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Abstract. In this paper we briefly summmarize some of the most
immportant algorithms for the parallel solution of Almost Block Diag-
onal lincar systems. Then, we present a parallel algorithin based on
the cyclic reduction, which is quite competitive, especially when sys-
tems with additional corner blocks are considered. Numerical tests
carricd out on a distributed moemory parallel computer are reported
and analyzed.
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1. Introduction

since the 1970°s a number of publications studying solution methods for Al-
most Block Diagonal (ABD) lincar systems appeared. These systems arise in
various mathematical applications such as Chebyshev spectral decomposition
on rectangular domains, orthogonal spline collocation for elliptic problems and
various discretizations of boundary value ordinary differential equations (BVP
ODE’s). We are primarily interested in the latter application. The sequential
solution methods can be traced back first to the SOLVEBLOCK packape by de
Boor and Weiss (1980), and, second, to the alternate row and column climi-
nation algorithm due to Varah (1976), later studicd by Diaz, Fairweather and
Keast (1983) and implemented using level 3 BLAS primitives by Paprzyeki and
Gladwell (1991).

There exist a number of approaches to the parallel solution of ABD systems.
It was observed that there are two basic parameters that influence the possibie
solution methods. When the size of cach block is large (as in the case of spectral
decompositions, generating a relatively small nnmber of large blocks) the level 3
BLAS based approach can be applicd (parallelism is introduced inside the BLAS
kernels). Gladwell and Papraycki (1993) have exporimented with this approach
on shared memory computers and reported satisfactory performance. When
a number of blocks is large and their individual sizes are small, tearinpg-typc
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Ifigure 1. Structure of an ABD matrix with additional corner blocks.

methods can be applied.  Ascher and Chan {1991} and Jackson and Pancer
(1991) have formed normal equations and suggested applying tearing to the
resulting block tridiagonal system. A different tearing-type algorithm has been
proposcd by Paprayeki and Gladwell (1991), where the tearing process is applicd
to the ABD systemn; this approach has been later improved by Amodio and
Paprsycki (1996). Yot another tecaring method was proposed by K. Wright
- (1993). He applies tearing to the block bidiagonal system obtained by ignoring
the boundary condition blocks, and reintroduces these blocks only in the final
stép of the solution process. While the method proposed in Paprzycki and
Gladwell (1991) and in Amodio and Paprzycki (1996) can be applied on the
- message passing as well as shared memory computers, the method presented in
I[<. Wright (1993) can be used only on shared memory computers,

All these algorithms deal with the sohition of the ABD systemn arising from
the discretization of BVP ODE's with separated boundary conditions. In case of
non-separated boundary conditions additional corner blocks arise (see Figure 1)
and no known sequential algorithm exists. S. Wright (1992, 1994) introduced
(wo parallel methods {(similar to the approach of K. Wright) that can deal with
these additional blocks and can be used on shared memory as well as message
passing parallel computers. The aim of this paper is to present a different, cyclic-
reduction based approach to the solution of ABD systemns with separated as well
as non-scparated boundary conditions. In Sections 2-3, the proposed algorithm
is summarized (in Scetion 3 a slightly modified version is proposed) while in
Section 4, the results of numerical experiments arc presented and discussed.
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Figure 2. Structure of an ABD matrix with additional corner blocks after the
decomposition.

2. The cyclic reduction approach

T'he eyclic veduction algorithm is one of the most interesting algorithms for the
solution of tridiagonal and block tridiagonal linear systems on parallel comput-
ers (see, for example, Amodio ¢t al. (1993)). Several implementations have
been proposed and have been used fo optimize the solution process on different
computer architectures. To derive a peneralization of the eyclie rednetion algo-
rithm for the factorization of ABD matrices let us represent the ABD matrix
M in the following form (sce Figure 2 and compare with Fipare 1):

/ Az 1220 Ch.0 Bio \
I 4 A1 Ba1 Co
€11 211 Az 1 I
Do Are Bpa Caoo
Af == Chye Bio2 Azn D2o (1)

Dl,ﬂl Al,?n BE,m Gﬂ,fn
\ ] 611 L TrL £3] \ 7T A'L'-‘Tm D'E,m
szﬂ1+'l C;'E,?T'L-F-l I)llﬂ'l‘i‘l Alrfﬂ;—|—1 /

where blocks A; ; are square and any gencric block § from Figure 1 (except the
corner blocks) is expressed by the following 2 x 4 block matrix:

Dy; Ay Ba; Cuy (2)
Cri By Ay Dy
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Notice that blocks in (1) may have different sizes. At this time the only rc-
quiremnent is that blocks A; ; be square and the size of the other blocks Bii,Ci g
and D; ; be set accordingly (so, for example, By ;, Dy 01 and Cy 4, have the
salne munber of columns of Ay ; and C2i-1,D2,:-1 and By ; have the same
number of colunms of A ;). Morcover each block may have some mill row or
colunmn, or even zero size. For example, if a BVP ODE with scparated boundary
conditions is being solved, the size of blocks A ; is typically chosen equal to the
munber of initial conditions and the size of blocks A; ; equal to the number of
final couditions.

To emphasize a block tridiagonal structure, let us now rewrite (1) as:

/ Ao Ao I'y \
[y Ay )
, (3)
K K Jlr'15'-*.*1':;—1
\ Am Fm &m /

whero

We may now apply the odd-even cyelic reduction (similar to that proposed in
Anmodio and Mazzia (1994)) to the matrix (3). In order to preserve the sparsity
structure 1t 1s required that the [irst and the last row of (3) are treated as even
rows (the first row is considered as row 0, and m must be even). The first step
ol the algorithin reduces matrix {3) to the following one (which has half the
numbaer of blocks of the original system):

[ |
]

[ Do Ao o\
' Ay A
A *- ©
. : i -ﬁ‘rﬂ—ﬁ
\Am fim im /

where

Ag=Ag—AATII, Am=Anm —TnAZL Ay,

Ay = Ay — ﬂ?f&;ilpgi+1 — Ty 2_1.3_11121;_1, fori=1,...,m/2 -1,

[o; = —Igi AL Tailt, fori=1,...,m/2, (6)
Agi = —Ap AL Aoiyy,  fori=0,...,m/2—1.
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Notc that during the factorization of blocks A; row pivoting can be applied.
Blocks A; and I'; have some null rows, and thus Ag; 271'}{“1 and I'a; ;ﬁ_l have

zeroes in the same rows and thercfore blocks I's; and As; maintain the samc
sparsity structurc as the corresponding I'y; and Ag;. Moreover, obscrve that in
the matrix (5) the blocks A,, and I'p as well as rows corresponding to the first
and the last row of (1) remain unchanged. This means that the corner blocks
(the blocks containing the boundary conditions, if a BVP ODE is solved) arc
not changed during the reduction process.

The same approach is being repeated and applied to () and after log, (m)
steps (assuming e is a power of 2) a 2 x 2 block matrix (or a 4 x 4 block matrix,
if expressed in terms of A, ;, B, 4, C; . and Dj ;) is obtained and factorized using
Gaussian IElimination with partial pivoting.

3. The stabilized cyclic reduction approach

Since blocks Aj in (3) may be ill conditioned or even singular, the algorithm
proposcd above may be unstable. Morcover, cven if for a given ABD matrix we
choose the mmitial decomposition (1) such that cach block on the main diagonal
ol the original matrix (3) is non-singular, it is quite difficult to prove that blocks
obtaincd in the eyelie reduction process remain non-sinpular. To overcome this
problem, we can modify the previeus algorithm slightly and therehy ensure
stability. |

Consider the first step of reduction and let n; be the munber of columns of

/ 33 ; Cai
Aa Do ;

2, , | -
Dyetr Avir (7)

\ Chaivr B /

This means that block A; in (3) is n; X n;. Observe that since the original
matrix (1) is nonsingular, it is possible to extract from (7) a nonsingular n; x n;
matrix. Then by applying row permutations inside blocks 7 and 7 4+ 1 (sce (1)
and (2)}, we may derive a new decomposition

Aai Dag .

where block A; (defined as A; but with blocks 151211;, ﬁ'gﬂ-, ﬁ1.i+1 and 1211_#1 in
(8)) is nonsingular. This can be achicved by applying Gaussian Elimination with
partial pivoting to block (7) and then row permutations in order to insert the
pivotal elements in the rows of Az ; and A; ;1. Obviously with this approach
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hlocks .ﬂgﬁ', (.tfg,_i-, ... have no longer the samc size of By ;,Caj, ..., but ﬁxi 15 stil]
Ty X Ty, '

To better mnderstand the difference between the two algorithms observe
now what happens if they are applied to an ABD matrix with Dy ; = By ; =
j.n and /‘11“?' = 011,f — Agjj — B‘g:j —= C‘E,j — JDEL?' == Oﬂ. This matrix 1s
obviously nonsingular (it is a permutation of the identity matrix) and may also
be derived from a simple linear BVP ODE (with M = Aly, in (9) and by
selecting an appropriate value of the stepsize b, and an appropriate number of
initial couditions).

O'ﬂ. O'ﬂ.
Iﬂ- On

If wo use the eyelie reduction, then Ay = is sinpgular and the

algorithin stops at the first step ol reduction.
Il we se the stabilized algorithm, then Ganssian Blimination with partial

pivoling is applicd to blocks of the forn . The permutations will result

111 /ig,,.-_, f}gi,;, (i*l,turl, arl !}11i+1 having zero rows, ﬁ1:i+1 and é’g’i being 2n x 2n
and 1'31,1'+1 and f_}g,i heing 2n x (0. Then A; = [5,, 18 nonsingular and the
alporithin caleulates the solution,

Snmarizing, the main {substantial) diflerence befween the two algorithms
15 Lthat m cydlic reduction the size of the blocks A; 5, 535 4,. .., I8 a priori fixed
while 1 the stabilized cyclic reduction it is variable (it chanpges at cach step
of reduction) aud depends on the factorization process (the pivoting clements
during the factorization). ‘I'he main advantapes of the stabilized alporithin is
that the [actorization always exists and is stable. Motcover, the computational
cost 18 the same as that of the cyclie reduction algorithim of the previons scc-
Lion, even il the exceution thne will be greater because additional perimntations
are perlormed. At the same time our mamerical experiments sugpest that the
possibilily for an ABD matrix to have a singular block A; is very small (sce
Helow and Amodio and Paprzycki 1995) so the stabilized algorithm needs to be
used only if the standard algorithm fails.

4. Numerical tests

Numerical tests were performed on a distributed memory parallel computer Mi-
croWay Multiputer with 32 processors, Fach processor is a T800 transputer and
has a local memory of 1 Mbyte. The sequential tests were performed on a single
transputer with 16 Mbytes of local memory. The implementation details can
be found in Amodio and Paprzycki (1995). We have tested the two sequential
alporithms: |

e SOLVEBLOCK routine by De Boor and Weiss (1980);

e SGEABD routine by Cyphers, Paprzycki and Gladwell (1992);

and two parallel algorithms introduced in the previous sections:
e ABDCR cyclic reduction;
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Table 1. Sr:q_uential execution times for the Problems 1-5 and m = 32
Probl.1 Probl.2 Prebl.3 Probl. 4 Probl 5

SOLVEBLOCK 399 722 2270 7819 13912
SGEABD 828 1267 2749 6557 11016
ABDCR 775 1495 41031 11453 19537
SABDCR 963 1904 4385 12857 21833

e SABDCIR stabilized version of the eyclie reduction.

All the considered test problems arise from the numerical solution (hy using
finite diflerences) of a general boundary value problem: :

' = My + q(t) t € la,b, y,q € N, M ¢ RP" o)
Boy(a) + Byy(h) = d € R, ( )
where M 1s a random n x n matrix, for o= 2,3,0,8, 10. The following five test
problems have been experimmented with:
e ’roblem 1: systemn of two {irst-order BVI?'s — inlernal blocks of size 2 x 4;
e Problem 2: system of three first-order BVP’s — internal blocks of size
3 X
o ’roblem 3t system of five first-order BVP’s — internal blocks of size 5 x 10;
o ’roblem 4: systemn of cight first-order BVP's — internal blocks of size
8 x 16;

o P’roblem O system of ten lirst-order BVEP’s — internal blocks of size 10x 20).

tn all cases ¢{2) has been selocted in such a way to have all the components of
the solution behave as of, In order Lo compare the performance of the proposcd
algorithins with that of SOLVEBLOCK and SGEABD, separated boundary
conditions have been selected (both these codes are desipgned for ABD matrices
without additional corner blocks), Then, in a separate experiment, we have
applicd the new algorithms to the same BVIP's with non-separated boundary
conditions, The timings of the parallel solutions of problems with separated
as well as non-separated BC’s were exactly the same, in agreement with the
arithmetical complexity functions of the proposed algorithing derived in Amodio
and Paprzycki (1995).

Tables 1- 2 contain the sequential execution times in ticks (1 tick = 64 107°
seconds) of the proposed solvers for mm = 32 and 256 internal blocks. It can be
observed that for both values of m SOLVEBLOCK outperforms the remaining
solvers for the first three probleimns while time ratio between SOLVEBLOCK and
SGEABD decreases as the size of the internal blocks increases. For Problemns 4
and 5 the situation reverses and SGEABD outperforms SOLVEBLOCK. This
can be explained by the fact that the BLAS kernels used were not specially tuned
for the Transputers. In such a case, for small blocks, level 1 and 2 BLAS based
SOLVEBLOCK can outperform level 3 BLAS based SGEABD. Interestingly,
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Tablic 2. Scquential execution times for the Problems 1-5 and m = 256
Probl, 1 Prebl.2 Probl.3 Probl.4 Probl. 5

SOLVEBLOCK 3142 5699 17977 62125 110497
SGEABD 6456 9944 21617 21915 87639
ABDCR 6124 11811 31709 91170 155211
SABDCR 7634 15184 36416 103559 174586

30 *i 32 procs
25
20 -
15 -
10

5

0 : | | | I ! 1 T 1

08 08 o7 08 o9 910 911 012
number of blocks

IFigure 3. Speedup of the ABDCR solver.

" the ABDCR routine outperforms SGEABD for the Problem 1, but as the sizcs
of the individual blocks increase SGIBABD becomes faster. The timne ratio of
ABDCR to SOLVEBLOCK decreases for larger block sizes. This shows once

wore the advantage of level 3 BLAS kerncls which were used to implement
ADBDCIR. In all cases the stabilized SABDCR routine is the slowest.

Fignre 3 represents the speedup (ratio between the sequential and the parallel
cxccution time) of the ABDCR algorithm for p = 8,16 and 32 processors for
the increasing valuc of 7. For cach number of processors the five lines represent
speedup of the five test problems. Fipure 4 contains similar results for the
stabilized algorithim SABDCR. In both cascs the best speedups were obtained
for the Problem 5, the worst for Problem 1. It should be observed that when
comparcd internally both algorithms perform well. For large n an almost lincar
spcednp is observed.

Tables 3 and 4 address the scalability of the proposed algorithms. The
exccution times of ABDCR and SABDCR for all three problems are presented
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Figure 4. Speddup of the SABDCR. solver.
Table 3. Scalability of the ABDCIR solver (.= 32p).
p=1 p=2 p=4 p=8 p=16 p=32
Problem 1 TTh 824 883 967 1104 1338
Problem 2 1495 1567 1654 1768 1946 2218
Problemi 3 4031 4173 A345 4560 4864 5319
Problem 4 11453 11848 12281 12787 13443 14348
Problem 5 19537 20210 20934 21779 22782 24181
in ticks lor p = 1,2,4,8,16 and 32 processors while the size of the problem
(munber of blocks ) increases as the number of processors increases and is

cqual to 32 * p (32 blocks per processor).

It can be observed that the algorithms do not scale too well, The best scala-
bility (for both algorithms) has been observed for Problem 5. This result should
be viewed togethier with the fact that the best speedup has been also observed for
Problem 5. T can be explained by the fact that Problem § is characterized by the
largest sizes of the blocks thus leading to the best calculation-to-communication
ratio. The ABDCR algorithm is not only faster and has better speedup, but
has also better scalability than its stabilized version.

Figure b presents time ratio of the best sequential algorithm for a given
problem (SOLVEBLOCK for Problems 1-3 and SGEABD for Problems 4-5)
to the faster of the parallel alporithms (ABDCR) for the increasing number of
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Table 4. Scalability of the SABDCR solver {m = 32p}.

p=1 p=2 p=4 p=8 p=16 p=232
Problem 1 963 1042 1152 1373 1731 2547
Problem 2 1904 2016 2167 2410 2771 3557
Problem 3 4585 4771 4992 5330 5783 6613
Problem 4 12857 13206 13871 14449 15244 16292
Problemy & 21833 22563 233745 24351 25558 27205

i J2 procs
15
10 -
) o 16 procs
S B AR A -
: et
5 ! / 8 procs
3 = __"'rf _-________-—-:-'
0 - [ | I ! | | | |
25 25 27 23 29 210 211 212

number of blocks

» Pigure 5o Time ratio of the best considered scalar solver (SOLVIEBLOCK for

Llte fivst three problems and SGEADBD for the remaining two) and the ABDCR

solvoer.

blocks . This data represents the absolute specdup of the proposed algorithm.
It can be observed that this time the performance gain is not as large as shown
in Figures 3 4. As previously, Problem 5 is characterized by the best speedup
and for large m reaches cfficiency of 53%.

Finally, it should be pointed out that, for all problemns reported here, as well
for a immber of additional tests that we have performed (some results have been
reported in Amodio and Papraycki 1995), the relative error with respect to the
exact solution obtained by both ABDCR and SABDCIR was the same and cqnal
to the crror given by the sequential algorithins. |
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5. Conclusion

Two versions of cyclic reduction algorithm for the solution of Almost Block Di-
agonal Systems have been presented. The experimental results suggest that the
standard cyclic reduction algorithm has good numecrical properties and performs
well on a distributed memory computer. The stabilized algorithm docs not per-
- form as well and its usage should be limited to the cases when it is known that
the problem may have a badly conditioned matrix {or when the non-stabilized
algorithm fails).
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