@ Systema. Man and Cybemencs

Under the High Patronage of His Excellency the President of the Repubilic of Tunisia /
Sous fe Haut Patronage de son Excellence Mansieur le Président de la Républigue Tunisienne

Proceedings

Edited by

Pierre Borne
Mekk Ksoun
Ahdelkader El Kamel

COMPUTATIONAL ENGINEERING
IN SYSTEMS APPLICATIONS

CESA'98 Conference Secretariat

UCIS - Ecoie Centrale de Lille
BP 48 - 53651 Villeneuve d'Ascq Cedex - France
Fax : (33/0) 3 20 33 54 99 IMACS Multiconference

£-mar : cesadB@ec-lille.ir o
URL : hitp=/'www_ec-lilla Ir/-cesads Nabeul-Hammamet, Tunisia =« Apat 1-4, 1898

Solving Block-Structured Matrix Problems on RISC-Based Supercomputers

M. Paprzycki
Department of Computer Science and Statistics

University of Southern Mississippi
Hattieshurg, MS 39406, USA

P. Yalamov
Center of Applied Mathematics and Informatics
University of Rousse
7017 Rousse, Bulgaria

N.E. Mastorakis
Military Institutions of University Education
Chair of Computer Science
Hellenic Naval Academy
18539 Piracus, Greece

ABSTRACT

Block-structured matrices appear in computational practice as results of discretizations of a number of mathematical problems. Usually,
opecrations on these mairices become the most expensive part of the solution of the original probiem. To provide an efficient tool to operate
on such mainices, a level 3 BLAS based library of subroutines is proposed and its performance studied on the RISC-based SGI Power

Challenge 8000 and Power Challenge 16000 supercomputers.

1. INTRODUCTION

A number of malhemalical problems give rise to block
bidiagonal (BBD), block tridiagonal (BTD), almost block
diagponal (ABD) and other block-stnictured matrices
[1.4.6,8,9.11]. In computational practice there exist a number of
situations when efficiency of operations on such matrices
becomes particularly important: first, when the matnx size is
very large und thus operating on it is very time consuming;
sccond, when a block-structured matrix appears in & non-linear
problem which is solved using an iterative scheme and thus it
has to be factonzed in almost every step of the algorithm: third,
when operations on & very large block-structured matrix arc
performed on a paralle]l computer. In the last case » tearing-type
strategy is typically applicd to achieve parallclization [1,2,5]. In
all three cases the efficiency of the matrix operations becomes
the bottleneck of the sclution process.

In this note, we study the efficiency of a level 3 BLAS based [3]
library of subroutines designed to perform three basic
operations on block structured matrices: matrix multiplication,
LU f{factonization with partial pivoting end back substitution.
Obviously, when the solution process calls for operating on
block structured matrices (of the three types described above)
there are at least two possibilities of representing them. First,
they can be represented directly in the blocked form. For
instance, in Fortran they would be represented as a sequence of
block-rows stored consccutively in a long vector. Each row-
Mock wouid be stored as a sequence of columns. Second, they
can be represenied as a banded matrix encompassing the
blocked structure. In this cuse the main diagonal, as well as each
supet- and sub-diagonal will be stored as a vector. In this casc a
penalty of storing a number of zeroes (residing outside of the
block structure) is paicl. At the same time, it can be argued that

1141

some simplicity of programming ¢an be gained. In addition, the
results gathered earlier on the Cray J-9x sugpest that (on a
vector computer) when the block size (a) 15 relatively small the
banded approach based on long vectors has a significant
advanlage over the blocked representation [10]. Here we
concenirate our attention on the RISC-based supercomputers
reporting resulis collected on the SGI Power Challenge 3000
(PC B000) and Power Challenge 10000 (PC 10(00)
supercomputers. For these two computers we will try to answer
a basic question: should the block-structured matnices be
represented in the blocked form, or should they be represented
as banded maitrices. We will also use the collected
benchimarking duts o compare the performance of the two
machines.

2. MATRIX-VECTOR MULTIPLICATION

Multiplication of a block-struetured matnix by a vector or by a
square dense matrix of any size can be easily realized by a
sequence of calls to the level 3 BLAS matrix multiplication
routine _GEMM. In each step of the algorilhm a complete
block-row is multiplied by an appropriate part of the vector
(matrix), Following the design principles of the LAPACK
library, bolh the siraightforward matrix multiplication and the
multiplicalion by the transposed block-matrix are available in
the same driver subroutine. The latter is achieved by
appropriately applying the transpose option of the _GEMM
subroutine.

Let us assume that A is a BTD matrix consisting of k row-blocks
of size n. Here, the frst and last row-block arc of size nn

while the remaining row blocks are of size nx3n. When this
matrix is stored as a banded matnx it is stored as a collection of
vectors representing the main diagonal, the 2n-1 sub-diagonals

1 MATRIX VECTOR MULTIPLICATION
—A—BTD S8 —8—BTO_ BT

—g—BTD_10 —o—BTD 10T .
25 + {——ABD_8 ——ABD B T [f e -
wdf— ABD 10 -3 ARD 10T

L~

o mE MR R B MR S o e e mm mm e M TR W R MR em mr e o mm mm mr mm Em Em Em e mm Em Em Em R E S o e v o o EE EE EE EEE EE EE EE EE N EE am am EE EE Em O am mm gy W g

| R EE T S oo T o o mEm Em am o am mp gy B A o i wlk o E O O T O O S SE R S S S S SR PR Y W W A A . M- e EEr T TN ESr B S S S S e

PERFORMANCE RATIO
in

il
1

- WD ER O ER EE T o o mm wm o am b aw Em

Y. 7 I e m _" ____..-..---“.___

BLOCK SIZE

Figure 1. Matrix-vector muitiplication banded vs. blocked approach; *BTD" denotes block tridiagonal matrix; 'ABD’ denoles almost block
diagonal matrix; ‘8" denotes PC 8000; ‘10" denotes PC 10000; “T" denotes transpose.

“*1 LU FACTORIZATION

——— ABD 8 ——ABD 10
AT| ~—BTDRE =B—BTDRI0| "~ """~~~ --mmm o mm e e e e e - - I
—%¥—BTDCs ——BTDC 10 AN

PERFORMANCE RATIO

2 4] 8 10 12 14 16 18 20 22 24 26 2B a0
BLOCK SIZE

Figure 2. Matrix factorization banded vs. blocked approach; ‘ABD’ denoles almost block diagonal matrix; ‘BTD)' denotes block
tridiagonal matrix; ‘8" denotes PC 8000; *10° denotes PC 10000; ‘R’ denotes row pivoting, ‘C’ denotes column pivoting.

1142

e
BACK SUBSTITUTION & ABDS —A-ABDST
——ABD 10 —O—ABD10T
e F """"""""""" ——BpTD8 ——BTDBT | "~~~
v—=—BTD 10 —=—BTD10T

PERFORMANCE RATIO

2 ‘ 6 8 10 12 14

18

18 20 22 24 26 28 30

BLOCK SIZE

Figure 3. Back substitution; banded vs. blocked approach; ‘ABD’ denotes almost block diagonal matnx; ‘BTD’ denotes biock tridiagonal
matrix; ‘8" denotes PC 8000; "1 denotes PC 10000; “T" denotes transpese.

and the 2n-1 super-diagonals. In case when A is an alinost biock
diagonal matrix, the situation is shightly more complicated. Such
matrices arise typically when boundary value problems for
ordinary differential equations are discretized. The sizez of
particular blocks {and especially the top and the beitom block)
depend on the choice of the discretization scheme and the
distribution of boundary conditions. For the purpose of this
paper we restrict our aftention (o the simplest case of matrices
that arise when a syslem of n first order differential equalions
with separated boundary conditions is discretized using a finite
difference approach. In this case cach internal row-block is of
size nxdn. To further simplify the picture let uz assume that the

boundary conditions are equally distributed on both sides of the
interval (g = L#/2)). In this case the first block is of size gxn and
the last block is of size (n-g)>»m. This ABD matrix can be

represented as & banded matrix with 2n-¢-1 super-diagonals and
as many sub-diagonals.

In the first series of experiments the performance of the block-

oricnted matrix-vector multiplication was compared with the
performance of the level 2 BLAS routine _GBMV from the

LAPACK library. This routine performs a matrix-vector
multiplication for a banded matrix stored as described above. In
Figure 1 we present the ratio of time of the banded and block-
oriented routines for the increasing block size » for BTD and
ABD matrices and their transposes {(denoted by T) on both PC
8000 and PC 10000, The results for the BBD matnces have been
omilted to preserve the readability of the figure, but they were
sumilar to the BTD matrices. In all experiments the CPU times
have been collected using the diime Unix timer and each result
represents an average of multiple runs. In this, and the
remaining figures, the results arc reported for & = 400 blocks.

1143

We have also performed experiments varying the number of
blocks and have found not effects on performance.

The results are ruther discouraging. Only for the straiphtforward
matrix-vector multiplication of the B7TD malrices on the PC
8000 the blocked approach becomes a feasible alternative to the
banded one. This result is simiiar to what was detected on the
Cray and shows a high level of optimization of the LAPACK
routincs. In can be noticed that, as the size of the blocks
increases, the performance of the blocked routine slowly
reaches the level of the banded one. This supgests that for very
large blocks the blocked approach would become a viable
alternative,

3. MATRIX FACTORZATION

The second scries of experiments was desipned to compare the
performance of the LU factorization routines. Here the question
of fairness of comparison needs to be addressed. The block
oriented algonthme perform the LU factonzation utilizing
special pivoting strategies designed 1o avoid fill-in. In case of
ABD matrices, an alternate row and column pivoting strategy is
used (for more details see Varah [12]). The numernical stability
of this approach has been proven to be equivalent to the stability
of LU factorization with partial pivoting [12]. For the BTD and
BBD matrices a restricted pivoting is applied (for more details
see Varah {11]). The pivot element is sought only tn the
diagonal block. (In this case, restricted row or column pivoting
can be applied so both methods have been implemented for both
BBD and BTD matrices.) In {11] Varah has proven that this
approach is stablc if the matrices are block diagonally dominant.
In the LAPACK library the LU factorization for banded matrices

is performed by the _GBTRF routine which uses standard
column pivoling with row intcrchanges. This means that a fill-in
of the size of the upper bandwidth is generated {and thus
additional arithmetical operations performed). We believe that
from the point of view of numerical stability the block-oriented
and banded algorithms are similar enocugh to make a
straightforward performance comparison between Lhe two
approaches. It is assumed that the additional cost of the banded
solver 15 the price that one has to pay for using a black-bax
library software. In Figure 2 we present the performance ratio of
the banded and block-oriented LU factorization routines for the
increasing block size n.

The results are much more favarable for the blocked
approaches. On both computers for approximately n>9 the
block-oriented routines outperform the banded one. In addition,
the performance gain continues to increase as the block size n
increases. Clearly, in this case the long vectors used in the
banded representation provide no performance advantage. For
the ABD matrices on the PC 8000 a relatively strange variance
of resulis can be observed (which may be also responsible for
the strange behavior of the matrix-vector multiplication, see
Figurc 1). This phenomenon does not have an immediate
explanation but {most likely) can be linked to the
implementation details of the BILAS kernels on the PC 8000,
We plan to investigate it further in the near future. The
performance gain is slightly larger for the BTD than for the ABD
matrices. This can be explained by the width of the banded
matrix that cncompasses both block structures, In case of the
BTD matrices the banded system is wider and while larger fill-
in is generated also a more substantial number of anthmetical
operations is performed. In case of BTD (and, as our other
experiments show, also BBJ) mairices) there is almost no
performance difference between the column and row pivoting
strategies. Additionally, no numerical difference between these
strategles has been observed.

4. BACK SUBSTITUTION

The third series of experiments compared the performance of
the block oriented and banded back solvers applied 1o the
problem wiih a single right hand side. In Figure 3 we present the
ratto of times used by the level 2 BLAS based banded solver
_GBTRS from the LAPACK library and the block-oriented buck-
solvers, for the increasing block size n. Since, for the BTD
matnces, both the row and column pivoting based factorizations
have been implemented the library contains four back solvers:
row pivoting, row pivoting for a transposed original matrix, and
similar two versions of column pivoting oriented solvers.
However, since there was no particular difference in
performance between them, only the row pivoting based back
s0lvers are reported. They are compared with the banded and
banded transposed solvers as appropriate.

As in the case of LU factorization, starting from a relatively
small block size (n>13) the block-oriented solvers outperform
the banded approach (similar results were observed for the 88D
matrices). Again, a significant variance in performance occurs
on the PC 80(K) for the ABD matrices. No substantial difference
between the ransposed and the non-transposed solvers can be
observed. It should be noted that the behavior of the back
solvers differs from that of the matrix-vector multiplication and
the LU factorization. In the earlier cases, as the block size »
increased the performance gains from using the blocked
approach increased. For the back solvers, the performance ratio

1144

is relatively flat (centered around 1.5 times faster) and scems to
decrease as the value of n increases. Still, it can be predicted
that for large values of n the difference will start to increase as
the banded solver performs additional arithmetical operations.

5. COMPUTER COMPARISON

The collected data allows us also to attempt to compare the two
RISC based supercomputers from SGI. The Power Challenge
8000 is an older machine and its processar (MIPS 8000) does
not belong to the main product line of the MIPS processors as it
was designed primarily for the floating point performance. The
Power Challenge 10000 is a newer architecture and it continues
the main, integer performance oriented, MIPS product line (for
more details about MIPS processors sce [7]). Thus the
performance gains of the 10000 model over the 8000 model
should manifest themselves primanly in the integer arithmetic,
with only about 25% gain in the floating point performance. In
the next three figures we present the ratio of times obtained on
the PC 8000 and the PC 10000 for matrix vector multiplication,
LU factonzation and back substitution. In our comparisons we
report the performance of both, blocked and banded, algorithms.

1, PC B0OOO vs PC 10000 MULTIPLICATION

~—9—~BTD ~A—BTDT
- —W—ABD —M—ABDT

e o o s o am oa — — B

o
(7]

fak

- am am Em Em Em EE EE B i o o mm omm

e WE S B e -— e = o wm

P
"

—_—— e = o wh w mf o S BT WS BN CEF WS S O W B B B A e

e — i

-
o

e,

W o am e e o e T — —+— — -

PERFOHMANCE RATIO

ot
i

uT'lllTl"l'r|r'rpl
2 4 & & 10 12 14 B 18 0 X 24 & 28 30

BLOCK SIZE

Figure 4, Matnx-vector moltiplication. (Notation as abave,)

—E—ABD ——fy—BTD

Lo
th

1

P

PERFORMANCE RATIO

il
an
1

n.ﬁ T Y T T T T T T T T Ly T T 1
2 4 6 B 0 12 14 16 1B 20 X 24 26 23 30
BLOCK SIZE

Figure 3. LU Factorization. (Notation as above.)

43 PC 8000 vs PC 10000 BACK
SUBSTITUTION

M LN W7 S ——ABD 3 ABD T
F-! ——BTD —k—BTOT
< 34+ memsuman
&
WoasifPanea-AF-"F-Lcmemeee -
Z
<
E 2. M _ AL A UEY-R-ny-ccncccmce e =
g
Cygr-----o- - —BIN WS A
o

u-ﬁ 1 T T L L L) L Ly T Ll L] T T o

2 4 B B 10 12 4 15 19 20 2 24 26 28 M
BLOCK SIZE

Figure 6. Back substitution. {Notation as above,)

We can observe that in all cases the performance advantage of
the PC 10000 decreases as the problem size increases. This
result holds for both the proposed BLAS based blocked codes
and the LAPACK library based banded matrix otiented routines,
The performance difference iz particularly small for the matrix-
vector multiplication and back substitution. Again, the
performance jumps of the ABD routines can be observed, but
the peneral pattern remains unchanged. These results are rather
surprising as they indicate that alrcady for blocks of size
approximately n = 15 the floating point arithmetic dominates the
solution and acts as the performance equalizer.

6. CONCLUDING REMARKS

We have compared the performance of banded and block-
aricnted approaches to the basic operations (mulliplication,
factorization and back-substitution) on block-struclured
matnces. We have found that on the SGI Power Challenge 8000
and Power Challenge 10000 RISC-based supercomputers the
block-oriented approach cutperforms the banded method for the
LU factorization and back substitution for matrices with blocks
of size a>10. In case of matrix vector multiplication the banded
approach is a clear winner for all block sizes studied. These
results resembie quite closely those observed on the Cray vector
compuier [10]. The results present an interesting challenge to
the designers of codes similar 1o COLNEW [4] that rely heavily
on block structured lincar algebra. Finally, the resulis also show
thut for floating point arithmetic based applications there is
almost no difference in performance between the PC 8000 and
the PC 10000 RISC based supercomputers.

7. ACKNOWLEDGEMENTS

Computer time grant from NCSA at Urbana is kindly
acknowledged. The research has been initiated by a COBASE
grant from the National Research Council, The second author
was supported by Grant 1-702/97 from the National Research
Fund of the Bulgarian Ministry of Education and Science.

1145

REFERENCES

[1] P. Amodio, T. Politi, M. Paprzycki, "Survey of Parallel
Algarithms for Block Bidiagonal Lincar Systems," Journal
of Computers in Mathemaiics Applications, Vol. 31, No. 7,
1996, pp. 111-127

P. Amodio, T. Politi, M. Paprzycki, "Solving Block
Bidiagonal Linear Systems on Distributed Memory
Compters,” Proceedings of the Seventh International
Conference on Parallel and Distributed Computing
Systerns, ISCA, Raleigh, NC, 1994, pp. 812-815

E. Anderson, £ Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaumn, S. Hammarling, A, McKenney,
S. Ostrouchov and D. Sorensen, LAPACK Users' Guide,
SIAM, Philadelphia, 1993

U. Ascher, J. Chnstiansen, R. D. Russell, "Numericail
Solution of Boundary Value Problems for Ordinary
Differential Equations,” Prentice-Hall, New York, 1988

M. Bary, A. Sameh, "Multiprocessar Schemes for Solving
Block Tridigonal Linear Systems,” The /nternational
Joumal of Supercomputing Applications, Vaol. 2, 1988, pp.

37.57

C. Cyphers, M. Paprzycki, A. Karageorghis, "High
Performance Solution of Partial Differential Equations
Discretized Using a Chebyshey Spectral Collocation
Mecthod," Journal of Computational and Applicd
Mathematics, Vol. 66, No, 1, 1996, pp. 71-80

J. Foster, "Evolution of MIPS RISC Microprocessor
Architecture,” Journal of Computing tn Small Colleges,
Vol. 12, No. 4, 1997, pp. 215-229

M. Paprzycki, C. Cyphers, "Level 3 BLAS Based Library
for Block Tridiagonal Matrices,” in: §. Elaydi, et. al. (eds.),

Advances in Difference Eguations, Gordon and Breach,
Amsterdam, 1997, pp. 431493

M. Paprzycki, 1. Gladwell, "Solving Almost Block
Diagonal Systems Using Level 3 BLAS," Proceedings of
The Fifth SIAM Conference on Parallel Processing for
Scientific Compurting, SIAM, Philadelphia, 1992, pp. 52-62

(1] M. Paprzycki. A. Karageorghis, C. Cyphers, "Solving
Structured Matrix Problems on a Cray Vector-Computer,”
Technical Report, University of Cyprus, Mathematica
Balcanica, to appear,

[11]). Varah, "On the Solution of Block-Tridiagonal Systems
Arising from Certain Finite-Difference Equations,”
Mathematics of Compuration, Vol. 26, 1972, pp. 859-868

(2]

(3]

[4]

[5]

(6]

[7]

(8]

191

[12]) 1. Varah, “"Alternatc row and column elimination for
solving certain linear systems.” SIAM J. Numer. Anal. Vol.
13, 1976, pp. 71-75

	big copy.gif
	big0001 copy.gif
	big0002 copy.gif
	big0003 copy.gif
	big0004 copy.gif
	big0005 copy.gif

