pl [iC. [t FC L IT 13

] 2 i 0 £ 14 ! 10 5 20 2 5 3 62

3 2 Y il 9 16 5 24 7 30 10) 74 ) Y]

3 3 | 4 27 14 I8 19 174 B 63 2 68 35 866
i4 | 10 20 30 20) 41 4 270 7 390 2 48 33 | 20709
16 6 3 9 3 1] 1 54 5 1018 3 82 34 6314
1% 3 2 5 2 7 ] g 5 36 3 7 | 2

TABLE 1. Prablems that converged for all codeys

It can be observed that the hybrid methods outperform the remaining approaches in terms of number of
funclion cvaluations (the real measure of cost). They also use a considerably smaller number of 1cralions
than the Bisection and Brown codes. The continuation method requires a smaller nomber of iterations than
the hybrid methods, however it uses a larger number of {unction evaluations. The (wo in-house codes are
less cificient than their NETLIB-based counterparts. The bisection method was not expected to perform
well when compared to the other methods. With the exception of problem 18 (which had a very good
slarling vector), our test proved this expectation to be correct.

Table 2 summarizes the results of test cases for which ong or more codes were unable O converge. As
previously, # denotes problem number, N number of equations, [T number of iterations, and FC number
[unclion evaluations (for problems 6 and 7 we varicd the number of equations N). In addition, code ne,
found among CHABIS, a Quasi_A and HYBRDI result indicates that the execution terminated belore
convergence. Quasi_A and HYBRDI terminated before convergence due to iterations not making good
progress as measured by the improvement from the last five Jacobian evaluations. CHABIS terminated due
to the maximum number of iterations being exceeded. Code nd, found among the SOS and Brown results
indicates that the execution terminated belore convergence due to the iterative scheme judged o be
diverging (the residual norms and solution increment norms increased over several consecutive 1terations).
The codes indicating abnormal termination for CONTIN are nf, ne, and ni; nf indicates thc solver failed
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with a zcro pivot error, ni means that the code did not reach a point of mlergst, ne specifics the problem
terminated due te an error. In each case a number of starting points has been (ried and the best 1T and FC
results are reported. This is to indicate a crude ¢stimalc on the best possible speed of convergence.

HYBRIDI QUASI A S08 BROWN CONTIN CHABIS
# N [T FC IT FC I'T FC IT FC IT I'C IC IT
2 i He: He ne ne: 1 28 4 42 10 446 | ne ne
4 4 52 94 52 142 3R 536 37 504 2 43 | nc ne
{] 6 38 96 38 127 Nd nd nd nd 6 269 | nc he
6 Q 57 132 54 | 80 Ned ndd nied ricl 9 575 | nc i
7 5 11 17 11 24 3 50 10 180 nf nf | nc T
7 6 1) 25 10} 34 7 111 20 (65 nf nf | nc e
7 7 L1 20 11 27 3 84 nd Nd nf nf | nc 1T
7 Y 19 43 19 57 Nl nd I8 Q18 nf nf | nc ne
3! F(} 8 31 8 37 5 250 0 520 4 50 | nc ne
9 10 6 16 6 20 2 140 6 325 3 98 | nc n::
13 i) I 21 11 27 3 205 & 455 4 158 | nc ne
1() 10} 6 20 6 16 2 140 3 260 ti ni | nc Fie!
11 10 33 | 23 103 4 270 by 455 ne ne | no ne:
12 o 23 46 25 h2 MNed nd nd nd . 254 | n: e
15 2 3 I ) 16 Nd rd rd ned ] 16 | ne re:
17 3 2 5 ] 7 Ned nd 5 36 2 295 ¢ 35 315
19 2 16 18 15 25 | 1) 5 20) ne ne | ne e
20 2 |8 28 18 40} 24 119 104 515 ri ni [ no e
21 2 ] 28 T re Ned nd nd net rni ni | no ne:
22 3 [1] ) 6 y 54 7 34 4 ¥ 4 [ no ne:
23 3 35 15 35 111 36 3 30 2 ri ni | A e
24 10} 3 29 4 34 35 6 130 | ni nitone e

TaBrr 2. Rexalty of text problems with luck of convergence

It can be observed that even though cach code had at Icast one failure, the hybrid codes recorded the
stnallest overall number of them. It 15 rather surpnsing © sec thal the performance of the continuation code
is rather disappointing (it fails in more cases than the Brown Method implementations). As previously, the
in-house codes are outperformed by their counterparts as far as the number of function evaluations and
iterations are concerned. However, they behave guite similarly as lar as the potential tor solving a given
problem 15 concerned. As previously, the hybrid methods require fewer function evaluauons (whilc they
require morce iterations) than the implementations of the Brown’s method (which require fewer iterations,
but substantially more function evaluations).

In all experiments we have observed extreme sensitivity of the solvers o the selection of the starting
veClor xp. This problem becomes more pronounced as the number of equations increascs.

3, Conclusions and future work. In this note we have reporicd on our experiments comparing
performance of solvers for systems of nonlinear algebraic equations on a number of test problems. We have
[ound Lhat methods based on similar algorithms behave similarly and the implementaton details have a
relatively small impact on performance. All methods, regardless of their underlying algorithm, showed high
sensiivity 10 the starting vector and this sensitivity mcreased as the number of equations in the system
increased. Out of the methods tested hybrid algorithms appeared to be most robust and capable of solving
largest number of problems. However, since not a single approach was capable of solving all test cases,
there seems to be a message here for the practitioners. None of the approaches can be trusted and thus
multiple approaches should be used to improve a chance of finding a correct answer.

We were able (0 find that the popular test problems can be divided into two groups: a set of “relatively
easy problems.” where even the least powerful methods were capable of converging, and a set of “tough
problems™ where convergence 1s difficult o obtain. 1t should be stressed again that even though the csts
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used here cover a wide spectrum of funcuons they clearly do not exhaust the possibilitics arising in
pracuical engineering applications. First, such applications can result in systems of 100's of nonlinear
algebraic equations and none of the test cases used in the currenl research seems (o belong to this category
(only few of the cxamples found can be even exiended to this many equations). In addition, none of the
cxamples belongs to the class of non-smooth functions (e.g. functions with an absolute value).

In the near future we plan to proceed as follows. We will expand the test set (our literature and Internet
scarches have located additional test cases) and experiment with the above codes on these test cases. The
Homotopy [8] code will be used on all test problems and we will continue to add codes to our experiments.
The sensitivity of the codes and test sets to the selection of starting vectors will be investigated. This should
allow us to develop new robust methods for finding starting vectors. Finally, an attempt at solving large,
enginecring based systems will be made.

Acknowledgements. Work ol Deborah Dent was sponsored by the US Army Corps of Engincers,
Walcrways Experiment Station, Vicksburg, Mississippi, and USA.
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APPENDIX

PROBLEM 1. Rnsenbrock Function
F(.Il ) =1- Il

| P
F(xy) = 10(1‘2 — X1)

PROBLEM 2. Powell Singular Function
F(r)=x + 1[},1‘2
F(xa)=v3x_—x

(x9) ( ) 42)
F(xy) = {Ji:2 - 2;:3)
Fixg) = m(xl — x2}2

P'ROBLEM 3. Powell Budly Scaled Function

F(.Il } = Iﬂ(]ﬂ'l‘] Xy — 1

Fxy) = e e 1oon

PrROBLEM 4. Wood Function

2
Flx)) = —(2{](]3:] (xz - Il N=(1-=xI)

2
F(IZJ =20x —x1 )=-202{x —-1H+198(x -1
2 ] , 2 4
Fixa)=—-(25x (x —x —(1—x3
(x3) ( 3( A . )) — |

2
r =180(x - —202(x —-D+198x —1
(x4) (x4 x3 ) (x4 ) (xz )
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PROBLEM 5. Helical Valley Funection

X
a tan{ 2 )
X1
A= . .1‘1 - 'U,
8a tan{1)
X
a tand 2 )
o
A= +.4, x5 >,
Ba lan(l)

A = sign(.23, X9 ), JE] = {)

F(x1) = 10(x7 — 10A)

2 2
F{a) =10(yfxy +x9 —1)

F(I:}} = I3

Mol M 6, Watseont Funciion

N k-l
u : i 2
A= L (j-1— X)L — x|
=2 29 | k=129
k-1
2t n g
B=— Y — x
29 k=129
no29
Flx;)= L —(m-1)-B;)A;,i =129
m=1 ; ,

Flxp)=F(x; )+ x {1 - 2():2 - X - 1)
2
Flxg)=Flxg)+xp —xy —1

Proncim 7. Chebyguad Function

1
F(xgl-}: 5 d=1n
2t —1
For—> j=1n
1’1“ =1
{11 = 2X
J-"'li = 2{21‘} ""1)11;_1 — .r"'li_z,
1

Flx;)=—A;,i=2n

H
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FPROBLEM 8. Rrown Almost-Linear Function

n
F(x;)=x; +( L J::j-},i-—-I,u—l
j=1

1
Flx )= [I x -1
H N
JF=1

PROBLEM 9. Discrete Boundary Value Function

i |
(x; + + 1}3

i
n+ 1 n+1 .
I'—.II'_I _‘If+1 + d=1n

F(.-":f )= 2x

PrOBLEM 1O, Dixcrete fmtegral Eguation Function

Il _; __; 3
AI = Z (.IJ. + +1]
J=lp+1 n+1
r J J 3
B, = L (1- Jx o+ +1)
j=l n+l 7 p+l
H !
I (1— o )AI + o BI
Fx;)=x; + L . =10
n+l 2
PROBLEM L. Frigonometric Punction
H
F(xp)=n+i—sin(x;)— L cos(x ;) —ix;.i=1n
j=1

PROBLEM |2. Variably Dimensioned Function

n
A= Y j(x ~1
. b
j=1
y)
B=A(1-247)

P1(If]=.l:i —1+I.BI',I:=1,F!
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PrROBIEM 3. Broyden Tridiagonal Function

A =x;_1.i > 1, otherwise = ()

B = Xipg-t > 1, otherwise = ()

2
Fle)=0G~2x; )-A-28B+1,i=1n

PROBLEM 4. Broyden Banded Function

n
Ay = L x4+ x;), j#k, otherwise =0
PP A
2
f‘ﬂ(,l'l' ) = ,II'(2+ S'II )+ 1 “"1’1.!',1: =1,n

PrOBIEM |15, Artificial Test Problem

2 2
Flx)= ¢! +Xxy9 —3

Fxy)=xy +x9 +513x + x5)

PPro:BrEM 1O, Semiconducior Device Simulation

a(x3—xp) E{I(x] —Xx7)

F(Il J=¢
F(Jﬁ?z} = X9
F(IS] = A7

Flag) = E{I(Iﬁ —x4) Emh} —X5)

F(xg) = xg — 100
Fxg) = xg — 100

ProOBLGM LT, Mreudenstein And Roth

3 2
Fx) = =13 +x; Hxy —5x22 +2x5)

3
F(Iz )y =-=29 +.Il +(.I2 + Xy + ]4.1?2)

PROBLEM |8, Gulf Revearch And Develapment
1~ ™3 |

Fixy=e 1 —0l,i=13

2

Where @ = 25 + (=50 Tog(.01i) )
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I'ROBILEM |9. Brown Badly Scaled

F(Jﬁ?l) = ,1'] — 106

Fxy))=1x5 —2%10
F(IS} = .1.71.-'(?2 -2

6

PrROBLEM 20. Beale Function
Fixp)=15-x(1—x5)
Flxy) =225 -x1(1-x9 )
Fxq)=2.62—x(1- .r23}

PROBLEM 2| Jennrich and Sampson

F{,r] Y= 4 - (:?Il + EIZ )

2 2xy
ff{l'z]:f)—"(f ol +e IZJ

PHROBLIEM 22 Bard

0.14
0.18
0.22
0.25
0.29
0.32
0.35 s

y=9039 0, F(x; = x + X3 =y i=Ln
0.37 (1 H— i)+ lTIi]'l(I:,] 6—1)

0.58
0.73
0.96
1.34
2.10
4.39.
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PrROBLEM 23, Gatsy

-

0009
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