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This article is written to provide users of the Cray Y-MP8/864 computer with
some practical guidelines about the best ways of multiplying matrices. Three
major issues will be addressed: the impact of the memory bank conflicts, the
benefits of using level 3 BLAS routines, and the advantages and limitations of
Strassen’s algorithm. Our considerations are resiricted to single-processor appli-
cations.

Matrix multiplication is a very simple process. The following Fortran code
represents the way we do it "by hand" (it is assumed that A, B, and C are NxN
matrices, the operation is C = A*B, and initially C = 0):

do 10 I = 1,N
do 10 J = 1,N
do 10 K= 1,N
10 C(x,J) = C{I,J} + A(I,K)*B(K,J)

s L3 MY O

It is, however, a well known fact {2] that permuting the order of loops leads to six
separate implementations of matrix multiplication. The primary difference
between these methods is the order in which memory locations are accessed. The
method described above (JJK method) is based on dot-product calculation,
whereas the JKI method (Joops ordered 2-3-1) is based on column-vector
updates. Since matrices in Fortran are stored in column major order, the latter
method should yield a more efficient code. When updating a column of C, it
accesses consecutive memory locations distributed among separate memory
banks and thus minimizes the number of possible memory bank conflicts.

[Continued on page 78]
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To observe differences in efficiency, we performed experiments with all six
methods and matrix sizes from 767 to 801. Qur assumption (bascd on Sewell [7])
was that the worst case performance will occur for the matrix of size 768 as itis a
multiple of 256 (the number of memory banks). The results are summarized 1n
Figure 1. Each result is an average of three runs since the perftrace monitor, used
to establish the performance characteristics, yielded results that varied up to >
MFLOPS.

As predicled above, one can observe three performance patterns. They clearly
correspond to the innermost do-loop variable and thus to the memory access pat-
terns.

The best performance was achieved by JKI and KJjI methods (in the mnermost
do-loop both update a column of matrix C using a column of matrix A}). No
effects of memory bank conflicts were observed for these methods.

The worst performance (MFLOP rate decreased by up to a factor of 7) was
observed for 1K] and KIJ methods. In their innermost do-loop, both update a
row of matrix C using a row of matrix B. Interestingly, the performance for the
matrix size 768 is exactly as bad as for 800. This seems to suggest that the perfot-
mance degradation can occur for matrices with sizes divisible by 32 rather then
by 256. Chris Hempel from Cray Research suggested that this possibly means
that, instead of memory bank conflicts, we have here a case of memory section
conflicts. It is also noteworthy that the results for these methods are almost sym-
metrical around 784. This suggests that in the worst case all powers of 2 lead to
significant performance decrease.

It should be added that when we replaced the innermost do-loop by calls to level
1 BLAS [5] (routines SAXPY and SDOT) and ran experiments for the same matrix
sizes we observed similar behavior as in the no-BLAS case (including the sym-
metry of the worst case performance). Analogous effects were observed when
two inner do-loops were replaced by calls to level 2 BLAS {3] routine SGEMYV.

In general, our experiments show that if the proper loop ordering is used, the
problems caused by memory access conflicts can be avoided. For the remaining
part of this note, we will therefore concentrate on the best possible results.

In [1] the authors concluded that in the case of Gaussian elimination there is a lot
to be gained when using level 1 and level 2 BLAS routines. Now we would like
to discuss the advantages of using BLAS for matrix muitiplication.

As mentioned above, it is possible to replace the innermost do-loop, or two inner
do-loops by calls to level 1 or level 2 BLAS, respectively. Cray’s Scientific Library
also supports the level 3 BLAS [4] that performs the matrix-matrix operation by a
call to one routine.

There are three matrix multiplication routines available: a standard SGEMM rou-
tine, Cray’s matrix multiplication routine MXM, and a special SGEMMS routine
that implements Winograd’s version of Strassen’s iterative matrix multiplication
algorithm. The comparison between performances of the best versions of no-
BLAS code, level 1 BLAS code, level 2 BLAS code, level 3 BLAS routine SGEMM,
and routine MXM for matrices in the range from 100 to 1500 is presented in Fig-
ure 2. Because of its nonstandard features, we address the use of SGEMMS:
below.
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Table 1.

Summary:

References:

The best performance was obtained for the level 3 BLAS routine SGEMM.
Interestingly, using level 2 BLAS yields (in most cases) better results then Cray’s
MXM routine. It is also surprising how close is the performance of the level 2
and level 3 BLAS. This only supports the well-known fact that the level 3 BLAS
was intended to achieve the best performance on parallel computers. For the
time being, however, only a one-processor version of level 3 BLAS is availabie.
The upgrade to UNICOS version 6.0 and introduction of the LAPACK library
will provide fully parallel level 3 BLAS routines.

For large matrices the no-BLAS code reached approximately 66% of the peak per-
formance. Since matrix multiplication is viewed as a perfectly vectorizable
operation, the obtained 66% may be treated as the current upper limit of what
can be gained when a higher-level programming language and an optimizing
compiler are used. The assembly-coded BLAS 2 and BLAS 3 routines reached
about 93% of the peak performance.

We repeated our experiments for very small systems. Our results show clearly
that for matrices bigger than N=5, SGEMM outperforms ail other approaches.

In the final part of this note we would like to address the performance of the
SGEMMS routine. It has three important features {6]. Firstly, Strassen’s algo-
rithm multiplies matrices using only N**2.8 arithmetic operations in COmparison
with N**3 for standard matrix multiplication. Consequently, timing rather than
MFLOP rate is to be used to compare its performance. Secondly, it is superior to
SGEMM only for medium and large matrices. Thirdly, it requires additional
workspace of size N*N*2.34. This suggests that there may be a himit on the size
of matrices that can be multiplied. Table 1 compares the performance of routines
SGEMM and SGEMMS.

Matrix Size SGEMM time SGEMMS time
200 0.054 0.047
500 0.804 0.646
800 3.320 2.416
1100 8.583 ﬁ 6.563
1400 17.633 12.133

Table1l. Performance comparison between SGEMM and SGEMMS
{time in seconds)

The ratio of the numbers of operations necessary to multiply matrices for both
methods is N**.2, and hence the ratio of times spent by both routines should be
similar. For all experiments performed, this ratio was satisfied up to a constant.
For matrices smaller than 50, SGEMM is superior to SGEMMS5. For matrices
between 50 and 130, the performance of both routines is almost identical. For
matrices bigger than 130, SGEMMS outperforms SGEMM. We were also able to
establish that for matrices bigger then 1700, it is impossible to fit matrices A, B, G,
and the working space required by SGEMMS in the 16.0 megaword limit on one
processor.

When a proper order of operations is used, memory-related conflicts can be
avoided. Level 3 BLAS routines should be used to multiply matrices. Routine
SGEMM is superior for small systems and the only choice for very large systems.
Routine SGEMMS should be used for medium and large systems.
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