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Abstract

Paprzycki, M. and I. Gladwell, A parallel chopping algorithm for ODE boundary value problems, Parallel
Computing 19 (1993) 651-666.

A chopping algorithm proposed by Russell and Christianssen [14] for the solution of linear boundary value
problems (BVPs}) in ordinary differential equations (ODEs) is extended. On a computer with P processors, at
each stage the BVP is solved numerically on P meshes using a code based on COLNEW [1,4]. The solutions
from the P processors are combined in an algorithm which chops the range of integration and poses a set of
new, ‘simpler’ BVPs on subintervals. These are treated recursively. Experiments on three problems with
boundary and turning layers show that this algorithm can be more efficient than using COLNEW directly, and
without a significant loss of accuracy. It may also be used as a mesh selector for COLNEW.

Keywords. Linear boundary value problems; ordinary differential equations; multiprocessor systems; chopping
algorithm.

1. Introduction

A number of papers have recently considered parallelizing the numerical solution of
two-point boundary value problems (BVPs) for ordinary differential equations (ODEs). Most
address the parallelization of the linear algebra arising in the BVP solvers, see [2,12,13]. As
shown in [7] and [8], for a large group of typical BVPs the linear algebra takes between 25%
and 50% of the overall time of finding the solution. Most of the remaining parts of the BVP
solver are either parallelizable or require almost no computing time [5,11].

Discretization of the BVP leads to linear systems of almost block diagonal (ABD)
structure. The proposed approaches to BVP solution can be classified according to the
granularity of parallelization they represent. Wright and Pereyra [15] designed an algorithm
for solving ABDs on vector computers, but used an Alliant parallel computer which per-
formed automatic fine-grained micro-parallelization. A medium granularity of parallelization
1s represented by the block Gaussian elimination algorithm based on the level 3 BLAS [6] as
presented in [13]. A higher, but still medium, granularity of parallelization is represented by
treating ABDs as block tridiagonal. Ascher and Chan [2] and others utilize an odd-even
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reduction to solve such a system. Paprzycki and Gladwell [12] exploit the ABD structure in a
tearing algorithm that seems to be stable. This approach vields speedups of about 4 for
systems as large as 480 internal blocks when using 20 processors.

The aim of this paper is to explore the possibility of solving a two-point linear BVP for
ODEs using a ‘whole problem’ level of granularity. The BVP considered is
yi=A(x)y+qg(x), a<x<b, (1)

Bﬂf(a) +Bbf(b) =B.

The method proposed is similar to domain decomposition and is based on ‘chopping’ [14].

Section 2 recalls a simple sequential chopping algorithm. Section 3 shows how to imple-
ment this in a multiprocessor environment. Section 4 shows that, under certain quite realistic
assumptions, the chopping procedure leads to at worst linear error growth. Finally, Section 5
discusses numerical implementation. The new algorithm can give a speedup over COLNEW
[1,4] run sequentially. COLNEW is a spline collocation code for solving nonlinear ODE
BVPs. It uses a modified Newton method, an efficient adaptive mesh placement scheme and a
monomial spline basis. It employs (potentially parallel) internal condensation to reduce the
number of variables. This code is very highly regarded and has been used as the basis for
applications packages.

2. Sequential chopping

The basic ideas are briefly presented in [14]. Assume the BVP is to be solved over an
interval [a, b] with a given tolerance TOL. Then, the ‘chopping’ algorithm can be described
(see Fig. 1):

(1) An approximate solution and error estimates are calculated for a given discretization on
la, b).

(2) Suppose that on subinterval [x,, x,] C[a, b] the estimated error is smaller than TOL, and
[x,, x,] cannot be extended contiguously and this relation remain true. Then, the solution
on [x,, x,] is accepted. If there are no accepted subintervals, halve the mesh and go back
to (1).

(3) A set of BVPs is formulated on those subintervals of [a, b] where the approximation to
y(x) has not been accepted. (In Fig. I, new BVPs will be formulated on [a, x,] and
[x,, b].) For each subinterval the system of ODEs will be solved with new (computed)
boundary conditions (BCs).

(4) The process is repeated from (1), independently, for each subproblem created in (3).

According to [14] this procedure may lead to considerable savings in work by reducing the
sizes of the numerical problems solved. By reducing the numbers of mesh points, chopping
may significantly lower the size of the linear systems (usually the most expensive part of
solving the BVP, [8]). Most experiments reported in [14] allowed chopping only at the interval
ends. However, the authors claim some success when allowing chopping elsewhere.

Fig. |. Subinterval [x,, x5} is characterized by a small error. The solution on intervals [a, x,] and [x,, b] will be
refined independently on new meshes with BCs recalculated at x| and x,.
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Fig. 2. A problem with a right boundary layer. The sequence of intervals on which refinements are performed is
[‘xli b]! [-'rll b]! ['rj.! b]-

The general chopping procedure, with chopping allowed anywhere, leads naturally to large
granularity parallelization. For example, if (as is assumed above) after the first step of the
process the interval [a, b] can be divided into subintervals where solution refinement is
required, then each subproblem can be solved independently using a general BVP solver.

If there are large differences in difficulty of solving the problem on the subintervals, even if
similar meshes are used to start the calculations on each subinterval, it may take different
amounts of work on each processor before either additional chopping is performed or the
solution is accepted. Hence if each subinterval is assigned to a processor, simple chopping
may lead to large load imbalances and synchronization problems.

The degree of parallelization is problem dependent. Problems with just left or right
boundary layers and otherwise smooth solutions will be almost impossible to parallelize
because at each stage, there will usually be a division into just one accepted and one
unaccepted part (see Fig. 2).

3. Parallel chopping

To parallelize the chopping procedure, a more balanced way to split the interval into ‘good’
and ‘bad’ parts is needed. One possible approach, whilst keeping a large granularity of
parallelization, is to use several processors to compute information that will permit determi-
nation of the accepted and unaccepted subintervals. One way to achieve this follows:

(a) on each interval solve the BVP on different meshes in parallel,

(b) use information from the different meshes to find the parts of the interval that are to be
accepted,

(c) reformulate the BCs of the BVP for the unaccepted subintervals,

(d) repeat from (a) independently for each unaccepted subinterval.

The linear BVP (1) is solved using a general BVP solver. A set of meshes with different
densities of mesh points in different subintervals is used. The problem is solved on each mesh
and the results compared, permitting the decision either that the problem is solved or where
to chop.

To investigate properly the shape of the solution, the distribution of mesh points is
exemplified in Fig. 3. The number of meshes depends on the number of active processors, P.

Points common to all meshes are main mesh points. Each main mesh point is at the center
of one high density region of mesh points. This mesh point distribution is chosen to prevent
loss of information about boundary layers and turning layers. The regions of high mesh
density cover the whole interval and overlap. This is designed to detect the location of turning
layers. The first and last meshes are designed to improve the chances of detecting boundary
layers.

The error is estimated by comparison of the results obtained on a ‘single’ and on a ‘double’
mesh (see [3], ch IX). The solutions on the meshes and their doubled counterparts are
calculated. Then error estimates are computed at all mesh points in all meshes. This
information is used to:
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Fig. 3. A set of P = 6 starting meshes. x marks the position of the main mesh points.

(i) quit the problem if the tolerances are satisfied by the solution on any single mesh or
throughout the main mesh points on the set of meshes,

(ii) make decisions about where to chop.

When the determining where the chop, the considerations include:

(A) The procedure is based on local error estimates. These estimates are based on comparing
solutions calculated on ‘single’ and ‘double’ meshes. Possibly neither represents the true
solution well. Then the error estimates may indicate little about the relation between the
calculated and true solutions. In such cases it is assumed the error estimates will be large,
i.e. the program will not be deceived.

(B) Error estimates can sometimes be small solely due to sign changes, so more than one
piece of favorable evidence is required before chopping.

These observations lead to the adoption of the following criteria:

() Chop only on main mesh points. (Because they are in the subintervals with maximum
density of mesh points, the error estimates there should be the most reliable.)

(II) For each subinterval between main mesh points, take the maximum norm over all error
estimates. To chop, this norm and the error estimate at the main mesh point must both
be smaller than the assumed tolerance. (This is designed to prevent the solver losing
information about large jumps in the errors in the neighborhood of the main mesh
points. Such jumps imply the results at the main mesh points are inaccurate.)

(ITI) For each accepted main mesh point, the absolute difference between corresponding
components of the solution from two successive meshes (where the high density intervals
overlap) must be smaller than the tolerance. (This criterion ensures the solution is
accepted only when it behaves in a uniform way.)

When criteria (I)-(I1I) are satisfied at a main mesh point, it is assumed that an accurate
approximate solution is available and it can be used to determine new boundary values.
Subintervals between those main mesh points chosen as chopping points are accepted. An
accurate approximate solution is available throughout these subintervals so they can be
removed from the problem.

The BCs at the chopping points are determined using B, and B, from the BVP (1) and the
calculated values of the solution at the chopping points. The procedure is to substitute the
solution at the chopping points to determine new right hand sides for the BCs. Assuming the
original problem is well-posed, this procedure produces a new set of well-posed problems.

The precise assumptions and a partial analysis of the effects of this approach on the accuracy
of the solution is presented in Section 4.
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Fig. 4. Mesh before and after doubling; x marks the main mesh points.

When any one of criteria (I)-(III) is not satisfied for any main mesh point, the mesh is
doubled. The solution must be recalculated only on the newly doubled meshes to compute the
error estimates because the previously calculated double mesh solutions can be reused as the
new ‘single mesh’ solution. The algorithm does not increase the number of main mesh points
when doubling; it chops in the same set of main mesh points as in the previous step. If there is
again no chopping point, the procedure is repeated. This is an obvious algorithmic weakness.
But, as seen later, this does not affect efficiency when using a large number of processors.
Figure 4 presents one of the meshes from Fig. 2 before and after doubling.

After chopping, a set of subintervals remains on which we must recalculate the solution.
The mesh points in these subintervals were characterized by large and /or unreliable error
estimates. Hence, the solution at these points is not reusable. So, the whole procedure is
repeated by generating the same set of meshes as in the first step, transformed to these
smaller subintervals.

When the problem has been reduced to solving the reformulated BVPs on a set of
subintervals, a subset of the processors could be assigned to each subinterval. If the load
could be balanced, then it might be possible to speed up the overall calculation. However, in
the algorithm above, the number of main mesh points used is directly proportional to the
number of processors assigned to the subinterval. The effect of the trade-off between being
able to solve on several subintervals simultaneously and decreasing the number of main mesh
points per subintervals is unclear. In the examples below, for the most part only one
subinterval would be active and these considerations are secondary.

4. Accuracy

Suppose that chopping is performed at N — 1 points, Zyy Z9y.045Zn_1, SO [a, b] is divided
into N subintervals with z,=a and z, = b. It will suffice to analyze a typical subinterval. On
lz;, z;,,] the solution y(x) of (1) is also the solution of

u'=A(x)u+q(x), z;<x<z,,, (2)
Bu(z;) +Byu(z;.1) =B,

where _,B’ is defined by
B,y(z;) +B,y(z;.1)=8". (3)

The values y(z,), y(z,,,) needed to define 8’ are unknown. Suppose there are available
computed approximations w(z,), w(z,, ) and they are used to define 8" by

Baw(z;) + Byw(z;(y) =B". (4)
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The problem that is to be solved after chopping is
:'3."‘:"1(*':)5""2(-{):' Z;5X=2Z;40, (3)
B,s(z;) + Bys(z,,4) ‘:_{3_"-

A bound on s(x)— y(x) due to the BC perturbation 88 = B’ is needed.
In [3, p.112] a bound on the effect of perturbing the BCs is developed. If

max( || B, 1= Il By ll ) <1, (6)
then

Cmax fg(x) = y(x) . <K 138l (7)
where

K =max || Y(x)(Q(x,, x,)) " Il (8)

and the maximum 1s taken over all x, x,, x, such that ¢ <x, <x<x,<b. Here Y is a
fundamental solution of the ODE (2) and

O(xy, x3) =B,Y(x,) +BY(x,). (9)

Requiring to be K bounded is equivalent to requiring that the BVP is well-posed on all
subintervals of [a, b], [3]. Then

B" =B’ =BE(E(3;') "“}’(Ea‘)) +Bb(£(ff+1} _f(zfﬂ))- (10)
Using (6), for any x €[z,, z,, ],
Is(x) —y(x) ||m{K(|El’E(zf) =y(z) loo + Fw(z;4¢) =y(z;41) ”r)* (11)

Suppose a tolerance TOL was specified for computing of w(x) and that the values w(z,)
satisfy

Iw(z;) —y(z;) ll= < cTOL (12)

for a suitable constant ¢ ~ O(1). Suppose also that in solving for s(x) on [z, z,,,], an
approximation p(x) is calculated such that

Il p(x) —s(x)ll= <cTOL. (13)
Then, for any x €[z, z,,,]
I p(x) =y(x) e < 1l p(x) =s(x) 1=+ ll5(x) = y(x) =< (1 + 2K) ¢TOL.
(14)

Suppose now that [z, z;,,] is to be further subdivided, into subintervals [¢,, ¢;, ] with
to=2; and f,, =z, ,. The analysis is a repetition of the preceding. Given the solution s(x) of
(5), a BVP is defined on [¢,, ¢; ] by

w=A(x)u+q(x), t;<x<t,, (15)
B,u(t;) + Byte(ty,1) =¥,

where l’r 1s defined by
B.s(t;) +Bys(tj1) =" (16)
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Because the values s(t,), s(¢;, ) are unknown,

B,p(4) +Bop(tj+1) = 7" (17)
is used instead of (16). The computational problem is then |
v'=A(x)v+q(x), t;<x<t.,, | (18)

Bu(t;) +B(tje)=7"
A bound on p(x) — s(x) due to the perturbation y” — y' of the BCs is needed. If

Iff(rj)—g(rj)fimﬂcTOL, (19)
then

lv(x) —8(x)lle <2KcTOL. (20)
If the error in approximating v(x) by E’(x) is also bounded by

I p(x) —v(x) Il < cTOL, (21)

then, for any x €[1,, ,,,],
15(x) —s(x) o< 1 5(x) —v(x) e+ llo(x) =5(x) llw < (1+2K)cTOL.

(22)
Hence
| ,_5(:::) —y(x)llo < ||£5(.I) —s(x) o+ lls(x) =y(x) llw< (2 +4K)cTOL.
(23)
For L consecutive choppings this result generalizes to
||§(x) —y(x)fim£(1+2K)LcTOL (24)

where p is the computed solution on the smallest subinterval. Hence, error growth is at worst
linear,

S. Experimental results
5.1. Implementation details

The algorithm above was coded using COLNEW [1,4], since it is a state-of-the-art, efficient
sequential BVP solver. The computations were performed on a 20 processor Sequent
Symmetry shared memory machine at Southern Methodist University. One processor runs the
operating system and algorithm was coded using a master/slave relationship. Hence 18
processors (slaves) were available. FORCE directives, [10], were used to express this master /
slave relationship.

There are some points where global decisions must be made. For example, the decision
about chopping needs error estimates on all meshes. Synchronization of processes is required
before these decisions can be made. The master processor had the responsibility for coordi-
nating the slave processors and making all decisions. In one step of the algorithm each slave
processor calculates the solution on a single and on a double mesh (when no doubling occurs)
or just on a doubled mesh (when doubling occurs in the preceding step). The opportunities for
further parallelization have been neglected in the calculations on single and double meshes.
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Table 1

Results for Equation (27)

P Pts Stp Mxd Ned
4 35 47 3 12
5 115 39 3 12
) 129 38 3 12
7 93 31 3 12
8 104 36 2 12
Q 110 28 2 11

10 99 29 2 11

11 72 23 2 12

12 112 23 2 11

13 121 23 2 12

14 84 20 2 12

15 170 29 2 11

16 113 22 2 11

17 152 22 1 11

18 140 17 1 12

COLNEW 372 11 11

3.2. Practical results

Experiments were performed with three problems from [9]:

ey'—y'=0, 0<x<l,

| 25
y(0) =2, y(1) =35, (25)
is characterized by a boundary layer of thickness (O(e) on the right;
"—y=0, 0<x<l1,
€y =y * (26)

y(0) =20, y(1) =S5,

Table 2

Results for Equation (28)

P Pts Stp Mxd Ned
4 67 61 3 11
5 70 41 3 11
6 84 42 2 10
7 87 34 2 10
8 H7 35 2 g
9 161 30 2 10)

10 142 26 1 10

11 192 29 ] 10

12 269 25 1 10

13 165 21 1 10

14 176 20 1 10

15 190 20 1 10

16 280 21 | 10

17 208 19 { 10

18 262 17 () 10

COLNEW 1062 23 I
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Table 3

Results for Equation (29)

P Pts Stp Mxd Ncd
7 41 27 3 12
8] 44 25 3 12
9 106 23 3 11

10 35 13 3 12

11 107 25 2 11

12 08 21 2 11

13 79 17 2 11

14 108 17 2 11

15 77 13 p) 12

16 78 14 2 12

17 57 13 2 12

18 55 11 2 12

COLNEW 944 24 14

is characterized by a boundary layer of thickness O(Ye ) on the right and a growing solution
on the left;

ey'+xy=0 =-1<x<I,

| 27
y(-1)=2, y(1)=5, (27)
is characterized by a shock (internal) layer of thickness O(Ve ) near x = 0.
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Fig. 5. Speedup.
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Fig. 6. Function evaluations per processor (Problem 27).

For P active (slave) processors, P — 1 main mesh points and P + 1 meshes were used (see
Fig. 3) Four additional points were used in the high density subintervals. This means that the
ratio of the length of the subinterval to the maximum sublength in a high density subinterval
is 4:1. For both parallel and sequential programs, 3 collocation points per subinterval were
used. That is COLNEW was called with parameters chosen so that the differential equation is
satisfied exactly at 3 points per subinterval. The sequential program was started with the
‘default’ 5 equidistributed mesh points.

All problems were solved for TOL = 1078, imposed on the solution and its derivative. For
Equations (25) and (27) the solution was calculated with € = 10™* and for (26) with € = 105,
The results are summarized in Tables I, 2, 3 for (25), (26), (27) respectively. In these tables:
P — number of slave processors used,

Pts — number of points in the final mesh,

Stp - number of steps to achieve the solution,

Mxd — maximum number of doublings performed anywhere in the interval,
Ncd - minimum number of correct digits in the solution across the interval,

Figure 5 shows the speedups for each of the three problems. Figures 6—11 show the number
of derivative evaluations and number of blocks in the linear algebra. In all cases, the
corresponding values for COLNEW are plotted. The quantities plotted are:

Nf,,  — minimal total number of function (or derivative) evaluations on a single proces-
SOr, _ .

Nf,.x  — maximal total number of function (or derivative) evaluations on a single proces-
sOr,

Nb,;,,  — minimal total number of blocks in the linear algebra on a single processor,
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Fig. 7. Blocks used per processor (Problem 27).

Nb,..  — maximal total number of blocks in the linear algebra on a single processor,
Nf — total number of function (or derivative)} evaluations in COLNEW
Nb - total number of blocks in the linear algebra by COLNEW,

Speedup - (wall-clock time for COLNEW) /(wall-clock time for the parallel algorithm).

In Table 3, for P <7 processors, the parallel algorithm failed to compute the solution due
to exceeding the memory provided. Given more memory it would have succeeded in each
case.

3.3. Analysis of the results

There is a significant difference between the behavior of COLNEW and the program
developed here. For Equation (25) the number of mesh points used in COLNEW was
moderate. To satisfy the accuracy requirements COLNEW redistributes the mesh rather than
increases the number of mesh points. Most points in the final mesh are concentrated at the
right end of the interval in the boundary layer. The parallel program is not able to cope with
this problem as well as COLNEW. Even for a large number of points in a starting mesh, 23,
the program is not able to approximate the rapidly changing solution. The large value of Stp
(= 17) suggests that frequent doubling was necessary, and, even after doubling, only small
parts of the subinterval were accepted. Comparing Nb__  with Nb from COLNEW shows
clearly that if a large system of equations similar to (25) is to be solved and/or more
collocation points are used (so that the size of each block in the discretization increases) the
performance of COLNEW would be even more advantageous. Similarly, comparing Nf__.
with Nf from COLNEW shows that if, each function and derivative evaluation was time
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Fig. 8. Function evaluations per processor (Problem 28).

consuming, then the comparative performance of COLNEW would again be even more
favorable.

When solving (26), COLNEW not only redistributes the mesh points, but also considerably
increases the number of points in the mesh. Based on the number of steps performed,
Stp = 23, it seems COLNEW encounters problems when redistributing mesh points in both
directions. The size of the final mesh was 1026 and the overall number of blocks was almost
7000. The costs of the linear algebra in COLNEW play an important role. The parallel
program is able to chop the ‘easy’ middle past of the solution quickly and then work near the
boundaries. Because the boundary layer is of thickness O(Ve ), the solution changes less
rapidly than for (25) and is easy to approximate. The maximum number of blocks used in the
linear algebra by any processor was 2 to 3 times smaller than for COLNEW.

Similar remarks apply when solving (27), whose relative difficulty can be clearly observed
from the fact that the program was not able to start chopping for P < 7. To approximate the
fast change in the second component of the solution, y'(x), COLNEW not only redistributed
but also considerably increased the size of the mesh. As a result a very high accuracy final
solution y(x) was achieved (Ncd = 14). Again, the cost of the linear algebra played an
important role. Comparing Nb_ ... with Nb from COLNEW shows clearly that if a large system
of equations similar to (26) or (27) is solved and/or a large number of collocation points is
used, the performance of the parallel program would be even more advantageous. Similarly,
comparing of Nf . with Nf from COLNEW shows that if each function and derivative
c¢valuation is time consuming, then the performance of the parallel program would be even
more tavorable.
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Fig. 11. Blocks used per processor (Problem 29).

The large values of Mxd and of Stp indicate that the program often has difficulties making
the decision to chop and instead doubles the mesh. Each doubling increases the size of the
linear system to be solved. For instance when Mxd = 3 and P =5, the linear systems solved
have approximately 100 blocks. This effect is especially clear for (25). For all P, the value of
Nb,... 18 larger than Nb. Also, since Mxd > 0, the decision not to increase the number of main
Ene:;hpﬂints s a clear handicap. However this did not prevent significant speedups for (26) and
27).

The quality of the solution at accepted mesh points is perhaps surprisingly high. In
complete agreement with the discussion in Section 4 there was no significant growth of error
in the solution resulting from chopping. In each case the number of correct digits (Ncd) was
calculated by comparing the calculated solution on the final mesh with the analytic solution.
The results represent the minimum Ncd in the whole interval on the final accepted mesh and
solution. The Ncds for COLNEW and for the new program are similar (except for (27) where
the accuracy achieved by COLNEW was very high). The overall error in the final solution was
smoother for COLNEW.

The imbalance between the work on the ‘busiest’ and the ‘laziest’ processor measured in
terms of number of the function evaluations performed (or the number of blocks used in the
linear algebra) is up to 40%. In addition there is erratic behavior of Nf__ (and Nb__ ) for
increasing numbers of processors, P. These suggest scheduling problems typical of large
granularity parallelization.
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6. Conclusions

The parallel chopping algorithm is based on a set of specially designed meshes. Experi-
ments show that this approach has the usual disadvantages of macroscale parallelization. It
also suffers from the crudeness of the chopping procedure. The methods described in {12] and
[13] may be used (independently or combined) to improve the performance of the BVP solver.
They can also be used to divide work in a more flexible way between processors. A more
sophisticated tool than FORCE is needed to implement these embedded algorithms.

Despite the deficiencies in algorithmic design and the overhead of parallel computation,
quite impressive speedups are achieved for two of three problems when using a large enough
number of processors. It seems clear that some of the speedup is due to deficiencies in
COLNEW’s strategy for mesh redistribution and to a poor initial mesh choice. But the
parallel program could also be speeded up by an improved main meshpoint strategy, by
performing single and double mesh solutions in parallel and, possibly, by treating all active
subintervals simultaneously. Somewhat surprisingly it is superior when there are only one or
two ‘difficult’ regions in the solution. This suggests that there is scope for an improved mesh
selection strategy in COLNEW. Alternatively, in a parallel environment, the procedure
described here may provide a better mesh selection strategy for COLNEW. Mesh selection
has been identified in [5] as one of the major remaining bottlenecks in the parallel solution of

boundary value problems.
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