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Abstract—The application of a conforming spectral collocation method to certain nonconforming
domain decompositions leads to global matrices which have a particular block structure. We study
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1. INTRODUCTION

In this paper, we study the efficiency of various direct methods for the solution of the global sys-
tems resulting from spectral approximations for certain domain decompositions. In particular,
we examine the systems resulting from conforming spectral approximations in nonconforming
domain decompositions in rectangular domains, developed in [1]. When we say that the domain
decompositions are nonconforming, we mean that the rectangular domains are divided into an
odd number of subdomains whose interfaces are nonconforming in size. The spectral approxima-
tions which are used are conforming, that is, the solution is C° continuous at all points across
the subdomain interfaces for second-order problems and C! continuous at all points across the
subdomain interfaces for fourth-order problems. This type of decomposition is particularly useful
when dealing with problems which contain boundary singularities (see, e.g., [2]). The matrices
resulting from these approximations possess a particular block diagonal structure. This structure
is exploited by using a capacitance-type technique [3], a banded system solver from the NAG
Library [4], two versions of the sparse system solver UMFPACK [5-7], and combinations of the
above.

2. DOMAIN DECOMPOSITION AND
SPECTRAL APPROXIMATION

We consider the problem

Vip(z,y) = F(z,y), on the rectangle (a, 8) x (a, b), (2.1)
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subject to Dirichlet boundary conditions. We shall assume that the expressions for the boundary
conditions are analytic and that they are well approximated by their truncated Taylor series. We
shall therefore assume, henceforth, that these functions are polynomials.

For the partitions a =gy < oy < as < - <any-1<ay=Fanda=0g3<a; <@y <+ <
any_1 < ay = b, N € N, we consider the decomposition Doy _;: the rectangle (o, 8) % (a,b) is
decomposed into 2N —1 subdomains in the following way: fork =1,2,..., N-1, subdomain 2k-1
is the rectangle (a1, ax) X (ak-1,an) and subdomain 2k is the rectangle (ak,an) X (ak-1, ak).
Subdomain 2N — 1 is the rectangle (ay_1,an) X (ay-1,ax).

In each subdomain, the solution is approximated by

M, N,
$s(z,0) = D D VonTm(@Ta(®),  s=1,2,...,2N -1, (2.2)

m=0 n=0

where the functions 77 (z) and T(y) are the shifted Chebyshev polynomials defined on the cor-
responding intervals of each region and the collocation points on each interval of each region {e.g.,
{z2}M+) are the Gauss-Lobatto points [8,9]. We shall assume that Moy < min {Max41, Maki2}
and that Nox_; < min {Nog, Nok+1}, K =1,2,...,N =1. For the above problem and the domain
decomposition Doy_1 (N € N), it can be shown that the collocation formulation of the spectral
approximation (2.2), with the appropriate interface continuity conditions for the solution and its
normal derivative, yields C° conforming approximations on all the subdomain interfaces (see [1]).

3. METHODS OF SOLUTION

3.1. Capacitance-Type Technique

The structure of the global matrix for the multidomain decomposition (the five element case)
is of the form given in Figure 1.
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Figure 1. The linear system resulting from a five-element decomposition.
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If we take k, = (M, +1)(N,+1),s=1,2,...,L (= 2N — 1), the global matrix has dimension

(Zf’=1 ki)z. The vectors xj,Xa2,...,x contain the unknown coefficients in regions 1,2....,L,
respectively. The matrices 4,, s = 1,2,..., L, have dimensions k,, s = 1,2...., L, respectively,
and their rows correspond to the satisfaction of the boundary conditions, the governing equation
and interface conditions in each region. The matrices R;;,i=1,2,...,L,j =1,2,3.4, correspond
to the satisfaction of the interface conditions: R;; corresponds to the satisfaction of the interface
conditions between elements 1 — 2 and i, R;; to the interface conditions between elements 7 — 1
and i, f;3 between ¢ +1 and 4, and R;4 between ¢ +2 and ¢. Their dimensions are: R;; is {; X k;_3,
R‘;z is Ig X kt’—h .R.Lg is 53 X ki+1: and Riq is 14 X k,;_[_g, where fl = Mt', Ig = Nt', and £3+£4 = ﬂf, -1
ifiiseven, and [y = Ny, lg = M;, and I3 + 14 = N; — 1 if i is odd. Further, Ry, is My — 1 (or
NL — 1) KkL_l;
f 0

By denoting R, = [33_1-], Ry = ﬂﬂﬂ], Ri; = ﬁ%]’ and R}, = [Eﬂ'_i], t=1,2,...,L, the global

system may be rewritten as

Arxy + RipXa + Riaxs = (3.1)

R;lxl + Agxo + Roax3 + Royxy = an ,I* , (3.2)

a1X1 + H3oXo + A3xz + Ry x4 + Ri:x5 = a3, | (3.3)
RL—l,L—rExL—E+R£_1‘L_21L-2+AL—IKL—1 +R}_, 1T =ap_1, (3.L—-1)
LL_E.‘.'{L...E + Ry ixp-1+ Az = op. (3.L)

From (3.1) and (3.L), we may express x; and X, in terms of X2, X3, and X[_q, Xz_1, respec-
tively. We then substitute these expressions into (3.2)—-(3.L —1), thus obtaining a system in terms
of the unknown vectors xg,X3,...,Xz—1. This process is repeated until the system is reduced to

a system of the form:

ﬁﬂ—lxﬁ—z + RN—LNJEN T RN-LN+13{N+1 = QN-1, (3-L + 1)
RN‘N_lxN_l -+ ﬁyxﬁ -+ RN.N+1J{N+1 = ay, (S.L -+ 2)
RNyt N-1XN-1 + BNy1,NXN + AN41RN4+1 = ANyl (3.L +3)

The above system is a system of kx—1 + kn + kn41 equations in ky_; + kn + kyy1 unknowns
which may solved to give xy_1, xx, and Xy 41. The remaining unknown vectors may be obtained

by back substitution.

3.2. Dense Solvers

We first examined the performance of two dense solvers, namely, the NAG routine FO4ATF [4]
and the LAPACK pair GETRF-_GETRS [10]. The performance of these two solvers is examined
in detail in [11]. The results we will present in this study are the ones obtained with the LAPACK

pair as it is much more time efficient.

3.3. Banded Solvers

We also experimented with the banded solver pair FO7TBDF-FO7BEF from the NAG Library.
As can be seen from Figure 1, the parts of the global matrices which are enclosed in the banded
system have a considerable degree of sparsity which cannot be exploited by the banded solvers.
This degree of sparsity increases as the degree of the approximating polynomial increases, but
remains independent of the number of elements in the decomposition (see also [11]).
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3.4. Sparse Solvers

We examined the performance of some state-of-the-art general sparse solvers, namely, the
UMFPACK Versions 1.1 [5,7) and 2.0 [6,7]). In cases when these led to a performance gain, we
investigated the performance of a combination of the capacitance technique with the UMFPACK
solvers. In order to exploit the sparsity of the capacitance matrix in the system (3.L+1)-(3.L+3),
we solved it using the UMFPACK solvers instead of the general dense solver.

4. EXPERIMENTAL RESULTS

4.1. Numerical Example

The performance of the various techniques described in Section 2 was tested on the following
test problem:

V2p(z,y) = (y® — 1)e™ + (22 — 1)e¥ + 2e* +2¢¥,  on (-1,1)2,

subject to Dirichlet boundary conditions which correspond to the exact solution of this problem
#(z,y) = (y° — 1)e* + (z* — 1)e¥. We used the decomposition (in the notation of Section 2)
a; = a1+ (1/2)(ay —ai-1), 1 =1,2,....N-1l, g =a=-1l,ay =8 =1, and a; =
ai-1 +(1/2}(ay —ai—1), 1 = 1,2,...,N -1, a8 =a = -1, ay = b =1. We also took (in
equation (2.3)) M, = N, = n, s = 1,2,...,L. The total number of unknowns is therefore
L x(n+1)%

4.2. Implementation

The experiments were performed on & Cray J-916 vector computer, an SGI Power Challenge
8000, and an IBM RS6000-550. Timings on the Cray were obtained using the perftrace utility.
Timings on the SGI were obtained using the dtime function, while on the RS6000 the timings
were collected on an empty machine using the {ime function. Results are presented in seconds
and each result is an average of multiple runs.

4.3. Performance on the Cray

Tables 1-3 summarize the performance of the solvers described above on the Cray J-916 for
the five, seven, and nine element decompositions, respectively. For the five and seven element
decompositions, only the results for Chebyshev polynomials of odd highest degrees are reported.
Results for the nine domain decomposition are presented for polynomials of highest degrees 4-16.

As expected, the banded solver becomes more efficient when the number of elements in the
decomposition increases (from 1.6 times faster for the largest five and seven element decomposi-
tions to about 2 times faster for the largest nine element decomposition). This relatively small
improvement can be explained by the large bandwidth of the banded linear system and by the
high degree of optimization of the dense solver (see also [12]). The latter is confirmed by the
Mflop rates achieved by both solvers. The dense solver reaches 186 Mflops (approximately 96%
of the practical peak performance [13]), while the banded solver reaches only 39 Mflops.

Table 1. Experimental results for the five subdomain decomposition.

" | “Sae | Sower | Sober | Metmoa | UMF1 | UMF2
5 180 0.17 0.15 0.11 0.21 0.20
7 320 0.38 0.32 0.21 0.57 0.58
9 500 0.84 0.65 0.40 - 1.31 1.32
11 720 1.92 1.40 0.79 2,58 3.30
13 980 4,12 2.83 1.49 4.65 4.49
15 1280 9.66 6.07 3.43 8.46 9.28
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Table 2. Experimental results for the seven subdomain decomposition.

" | “Sae | Sower | Sover | Motnos | UMF1 | UMF2
5 250 0.26 0.23 0.12 0.36 0.31
7 448 0.71 0.56 0.26 0.95 1.11
9 700 1.78 1.30 0.52 2.25 2.41
11 1008 4.46 3.08 1.12 4.24 3.23
13 1372 10.20 6.78 2.24 8.01 11.65
15 1792 24.00 15.00 5.18 14.96 17.72

Table 3. Experimental results for the nine subdomain decomposition.

" | Voue | soiver | Soiver | Monea | UMF1 | UMF2
4 225 0.23 0.21 0.11 0.31 0.26
5 324 0.39 0.33 0.18 0.51 0.43
6 441 0.66 0.53 0.31 0.96 0.81
7 576 1.18 0.86 0.55 1.40 1.34
8 729 1.96 1.38 0.88 2.35 2.15
9 900 3.30 2.27 1.33 3.15 3.48
10 1089 5.43 3.61 1.93 5.01 4.79
11 1269 8.73 5.70 2.82 6.28 7.08
12 1521 13.63 8.57 3.63 10.61 8.82
13 1764 20.62 12.81 5.91 11.96 13.37
14 2025 30.51 18.92 7.23 18.12 17.96
15 2304 48.47 29.01 26.00 23.31 24,53
16 2601 63.20 38.92 13.15 31.95 29,51

The gain from ysing the capacitance technique also increases as the number of elements in
the decomposition increases. For the five element decomposition, the capacitance technique is
about 1.74 times faster, while for the largest nine element decomposition, it is about 3 times
more efficient than the banded solver. This efficiency is reached by fully utilizing the information
about the structure of the linear system as the capacitance technique reaches only 112 Mflops
(about 57% of the peak performance). The time increase for n = 15 can be related to memory
bank conflicts as this degree of the polynomial generates blocks of sizes which are multiples of 18.

The performance of the general multifrontal solvers is comparable to the banded solver. This
is a manifestation of a mismatch between the matrix reordering strategy of the UMFPACK and
the vector processing architecture of the Cray (see also [3]). Only rarely do the UMFPACK
codes reach more than 15 Mflops. It should also be pointed out that there is almost no difference
between the two versions of UMFPACK. The UMFPACK documentation states that for some
matrix structures Version 2.0 has about the same performance as Version 1.1 [7].

4.4 Performance on the SGI Power Challenge

Tables 4-6 summarize the performance of the solvers on the SGI Power Challenge 8000 for the
five, seven, and nine element decompositions. For the five and seven element decompositions,
only the results for Chebyshev polynomials of odd highest degrees are reported. Resuits for the
nine element domain decomposition are presented for polynomials of highest degrees 4-16.

The results are somewhat surprising. The gain from using the banded solver decreases as the
number of elements in the decomposition increases. For the largest five element decomposition,
the banded solver is about 1.79 times faster, while for the largest nine element decomposition,
it is about 1.28 times faster than the dense solver. These results need to be also compared with
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Table 4. Experimental results for the five subdomain decomposition.

Dense Banded Capac. UMF 1 UMF 2

n Solver Solver M:t.phud UMF 1 UMF 2 JCap /Cap
5 0.05 0.05 0.03 0.06 0.06 0.05 0.04
7 0.15 0.12 0.09 0.16 0.18 0.11 0.14
) 0.42 0.33 0.19 0.40 0.41 0.27 0.28
11 1.13 0.83 0.47 0.86 1.21 0.56 0.85
13 3.19 2.08 0.99 1.66 1.85 1.10 1.78
15 8.99 0.02 2.16 3.27 4.00 2.23 3.41

Table 5. Experimental results for the seven subdomain decompeosition.
5 D.09 0.08 0.05 0.11 0.09 0.06 0.09
7 0.33 0.25 0.13 0.28 0.34 0.17 0.38
9 1.04 0.77 0.37 0.66 0.81 0.48 0.83.
11 3.71 2.16 0.98 1.55 2.05 1.21 1.99
13 9.47 5.72 2.19 3.16 5.24 2.69 5.27
15 22.41 14.96 4.73 6.79 9.49 5.53 9.31
Table 6. Experimental results for the nine subdomain decompaosition.

4 0.07 0.07 0.04 0.09 0.08 0.04 0.04
4] 0.16 0.I3 0.08 0.15 0.12 0.07 0.07
6 0.31 0.24 0.15 0.27 0.24 0.14 0.14
7 0.61 0.45 0.28 0.42 0.43 0.24 0.24
8 1.10 0.90 0.51 0.66 0.69 0.41 0.42
9 2.39 1.56 0.88 1.05 1.02 0.71 0.71
10 4.22 2.61 1.48 1.83 1.92 1.15 1.22
11 7.78 4.57 2.43 2.30 2.77 1.87 1.83
12 12.50 8.21 3.81 3.74 4.31 2.88 2.92
13 20.54 13.24 5.81 5.13 5.77 4.11 4.17
14 33.72 20.82 8.58 9.92 8.19 6.39 6.80
15 47.09 31.41 12.67 11.39 12.69 9.08 8.72
16 71.47 95.72 18.18 12.22 18.17 10.38 14.44

these obtained on the Cray. While the practical peak performance of the Cray is about 195
Mflops, the same practical peak of the Power Challenge 8000 is about 290 Mflops [14]. The Cray,
having about 1.49 times lower practical peak is (for the largest matrices) about 1.12 times faster
on the dense solver, 1.41 times faster on the banded solver, and about 1.38 times faster on the
capacitance technique. This suggests that both the dense and the banded solvers have not been
fully optimized to take advantage of the Power Challenge architecture.

For the largest nine element decompositions, the capacitance technique is about 3 times faster
than the banded solver, and UMFPACK v. 1.1 becomes the fastest solution method (both versions
are comparable in performance). Here the RISC architecture of the Power Challenge is very well
suited for the matrix reordering based UMFPACK solvers (the SGI is up to 2.5 times faster than
the Cray). This result prompted us to combine the capacitance technique with the UMFPACK
codes. The final combination is about 1.2 times faster than the plain UMFPACK itself.
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4.5. Performance on the RS6000

Tables 7-9 present the timings of the solvers on the RS6000 for the five, seven, and nine
element decompositions, respectively. For the five and seven element decompositions, only the
results for Chebyshev polynomials of odd highest degrees are reported. Results for the nine
domain decomposition are presented for polynomials of highest degrees 4-13 (which is the largest
size that could fit into the memory of the workstation).

Table 7. Experimental results for the five subdomain decomposition.

Dense Banded Capac. UMF 1 UMF 2
" Solver Solver Method UMF 1 UMF 2 /Cap /Cap
5 0.20 0.22 0.14 0.16 0.18 0.14 0.13
7 0.82 0.64 0.46 0.71 0.74 0.47 0.54
a9 3.18 2.94 1.23 1.80 1.90 1.40 1.23
11 9.44 8.10 3.93 4.87 5.39 3.60 4.18
13 23.06 18.06 5.67 G.26 10.62 7.66 43.849
Table 8. Experimental results for the seven subdomain decomposition.
Dense Banded Capac. UMF 1 UMF 2
n Solver Solver Method UMF1 1 UMF 2 /Cap /Cap
5 0.40 0.43 0.17 0.33 0.30 0.16 0.20
7 1.80 1.81 0.65 1.12 1.35 0.75 0.79
9 6.40 5.85 2.25 3.01 3.83 2.36 2.33
11 19.38 16.23 6.73 7.63 9.47 6.60 6.26
13 46.44 38.84 17.17 18.87 24.40 16.01 14.78
Table 9. Experimental results for the nine subdomain decomposition.
Dense Banded Capac. UMF 1 UMF 2
" | Solver | Solver | Method | YMF1 | UMF2 | S0 | /cap
4 0.23 0.28 0.10 0.28 0.20 0.14 0.15
5 0.61 0.70 0.23 0.51 0.42 0.27 0.27
6 1.36 1.49 0.53 1.01 0.90 0.61 0.61
7 2.88 3.09 1.19 1.85 1.90 1.27 1.21
8 5.93 5.31 2.18 2.86 3.01 2.24 2.21
9 10.83 9.79 3.95 4.88 4.79 4.16 4.03
10 19.54 16.64 6.93 8.36 9.66 7.02 7.08
11 31.76 26.45 11.54 11.13 13.12 11.51 11.14
12 51.64 42.68 18.08 20.68 23.28 17.77 18.14
13 78.73 64.09 29.83 29.02 20.01 27.46 26.82

The results obtained here are quite similar to those of the SGI Power Challenge, which can
be explained by the fact that both are RISC based architectures. At the same time, the gain
from using the banded solver over the dense solver is about 1.2 times faster and is independent of
the number of elements in the decomposition. Similarly, in all cases, the capacitance technique
is about 2.13 times faster than the banded solver. The efficiency of the general solvers is quite
similar to the capacitance technique, while the combination of the capacitance technique with
the general solver (v. 1.1) becomes the most efficient solution method.

5. CONCLUSIONS

We present efficient direct methods for the solution of the global systems resulting from con-
forming spectral approximations for certain nonconforming domain decompositions. A compar-

CArdd 15:)1-0
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ison of these methods is carried out for three high performance computing environments. The
results indicate that a capacitance-type technique (which exploits the block structure of the global
matrix) is the most efficient solution method on a vector computer. In the case of RISC based
architectures, the capacitance technique should be combined with a state-of-the-art sparse solver
such as Versions 1.1 and 2.0 of UMFPACK (which exploit the sparsity of the global matrix)
for maximum efficiency. Our resuilts also confirm that the processor speed should not be used
to predict computer performance, as the much slower Cray easily outperforms the SGI Power
Challenge due to its superior memory bandwidth and highly optimized BLAS kernels.
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