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Abstract—7Four parallel algorithms for the solution of binek bidiagonal inear systems on distrib-
uted memory computers are presenled. All the algorithms belong to the class of direct methods. I'he
first is & variant of the sequeniial algorithim nnd is suitable for a small number of processors. The
remaining three algorithms are based on the parallel methods lor banded systems and are much better
suited for parallel computations on multiple procedsors. The arithmetical complexity functions of the
proposed algorithms are derived. Uhe results of experiments with the four algorithms implemented
in Parallel Fortran on a linear array of 32 Transputers are presented and discussed.

K eywords—Block bidiagonal systems, Parallel algorithms.

1. INTRODUCTION

Matrices with exploitable sparse block structure arise in many applications. For example, several
numerical methods for the solution of ODEs, PDEs and BVDs lead to block matrices with only
few non-null diagonals [1-3).

We consider the parallel solution of a linear system

Ax =0 {1)
where the coefficient matrix A has a block bidiagonal structure

[ Ih \
'y Dy
(2)
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with I; and ' densc blocks, and
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It is also assumed that for ¢ = 1, .., n, cach D; is a nonsingular square block of size m;.

This problem has not been extensively considered in the literature, even though it is the kernel
of several differential equation solvers. For example, a block bidiagonal system could be used as
preconditioning when an initial value probletn is solved by means of a Boundary Value Methoad
(see [4,5]). |

The known approachies comne [romn the solution of almost block diagonal (ABD) systeims aris-
2,3,6]). In this case, after
temporarily negleciing boundary conditions, the resulting block bidiagonal system is solved by

ing from particular discretizations of houndary value ODEs (sec

parallel reduction algorithms. Since ABD matrices differ from block bidiagonal matrices by a
block row {or column) in the upper triangular portion, these solvers produce parallel factoriza-
tiong with hoth lower and upper fill-in vectors. In our approach, the introduction of fill-in may
be substantiadly reduced. For one ol the presented algorithims it is even possible to eliminate Lhe
fill-in altogether, everr thougl loeal row pivoting is used in all cases to assure the stability of Lhe
algorithms (see |7]).

The peneric sequential algorithitn for the solution of (1) has the form:

determine /%, {. and {/; such that 1,0/ [}
ay - 1 'b,
for + - 2, 1
determine /1, [, and !/, such that P LI/ = [)
e, - Db, - Caey )

and

On shared imemory parallel computers with a limited number of processors, the paridlelization
may be introduced inside the factorization of each £2; and inside the ealeulation ot s (shnilarly Lo
the level 3 BLAS based algorithin suggested in [8] lor ABD systewns). This method Is snccessful
only when the size of the blocks is large, At the smne time, because of the commuiieation
overhead, it is not well snited for distributed memory parallel compulers. For the distributed
MeINOry computers it is morve impaortant Lo reduce the communication costs than the operation
count. The algorvithms presented in this paper have an higher overall computational cost with
respect to the sequential algorithng, but they may be executed on a large number of processors.
All of the proposed algorithms will be based on the following decomposition of the matrix A (2)
(supposing 1 = kp — 1, where p i8 the number of processors involved):

[ A \

C—‘keg_l Dj.;:
e1Ciy1 AW
4 = Coxel_,  Du

+ T
Ciw-k€r-1 Dop-1xk
K e1Cp—1)k+1 AP )

where e, denotes a block vector of length & — 1 with the i*" block equal to an identity matrix and
the others equal to zero matrices (e.g., if m; = m for all 7, e; consists of an identity matrix of
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size m followed by a block of zeroes of size (k — 2}m x m, and er_; consists of a block of zeroes
of size (k — 2)m x m followed by an identity matrix of size m), and

( D 1ykt1 3
A6 Gu- 1}k 2 B[:‘ 1Ykt 2

r 4

\ Civo1 a1 /

Except for the last, cach processor stores 2 block rows of the partitioning of A (c.g., proces-

sor ¢ contains the block rows with A™ and Dy, and the last processor contains the block row
with A®)). Section 2 presents a modification of the sequential algorithm thal is suilable for a
parallel computer with a small number of processors. Scetions 3 and 4 wmtroduce the two algo-
rithms based on different parailel factorizations, bection b is devoted to the generalized cyclic
reduction algorithm. Seclion 6 contains the study of Lhe arithmetical complexity functions and
the memory requirements of the propoged algorithnus. In Section 7 the resulls of experiments on
a network of 32 transputers are presented and discussed.

2. QUASI-SEQUENTIAL ALGORITHM

The fiest algorithin we consider is a simple modification of the sequentiod one. First, Lhe LU
decomposition is used in parallel to invert the mwain dingonal blocks 220 (Lhis is Lhe most exponsive
part of the sequential alegorithm), Then Lhe algorithim coniinues in Lhe Tollowing way: Lhe tirst
processor solves its parl of the system and sends the last Dlock cotaponent of the solution Lo the
second processor. The second processor, walting for the data rom Lhe fiest, seades ils hreslogs
Block equations {(where ¢q is o positive integer namber kess than or eoual to &) When il recelves
the data, it updates the ficst g block eqnations, solves the renmaining equations and sends iis
lasit, biock of the soliution to the next processor. Each processor § perlorns the same aperadions
as the second processor; waiting tor a vector from processor 7 1) L seales Lthe st g block
equations {obviously the value of g; nst be proportional o g, see Secijons G oamd 7), then it
solves the equations and sends che data to processor 7 4 10 The algorithm Tor processor 3 cin be
thus smnmarized as follows:

for i - {4 1}k t 1,4k
determine {’, {., and {/, such that L0/, = [,
end
for 1 ={j — L}k +1,(i — 1)k 4 g,
E; == DO,
g = B-s_lb'é
end
recelve @(;_;y from processor j — |
for ¢ = (3 Lkt L1, {y 1}k q
£y = G, — E.,';E.J_ 1
end
for i = {j — 1)k + ¢y + 1,4k
g, = b; — Ciii_1
z, = D] 'g,

end
send ;i to processor j+1

This algorithm is characterized by sequential communication between processors (cach proces-
sor waits for data from another processor before sending its data to the next one). If the number
of processors is relatively large in comparison to the block sizes, this docs not make it very ef-
ficient (see Sections 8 and 7). At the same time, the algorithm has some advantages: it does
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not produce fill-in vectors and requires only vector transmissions. If a very large system is to
be solved on a machine with a large number of processors {and if each of these processors has
a substantial local memory), it is possible to improve the algorithm by gradually increasing the
number of blocks stored in later processors.

3. REDUCTION ALGORITHM

The second algorithin is similar to the approach used by Brugnano in [9] to solve tridiagonal
linear systems and by Ascher and Chan in [6] to solve ABD systems. This algorithm leads to
the solution of a reduced block system of size p in which the unknowns are located in the first
block component of the solution in each of the processors. It may be considered as a variant of
the sequential algorithm in the sense that we calculate the first block of the vector solution in
cachh processor in order to solve the remaining system using the sequential solver, First we scale
the matrix A in order to obtain identity matrices on the main block diagonal. Then supposing
we know the first block component of the solution in each processor j, we can express, by using
the sequeniial algorithon iteratively, cach vector Tjgyq, for 2 = 2,...,&, as a function of @, 41,
for j = 0,...,p — |. Hence, always using the same recursion, we relate @jxyq to T _1yk4, for
4 = 1,...,p— |, obtaining a block bidiagonal linear system of size p with unitary block main

diagonal
( {) \ f T \ d \
Lo Ipy Lt d.
EE YN L2kt — ds . (3

\ T Lpeoinr ] N\ @poneet /N dy

where f; represenls the identity matrix of order ik,

L
"IHI = { l]lk H 1[ ﬂ:(.i PALSE R for j =2, ...,
=
['EI “
[y DIk L D)k
i =gy e L I[ (—EG-nk—t+1) | 94 for y =2,...,p,
ez g 2R ]2 f=1

{5, are the subdiagonal blocks of the sealed matrix, and g, are the corresponding right-hand side
vOortors.,

After the reduced system has been solved, the other components of the solution are easily
obtained i parallel by using the sequential algorithm. The following summarizes the algorithin
for a peneric processor j;

for ¢ = (j - 1}k +1,jk
determine 1%, L, and I/, such that L, U; = D)
B =D,
g, = _D.I-_lb.t-
end
L = Lt
d; = G- 1)k42
for +=1(j — 1}k + 3, jk
Ty = —ET,
d; = g; — Eud;
and
send T and d; to processor j+1
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receive T;_) and d,;.; from processor j -1
T; = —bG-nend-1
d; v gii-1k+1 — Ei_nkadi-)
obtain Xy, _jjx4+1 by solving the reduced system
for i =(j - )k + 2,5k
;= g; — Biri_g
end

This algorithm can also be expressed in terms of the factorization of matrix D~!'A4, where
1} contains the main block diaponal elements of A4:

_D_1A =N Q‘ (4}
where
Jii)
(o \
Uk—1 k
e(w*)' e By 19
N = op_y I ,
04 L 13k
\ E|{’HJ{F}]T E]Jl_";{.‘“ 3kt | I(M )
aticl

Lyey
o - | HH}
Fopel | In
¢ —
O | R{P_I}_
E{p-—l]kﬂﬁz—l "r{.'l'*I - 1}k
\ or_y R /
The block vector wi?! is of length & — 1:
. T
. - k
awtd) — (fj, {(—1) H E{j_mk+2—u Cey —E{j—_”kHEU_Uk)
Tl

RO = (DY AD forj=1,....p,
where DY} is the following block diagonal matrix:

( Di—1yk+1 \

D{JJ B D[j—l)k+2

\ bt )

ox_1 is a null block vector of length k — 1 and U’ is the identity matrix of size equal to that of
A9 for y=1,....,p.

On a distributed memory parallel computer, the sclution of the reduced system may be quite
expensive if the number of processors is large. To minimize data transmissions we suggest the
following algorithm for each processor j (the j*" block of the solution is stored in d; and each
processor performs the i* send operation if j+2° < p and the i** receive operation if j —2¢ > 1):
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for + =0 log,p |
send ; and T to processor j i 2
receive d; , and T, 4 from processor j — 2!
dj - dy - Ty g
1= =
and

Figure | shows the communications reqguired by this algorithin on p - 10 processors. Observe
that if 5 << 2%, ihien 45 is oo noll matrix, amd hence only vector o, is transmitted. If p > 1, the
solution of the reduced system requires at most [log, p| 1 matrix {ransmissions and [log, p|
vertor transuilssions on each processor {see also Section 6).

1
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4. PARALLEL FACTORIZATION ALGORITHM
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The unknown elements of & and ) are obtained from (5) by direct identification:

vid) = (Am}_lﬁlcu- LIk+1: for y=2,....p
T; Dy Cuel_ v\, for j - 2.0 L

(6)

The factorization (5), the solution of N, and the updating of the right-laad stde by o are
performed in parallel with no data transmission between processors, Thida Wransindssions are only
required when solving the reduced linear systemn

/Ty Voo m )

TL} .'r;g L. 2 b Far
ST Y * HTY LTS _ [T )

\ o v dg e / \-‘I-'-[p [} ) \ o )
The following is Lhe alporithun for the peneric processor

for + . {y 1)k - 1, jk
determine f', [, and {{, wuch that [° /1., 0L ),
end
Vi ks DG e Gk
for ¢ (5 L}t 2,9k |
V) D, Teny
end
LI J_;‘L-If’f_fk: ST
Sk ‘U{_-;l WARLRIaN
for ¢«-:{; 1)k | 2.5k
b, = b - (g,
9, - I_J_r_'lh.,-
end
obtaln Ly e and &gy by solving bLhe reduced system
for « ({j DA 1A |
x, g, Vary,
and

The algorithom for the solution of Che rediecd Syvstem ereated by dhe poradlel Tetortantion is
quite similar Lo thal seen in thie provious seetion Tor the solation of the system ereated by Lhe
reduction algorithim. The main dilferenee Is thal the parallel factoration aleorithim pives i
reduced systenn of smaller size (the st processor doess nol work Lo solve 10). Moreover, sinee
cach processor f also necds to know vector ey, e, st Lhe end ol the solntion of the reduced

systenm one additional voetor transimission s reguiived. The alporithnn for the processor §ois thos:

for i =10, [logy{p-- 11 1
send b;;, and V. to processor j + 2
receive by .py, and Vi, oy, from processor 2
by = byr - Viebyi—aoy
Vi = ~VieVig—rk
end
send x;, to processor j +1
receive Iy, . from processor j—1

Figure 2 shows the data communications required for the solution of the reduced system on
p = 10 processors.
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Figure 2. Communications required for the solution of the reduced system resuiting from the
Parailel Faclorization on 10 processors. The solid line expresses transmissions ol malnces in the
factorization step and of vectors in the selution of the linear system. T'he dotted line represents
trangsmission of vectors in the solution step.

5 GENERALIZED CYCLIC
REDUCTION ALGORITHM

The last algorithin derives from cyclic reduction, which is one of the most impertant algorithms
for the solulion of tridiagonal and block tridiagonal linear systems on parallel computers [12,13].
Sinee we want to apply our approach to the coefficient matrix A in (2), we modify the gencralized
cyelic teduction algorithm presented in [10,11], where it is no longer necessary to assumc that
matrix A has a dimension which is a power of 2. The algorithm procecds with [log, k| steps.
Thus, the determined reduced systemn is exactly the same as the one resulting from the parallel
factorization algorithn,

As in the reduction algorithm, first we seale the main diagonal blocks D; of the matrix A.
Then at the second step, by means of the block permutation matrix

( pti) \
Iy
I'}[‘.E:}

\ p®

the coefficient matrix 7' A is factored in the following form:
D'A=PLMUPT,

where M contains a block bidiagonal submatrix. To emphasize the structure of M, L and U,
it is sufficient to consider another block permutation matrix @, which first places the block
elementson rows 1,3,5,... k+1,k+3,...,2k+1,2k+3, ..., and then those on rows 2,4,..., %,
k+2k+4,...,2k 2k + 2,2k + 4,... {(again, observe that it is not necessary that k be even).
Then

TAT _ {1
=7 )
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where [ is a block identity matrix and

(1 )

Cq Iy

L
|

In a similar way,

QPLPTQT :( ! ) and QIUPTQ . ( Iu )
Ly T I

where the block identity matrices on the first and the second row of M, L and 7 have, respoctively,
plk/2| and p[k/2] elements.

Obscrve that if k is even, then this step corresponds to the first step of the clssical eyclic
reduction applied to the whole matrix. The reduction proeess is repeated by each processor on
suceessive block matrices with block bidiagonal submatrices {sce Figure 3) until {after [jop, &
steps) a reduced system of size p — 1 is created.

1 2 3 4 5 6,7V 8 9 0 11 (2% 14 Ih 16 17 , -

e & & & #» #|%w ®» o o o |l » o s o GHEITXIV
atep 1 - . - . » » . . bosLae B o
slep 2 . . * . . P D XD
slaopy o - . RS VRIS

Figure 3. Reduction of & 17X L7 matrix on 3 processors. Black poinds represond, Block vows vo |yl
i the redaced system.

The algorithm to obtain the solution of the problem (1) by means of the cyelic reduelion
algorithm, for a processor j, is thus:

for ¢ =(j — L)k + 1,5k
determine F;, I, and U/; auch that LU, « D,

E;, = D7'C;
g;.=D'b,
and
§ =1

while 5 < k
for : = (7 — 1)k + 25, jk, step 2s

b, = by — E;b;_,
By =-EiE_,
end
if 1 — 8 < 3k
bk = bk — Ejibii_1)k+s
Eﬂ'k - = jkE(j—l]k+s
end
5 =125
and
cbtain »¢;_1y; and x;; by solving the reduced system
while s > 1

for i=(j ~ 1)k + 8,7k — 1, step 2s
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T = g; — By
end
5=5/2
and

The solulion of the reduced system (7Y should be obtalned by using the same approach on p/2
processors, p/4, and so on. Because we are interested in solving large problems (1), the cost of
any algorithin for the solution of (7) is negligible. Hence, we will use the same algorithin applied
in the previous section with the parallel factorization algorithm.

6. ARITHMETICAL COMPLEXITY
AND MEMORY REQUIREMENTS

In this section we introdoncee and cotpare the presented solvers from the point of view of
cotuputational cost and memory requirentent, For simplicity, we assume that blocks in (2) have
the same dimeusion. TTenco, the parameters that need o be taken into account when deriving

e computational cost and memaory requirements ol the proposaed algorithms are:

it size of each block;
p number of processors involved,

r nuniber of Dlock rows ol Lhe problen;

¢, i Lhe quasi-sequential algorithm the monber of rows which are sealed in the ¢ processor

while previous processors complete thelr factoresation step.

We will wssume bhal the coeiiiclent matrix may be divided i an optimal way among the

processors (s kpo 1), ol that g wmin((y - g, k), for g = Loooop

fi.1. Arithmetical Complexity

The basic operations Lhal ave perfornied by the algorithnms may he identified as (we use BLAS
based notalion):
GETRE LU EBwetorization with partinl pivoting of a block ol size m, {(2/3)m? - (1/2Ym*
(/G operalions);
T RSM solution of an already decomposed linear system ol size i, {(2n? e operations);
CEMM wavrixomatrix (block-bloek) multiplication, (2w - operalions);
(MY rank 2 update  block-vector muliiplication followed by a vector addition, (2m*
operations),

TRAN (s} transmission of & data clements.
Based on the above notation, Lhe sequential solver performs the following operations:
(]| GETRE + [nw) TRSM + [n — 1| GEMV

and its computational cosl 18

2 4 7 5, 7 g
o= -m"+ —m°—=mn- 2m°
| (3 2 6 )

For all four presented algorithms, the only part which is completely parallelizable is the tac-
torization of the blocks on the main diagonal. We must then follow two different paths to obtain
the computational cost of the quasi-sequential algorithm and of the remaining three parallel
algorithms.

Tu the quasi-sequential algorithm, the update of the right-hand side blocks remains sequential.
The computational cost of this part is thus the sum of the computational costs on all the proces-
sors. The solution of the block linear systems is partially parallelized, If we suppose that each
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processor § performs the scaling of the main diagonal blocks of the first g; rows when the previous
processors are solving their part of the system, then the operations for this phase overlap and
are not counted. This means that the operations performed are

-i'-" o
k| GETRF + Z(E; e | TRSM + [n| GEMV + [p— 1] TRAN(m),

j=0

where ()4 = 2 if & = 0 and (2}, = 0 otherwise, aud g < |[{(dm — 1)/(2m? |- m - 1)k|.
The total cost is thus

| 2 1, ey 4 1 a1 |
(';f,.'.'s ('_..?”._1:‘- s 4 F?“) f”-}—} + Z (2-”1 -] - ?” }) T_’f_{..f.*_ ) E_} r ETTLJTL {8)
I

2 L mA L i

k [ :'

J=u

arithmetical operations o

T (p 1}{m)

transmissions, where t(m) ig the cost of Cransimission of a veelor of length

Ll 2o/ 2, bhe summation does not depend ot g, hut essentinlly on 2 /20 Then formula (8)

sitnplifies Lo
T . 1 . ] o] r
Cow | - TIPS R { } + 2,
) 2 () P

The mmnber of artthimetical operations consists of bwo Tactors: the first depends on e oand n

il does not depenrd on py the second one depends oo 1/p and decreases when the number of
[PEOCESSON TLCTCLSeS,

For the reduction algorithm, the parallel Tactorization and the eyvelie reduction algorithms,
Lhe oporadions leading Lo the creation of the reduced systenn as well as the appropriate data
raastnissions are completely parallelizable, "T'he total momber ol operations performed by each
processor will thus essentinlly depend on two terms Wit are proporiional to L/p and to | log, p|.

The reduction algoritinn requires Lhe Tollowing operations I 1ks inilial plase:
k] GRTEI Y k(e 4 ) PRSM [ 1) GIEMM 26 2) GEMV |1} 'RAN (m? i)
fotlowed by the solution of the block reduced systenn of size p that reguires

logyp| 1 TRAN (0 4w} b [t TRANG) ( |[logsp| - H| GEMM 4+ |log, p| GEMV.

The total nnmber of arithietical operations is

] 4 ., 7 ., 7 | - , :
e = [ —m? | ;r—’m,i bo-a (1) + {2 4 ?H.-g) Hog, p|  4mn?,
3 2 £) L

and Lhe data transtnission cost is
. . g,
Tew o [log, plt (m; o ‘.rn) + {{m ).

The parallel factorization and the cvelic reduction algorithms require in their initial parallel
phase the following operations:

k] GETRF + [k(m + 1)) TRSM + [k — 1] GEMM + [2k — 2] GEMV

followed by the solution of the reduced system of size p - 1 which is characterized by similar
arithmetical complexity function as above. The total cost of these algorithins is almost the same
as that of the reduction algorithm. The arithmetical complexity is

14 7 7 4+ 1 , ,
Cpf = Cop = (?md + Emi + Em) (“p—} + (2m° -+ m?) [logy(p — 1)] — 4m®,
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while the cost of transmissions is
Tur = Ter = ([logy{p — 1)] — 1}¢ (mz + 1) + 2t{m).

Assuming {as in most common cases ol computational practice) that n is much larger than m,
that m is large cnough so that the m? terms dominate lower order terms, and that the costs of
data transmission are negligible, we can simplify the above formulas. In Table 1, we present the
simplified formulas (the reduction, parallel factorization and eyclic reduction algorithms have the
same cost and are labeled “parallel algorithms™).

Table 1. Computational costs lor Lhe proposed alworitbims.

Algorithm Clomputadional Cost
secpientio Lo
cuasi-4 bzl T by gy 1o Dy
[uas-seenlia sty - 2w
ekl r R I O S SIS .
parallel adgovithms S e+ 2 [fogs () |

A number of observations can be made when considering the arithinetic complexity functions
of Table 1. When comparing the sequential and the quasi-sequential algorithms, for a large
number of processors, the term (7/6)m™*n/p disappears. Therefore, the lmit on the speedup of
the quasi-sequential algorithin is /3 (see also Figures 4 and 5).

P} cyelic reduction
—-— parallel lncloriantion
-  — — rexluction algorithm
guisi-seential algorithion
%
b

FAER.

O+-—T—T1TT T 7T F T T TT7T" T T T T T T T T
() 11) 20) 30 40 hid (30 () H() 0} 104

mnnber of blocks per processor

Figure 4. Speedups of the four algorithms for m = 15 and p = 8, 32

The arithmetical complexity functions for the parallel algorithms have a structure similar te
other divide-and-conguer algorithms [8,14) and have similar characteristics. For fixed m and j
and for large n, further increase in the value of n does not lead to additional speedup. Similarl;
(excluding the communication cost), for fixed # and p, an increase in m will not produce furthe
speedup increase.

Finally, given the values of n, m and p, we can estimate (see Figure 6) when the quasi
sequential algorithm should be used instead of either of the parallel algorithms. 1t can be cbserves
that for a given number of processors p, there exists a value of m starting from which th
quasi-sequential algorithm outperforms the parallel algorithms. It can also be observed that |
the data transmission costs are taken into consideration (and the cost of one transmission of
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10 ~ e eyclic reduction
—-— parallel factorization
—-H — — reduction algorithm
quasi-sequential alporithim
8 —
£y —
B v o= 42
e e e |
1- T -
VI
2_
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voclor of & eloments i almost the sane as thot of s Cransmissions of sealars), thon the gquasi-

scegientiad algorithim requires Q) data transimissions whereas Che parallel algorithms require

Oflog, (p)m?®) data transmissions.  Thercfore, for moderate poaud Lage o, ihe wm® ternin will

dominade Lhe data transoission cost, giving the guasi-sequential algorichm additional advantago

aver Lhe parallel algorithons. As the nummboer of processors inereases, the sibualion reverses, Overall

Lhie cosi of datac bransmission ol Che parallel alporithinis is smaller Chan thal, ol the quasi-sequential

alporithom for me < pflog, (p). These resulis are also conhirmed by our experiments (see Figures 4,

by, ol 70y,
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Figure G. Theoretical comparison between the parallel lactorization and Lhe quasi-sequential algo-
rithin. For each line (representing a given number of processors p) points above it are values of &
and m for which the quasi-sequential algorithm outperforms the paralle! factorization.

6.2. Memory Requirements

We will cousider two cases of memory requirements of the proposed algorithms depending on
when the solution of the linear system is performed. If the factorization step and the linear system
solution step are performed separately, the parallel factorization algorithm requires to store one
fill-in vector, and the cyclic reduction algorithm requires to store the off-diagonal clements of the
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Figure & Speedups of the alporithims for pro== 32 and & = [800 e variable. The tlashed lines
represeut the theoretical speedups of Lhe two algorithims,

Table 2. Puer-processor memory vequurements for the proposed slgoritlims when the coeflicieot
matrix ig factored before the solution of Lhe associaded lnear sysbem.

Alpgorithm Workspaice:
sequential A b onn
quasi-sequential Shan? 4k + Lym
recduction (2k + [loge plim?2 + (k+ 1)m
parallel [actorization | {3k f [logy(p — 1] — Ln® 4+ (b + V)m
cyelic reduction (3k + [logo(p — 1)] — I)m? + (k+ L}m
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subnatrices obiained al cach step of the reduction, Table 2 presents Lhe per-processor meniory
requirciments of the proposed aleorithios T can De observed Chal Lo sequentinl o ad quas-
sequential algorithins have precisely the saone overall owenory requirements. The per-processor
memory reguirements ol the reduction algoritho are slightly higher thao those of the quasi-
sequential algorithon or aomoderate oo and sabstaotinlly lower thian Chose of the remaiing two
parallel alporithis for lnrpge A The overall memaory reqnireiment. ol Lhe parallel fnctorization and
cyelic reduction alporithins is larger by A clements than that of the reduction algorithm and
by (& | [log,ip Y] he” eleanents than that of the quasi-sequential algorithm.

I the hetorization is performed together with the linear system solition, the per-processor
memory reguircments of Che proposed algorvithmes e sinnnarized in Tabie 3.

Table 3. Por-procossor metnory vecporeisents o Ghe proposed alparitInns wlhen Lhe solnbion of the
ammochibed linear syslone and Lhe Gedoeeaadion of Ll cooflicienl nudrix ace porformed st Lhe sioen

ST
Alproritnm Wik e
socpuan il 2an - nn
Cpud s L Tt Ll Sl bk | Fimn
rocleetiong {2 b 1 (k] D
pavallel Twlorizadion dhan= v {A 1)
cyelic redpelion 2l + (A4 1

It can be observed that in all cases the per-processor menory requiroments ol all parallel
algorithms are the same and that the overall memory reguoivement of all the algorithims are
almost the same,

7. NUMERICAL TESTS

The algorithms presented in previous sections have been coded in Parallel Fortran [15] with
the Express communication library [L6] on a network of 32 Microway transputers 'T'800-20, cach
with a local memory of 1 Mb. The sequential algorithm has been implemented in Fortran on
a single transputer T800-20 with 16 Mb of memory. The codes use the level 3-BLAS routines



126 F. AMObDIO et af.

DGEMM to perfortm matrix-matrix products, DGEMYV to perform matrix-vector products, and
two subroutines of LINPACK package: DGEVYA to factorize the main diagonal blocks with only
local row pivoting, and DGESL to solve triangular linear systems factored by DGEFA.

As a test problem we have chosen a linear system with m; = i for all ¢, and

D.g = - .I!L.L'JF.'.F.:j O;- =7 — h,i;_E
arising from the numericad solution of the initial value problem

y' =By +b(t),  tc [t (9)
yllo) = Yy

by means ol the trapezoidal rule. The obtained bloek bidiagonal systein is in general used as
preconditioning when problem (93 is solved by means of Boundaty Value Methods (see [4,5]). We
have selected the i om matrix I7 with clgenvalues in the negative part of the complex half-plane
in order to have a stable solution (for the purpose ol our experiments, fv was obtained using a
ratlom number generator), Morcover, fr, oyl oy, lor o = 1 lxed.

Iy Fignres 4, b, nad 7. the measared specdups of Lhe oyelic reduction, parallel Tactorizalion,
reduction and quasi-sequential alporithins are reporied {for s - 5o 100 30, different. val-
nes of & (n - 1)/ p, and for dillerent. numbers of processors. For the quasi-sequentinl algorithm,
we hawve chosen g, (4 - Dy, where ¢ is o positive integer nomber lixed lor all processors, 7 s
the processor number, 5 < 1, oo g, nsuel a way that Che speedup was the highest (the optimal
value ol ¢, will be architecture dependent ). For exoanple, ¢ - &/4.5 10 D g -~ k710 iFan 2 1D
andb ¢ 1 lor e 300 L0 should ba notad that in this last ease the values of & are reladively simall
(less than 3073,

The results of all the experiments accord with the theoretical resulis of Lthe provious seetion,
ipures 4, 5, and 7 show Chal if a small number of processors is nsed, the guasi-sequentil
alporithin is always Lhe Bwtest among the presemted algorithins, Tor increasing mmbers of
processors, paradlel algorithms beconie preferable (but only when the size of each block () is
not Loo lrge), Forsre 15 and p = 32, Lhe quasi-seqguential algorithim behaves alinost exactly like
the parallel algorithms, The Inercase inoan not only reduces the utility of the parallel algorithmes
bt also reduces the obtained specdop; for p -+ 32, the reduction is fromn the speedup of about 9
for 11 = b to speedup of less than 7 for v = 300 [t should be also observed that the eyelie
reduction and parallel factorization algoriching behave exactly the same and always outpertorm
Lhe redluction algorithm.

Fignre 8 compares the performance of eyclic reduction and guasi-sequential algorithnis tor
po= 32 processors, for @ matrix of size n = 25600 and for approximately fixed & - | 800/ 9]
while varying the value of mi. [t also compares the practical and the theoretical speedup for both
alporithns.

Figure % shows that for soitable Luge dimensions ol the coelliciend. matrix A, thoeoretical
specdups are very zood approximations to those obtained on the parallel computer. Moreover,
the cyclic reduction algorithmm outperforms the quasi-sequential algorithm only it e < 16, Pi-
nally, if the optimal algorithin is sclected properly for given n, m and p, it is possible to oblain
speedup greater than 5.5 on 32 processors.

The last Figure 9 represents the “scalability” of the presentod algorithms, thal is, the time
of execution for a different number of processors with & and m constant. This graph shows
that the paraliel algorithms scale nicely as the number of processors increases {the jumps in the
time are related to the fact that the workload in the solution of the reduced system depends on
log, p}. As predicted, for fixed k and m, the quasi-sequential algorithm does not scale well. It
can be observed again that cyelic reduction and factorization algorithms behave similarly, slightly
outperforming the reduction algorithm. Moreover, it can be predicted that the crossover point
will occur for approximately 40 processors.
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8. CONCLUSIONS

We have presented four parallel algorithms for the solution of block bidiagonal linear systems,

discussed their implementation details, derived and discussed their arithinetical complexity func-
tions and the memory requirement functions. It was shown that there is no simple answer which

of the presented algorithms should be appliad. The answer to this question depends on the pa-
rameters of the linear system itsell (block size and number of blocks) as well as characteristics

of the distributed memory computer that the systems are Lo be solved on (available memory

per-processor and the communication overhead). Some guidelines for the selection process have
been presentod.
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