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Parallel Matrix Multiplication -- Can we Learn Anything New?
Marcin Paprzycki, Dept. of Math & Computer Science, UT Permian Basin

This note is a follow-up to the results presented in (4] where we exarmined matrix
multiplication on one processor of the Cray Y-MP. it was shown that when the
Jevel 3 BLAS [3] routine SGEMM [1] is used, the practical peak performance can
be estimated at approximately 315 MFlops. It was also demonstrated that the
Strassen'’s algorithm-based routine SGEMMS {1,5] multiplies matrices faster than
SGEMM (for matrices of size bigger than 200). The cost of the additional speed is
extra memoty required.

In September 1991, the CHPC upgraded the Cray operating system to UNICOS
6.1. The new version of the system provides parallel (level 1, 2, and 3) BLAS ker-
nels and more support for algorithm parallelization in general. Recently, we have
learned that since the beginning of the school year 1991-92, there is an increased
interest in exploiting the Cray’s parallelism. We would therefore like to discuss
some experimental results offering insight into parallelization on the Cray. Our
experiments were, as previously, performed with matrix multiplication that
parallelizes almost perfectly and can thus be a useful guideline for performance
expectations.

QOur experiments were executed on two Cray Y-MP computers. One of them
belongs to CHPC, while the second is a part of Cray’s research facility in Eagan,
Minnesota. Both machines were running UNICOS 6.1 and generated analogous
results. Each result presented here is an average of multiple runs on both
machines. Since the perfirace utility does not work in a multiple processor
environment (this problem will be, most likely, solved by UNICOS 7.0}, all the
jobs were run either in a single job stream environment ("benchmark” queue on
charon) or in a dedicated mode with nobody else using the system.

In the first series of experiments, we tried to establish the minimum matrix size
that will parallelize efficiently on all 8 processors. We utilized the Assembly-
coded level 3 BLAS routine SGEMM. Speedups obtained for matrix sizes varying
frorn 100 to 500 are presented in Figure 1.

It is only when matrix size is larger than 400 that an almost linear speedup on
eight processors is observed. When, on the other hand, up to four processors are
used ("parallel" queue on charon), it is enough for matrix size to exceed 300 to
achieve linear speedup. A standard matrix multiplication process, for a matrix of
size N, requires N**3 multiplications and N**3 - N**2 additions, which adds up
to 2N**3 - N**2 floating point operations.

Therefore, it can be calculated that for N > 400 the eight processor system
delivers about 2400 MFLOPs (about 300 MFLOPs per processor). For large
matrices (N > 1500), the eight processor MFLOP rate increases to about 2490. In
this case, each processor delivers about 310 MFLOPs.

The practical peak performance (about 315 MFLOPs) can thus be regarded as vir-
tually attained, since some overhead needs to be taken into account as well. It is
thus fair to say that 2500 MFLOPs is a practical peak performance of the eight-
processor Cray Y-MP, '

Our second goal was to compare the parallel efficiency of the standard matrix
multiplication routine SGEMM)with one based on Strassen’s algorithm,
SGEMMS. The ratio of SGEMMS time to SGEMM time was used to compare the
performance. Figure 2 presents the results for 1, 2, 4, 6, and 8 processors. The
results for 3, 5, and 7 processors were omitted for clarity. Their curves, however,
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fall exactly between the curves representing the performance of 2 and 4, 4 and 6,
6 and B8 processors, respectively.

The results were quite surprising. In all cases, sudden drops in the performance
of SGEMMS were observed. It was only for a one processor system that
SGEMMS proved more efficient than SGEMM in the whole range of matrix sizes.
But even in this case, the same pattern of perfermance drops is observed. In
order to be sure whether the observed phenomenon has nothing to do with
memory bank conflicts, we decided to locate the crifical matrix sizes. Figure 3
presents the results for N between 1030 and 1044. The performance was again
presented as a ratio of the SGEMMS time to the SGEMM time.

The observed phenomenon was explained by Michael Merchant from Cray
Research, the implementor of SGEMMS. SGEMMS is a recursive procedure pro-
grammmed in Fortran where the block operations are performed by calls to
SGEMM. What we observe here is caused by recursive divisions going all the
way down to blocks of size 65. This is a "very bad” vector length (64 + 1) that
does not allow for effective use of the vector processor, slowing down calcula-
tions considerably.

This effect explains the overall shape of the curves on Figure 2, since the turning
points can be located at matrix sizes 260, 520, 1040, and 2080. The division all the
way to blocks of size 65 allowed us also to observe a trade-off between the effi-
aency of parallel operations on small matrices and gains from the recursive
nature of the Strassen’s method. Theoretically, performance should gain with
every level of recursion, but small block sizes will nullify the gains for a larger

number of processors.

According to Michael Merchant, this problem has been fixed by reducing the
level of recursion used in SGEMMS by one (the smallest block will be of size 130).
This fix will be included UNICOS 7.0.

Summarizing, we can learn something from simple matrix multiplication. Our

results suggest that in order to expect good speedups, the problem must be at
least as intensive computationally as matrix multiplication of matrices of size 400.

If the problem does not parallelize as nicely as matrix multiplication, or is not
coded in the Cray Assembly Language, one must make it appropriately bigger.
For the time being, we recommend that you avoid using Strassen’s algorithm-
based matrix multiptication for multiprocessor applications not only because of
stability problems [3], but also because of possible inefficiencies.
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