PROCEEDINGS OF THE
TENTH ANNUAL

CONFERENCE
ON
APPLIED MATHEMATICS

University of Central Oklahoma
Edmond, Oklahoma
February 4-5, 1994

162

OPTIMIZING PERFORMANCE OF BASIC LINEAR ALGEBRAIC

SUBROUTINES ON DEC COMPUTERS

MARCIN PAPRZYCKI
CLIFF CYPHERS
Department of Mathematics and Computer Science
University of Texas of the Permian Basin
Odessa, TX 79762
(915) 367-2244
paprzycki m@gusher.pb.utexas.edu

cliffc@tenet.edu

ABSTRACT: Many recently published papers study optimizing techniques for
vector-supercomputers. The aim of this paper is to investigate the feasibility of these
techniques on other computer architectures. We will study the effects of loop unrolling

and blocking on the DEC 50007200 RISC architecture and VAX 4000 mainframe.

163

1. INTRODUCTION

Recent advances in the development of computer architectures facilitated a
radical increase in the size of the problems to be solved. To be able to satisfy the needs
of computationally intensive applicatiﬂns not only hardware but also software must be
optimized. Numerical linear algebra is one of the areas where substantial advances in
knowledge about code optimization for modern architectures have been made. This can
be partially explained by the fact that there exists a large number of problems (typically
involving large dense matrices) which require O(n3) operations so that any time savings
are crucial. The study of problems tnvolving large dense matrices is at the center of the
LAPACK project [1] and has led to establishing level 1, 2 and 3 BLAS kernels (4, 5, 10]
as well as to the study of a number of optimizing techniques. A large number of
recently published papers examine such techniques for vector-supercomputers
(2,3, 6, 8 9]. The aim of this paper Is to investigate the feasibility of these techniques
on more standard computer architectures. Two optimizing techniques (loop unrolling
and blocking) applied to vector addition, dot product, matrix-vector and matrix-matrix
multiplication will be considered. It will be shown that such techniques can be successful
and lead to substantial performance gains.

We have experimented on two computer architectures: VAX 4000-100 mainframe
with 64 Mbytes of main memory and DEC 5000/200 workstation with 32 Mbytes of main
memory. All programs were written in Fortran 77. The timings on the VAX 4000 were
obtained using the system timer (library routines LIBSINIT TIMER and

LIBSSHOW TIMER), which provides information about the actual CPU time used.

164

Times on the DEC 5000/200 were measured on an empty machine using the Unix
function seconds. All results presented in this paper are averages of multiple runs. In
all cases, the performance is represented by dividing the number of floating point
arithmetical operations necessary to calculate the result by the CPU time used to
calculate the result, and scaled by 107 (this performance measure can be interpreted as
approximating MFlops).

Section 2 concerns vector-vector operations, matrix-vector operations are

considered in section 3, section 4 deals with matrix-matrix operations.

2. VECTOR-VECTOR OPERATIONS

Loop unrolling 1s a standard optimizing technique which can be applied to vector
vector operations [3, 6]. The level 1 BLAS standard [10] defines several basic vector-
vector operations. The first operation we would like to consider is the vector update of
the form (this is the AXPY operation in the level 1 BLAS definition):

X =x + ay
where x, y ¢ R" and « is a scalar. A generic Fortran loop that would perform this

operation has the form

DO 101 = 1,N
10 X() = X() + a*Y()).

As suggested in [3, 6] this loop can be unrolied to varying depths (the example shows

unrolling to level 4; it is assumed that care is taken of the possible uneven vector parts):

165

DO 101 = 1,N4
X{1) = X(1) + a*yY(l)
X{(1+1) = X{1+1) + a*Y{I1+1}
X(+2) = X(1+2) + a*¥Y{l+2)
X(1+3) = X{1+3) + a*Y(1+3)
10 CONTINUE

By improving the register management, such unrolling leads to substantial performance
gains on the Cray supercomputers [3].

The second operation we would like to consider is dot-product calculation

(operation DOT from the level 1 BLAS definition). This operation has the form:

N
d=3 x

i=l
where x, y € R". A generic Fortran loop that performs this operation has the form:

DO 101 = 1N
10 TEMP = TEMP + X{)*Y(l).

The unrolling of this loop leads to substantial performance gains e.g. on an IBM 3900
[3]. Unrolled to level 4 this loop takes the form (again assuming an appropriate

treatment of uneven parts):

DO 101 = 1 N4
TEMP = TEMP + X{)*Y{l)
+ X({+1)*¥({l+1)
+ X(1+2)*Y(1+2)
+ X({+3)*Y(1+3)
10 CONTINUE

The results of experiments on the DEC 5000 and VAX 4000 for both operations and
various depths of unrolling are summarized in Table 1 (the vector length 40,000). For

both operations we have also experimented with other vector sizes and the results were

similar.

For the AXPY operation the results on the VAX 4000 are not surprising. From
this and other experiments we have learned that a performance gain of approximately
7% from unrolling can be observed. The best results for all vector sizes were for

unrolling approximately to the level of 8. At the same time a surprising result can be

observed on the DEC 5000, where any attempt at unrolling leads to performance losses.

For the DOT operation we can observe a definite performance improvement for

the unrolled versions on both machines. Performance gains on the VAX 4000 are

]

Unrolling AXPY DOT {
depth VAX 4000 DEC 50007200 VAX 4000 | DEC 5000/200
L 2 99 | 38 | 21 |
2 2.86 1.99 2.73 2.22 1
3 2.83 1.89 3.15 2.26
4 2.86 1.93 323 2.24
5 2.99 1.92 i 3.22 2.28
6 Y 194 || 3.8 2.27
7 3.03 1.82 “ 3.27 2.29
8 3.05 1.89 J[3.30 2.29
9 3.03 ot 329 2.26
10 3.02 1.91 || 3.30 2.30
11 3.03 1.86 “ 3.32 2.26 |

Table 1. Performance of the unrolled AXPY and DOT operations.

approximately 3.7% for all vector sizes experimented with, and were observed for
unrolling approximately to the level of 10 or 11. There is also a definite performance

gain from using loop unrolling on the DEC 5000. For all of our experiments the

166

167

performance gain of up to 6% was observed and the best results were for unrolling

approximately up to the level of 10.

3. MATRIX-VECTOR OPERATIONS

As an example of the matrix-vector operation we have used matrix-vector
multiplication (GEMYV operation from level 2 BLAS [5]), a generic Fortran program of

which has the form:

DO10J = 1,N
DO 101 = 1N
Y{) = Y{I}) + A{l,J)*X{J)
10 CONTINUE

where x, y € R" and A € R"™. This time two directions of unrolling are possible: to the

right (for DOT-type unrolling) and down (for AXPY-type unrolling). After unrolling to

the level of 2 to the right and to the level of 3 down the above loop becomes (again it is

assumed that uneven parts have been taken care of):

DO 101 = 1 N3
DO10J = 1,N,2
Y{l) = Y{) + A(LJ)*X(J) + AL+ 1)*X{J+1)
Y{I+1) = Y{+1) + Al+LJ)*X(J) + A{l+1,d+1)*X{J+1)
YA+2) = Y{1+2) + A(f+2,0*X(J) + A{l+2,J+ 1)*X{J+1)
10 CONTINUE

Figures 2 and 3 present the performance results for both computers for various levels of
unrolling in both directions and matrix size 400. Similar results were observed also for
other matrix sizes.

It can be observed that there is a significant difference between the unrolled and
the not unrolled implementations. As was suggested by the results of vector-vector

operations, the best results are observed for the unrolling to the right (analogous to the

MATRIX-VECTOR MULTIPLICATION

DEC BOOY, VARYING UNROLLMENT — RIGHT

38 =

6 -

34 |

MELOPS
ta
T

u_
27 - é
28 I R W) I b - | |] A 1
Plain 1 2 3 L 5 8 7 B L 10 11
UNROLLMENT DEPTH DOWN
O i1 + 10 o 9 Fy! B o 7 v 8

Figure 1. Performance of the unrolted GEMV; DEC 5000/200.

DOT operation) to the level of 9, 10 or 11. Qverall performance gam v vimvmag 1

approximately 30%.

It can be observed that a gain of approximately 23% can be achieved when
matrix-vector multiplication is unrolled by 10 down and 1 or 3 to the right. This result is

in agreement with what we have observed for vector-vector operations, where a more

significant gain was observed for AXPY operations.

4. MATRIX-MATRIX OPERATIONS
Basic matrix-matrix operations are defined by the level 3 BLAS standard [4]. A

typical example of such an operation is matrix multiplication. s generic form

16&

169

MATRIX-VECTOR MULTIPLICATION

VAX 4000; VARYING UNROLLMENT —~RIGHT L

or B — N
''_'__,_,—#_F-'—
".‘ [— -r.__&—e.ﬂ"’ /

4.7

48 -

MFLOPS
&

42 |-
qr \N\-‘—v—.\‘
PP ~ S
Fys ¥
19 + . .
348 -
AT |
asl—-—. L. __ | l I
a [} 10 1
O 1 4 2 & 3 8 4 » 5 v 8

Figure 2. Performance of the unrolled GEMV; VAX 4000.

(presented here is a column oriented form which is the fastest for Fortran [6]) 1s:

DO10J = 1,N
DO 10K = 1N
DO 101 = 1N
C{.J) = C{.J} + A{LLKY*B(K.J)
10 CONTINUE

where 4, B, C ¢ R"™". When multiplying matrices there are several ways of optunizing
performance. The innermost do-loop represents a number of vector updates (AXPY
operations), so we can replace it by a series of calls to the optimized AXPY routine.
The two innermost do-loops together represent a sequence of matrix-vector
multiplications, so they can be replaced by a call to the optimized GEMYV routine.

There is one more optimizing technique — blocking. In this case we attempt to reduce

170

data movement by performing a number of operations on a block of matrix C kept in

cache memory [7]. This approach is illustrated in Figure 3. In this case the operations

between the blocks are performed by utilizing the most efficient GEMV code. -

Figure 3. Blocking of a matrix-matrix operation.

The results of experiments using all of the above mentioned techniques for various

matrix sizes are summarized in Table 2 (for VAX 4000) and Table 3 for DEC 5000/200

In both cases, we have experimented with a variety of blocksizes and found that the

blocksize should be a multiplicity of the level of the unrolling of the GEMYV routine.

The optimal blocksize is between 40 and 60 and varies for various matrix sizes. The

difference between performance of blocked codes for blocksizes in this range is

approximately 1-3%. The results in Tables 2 and 3 are for blocksize 40.

[) “ JKI IK-AXPY | J-GEMV BLOCKE]_)_‘
00 | 446 5.9 6.81 8.33 —I
150 || 391 5.07 5.56 787 |
200 3.82 4.95 5.32 7.86
250 {I 3.72 4.74 523 7.42

Table 2. Matrix-matrix multiplication, VAX 4000, performance in MFlops

171

For large matrices, when the optimized AXPY operation is used inside the matrix

multiplication a performance gain of approximately 27% can be observed. When the

optimized GEMYV operation replaces the two innermost do-loops the performance gain

over the plain code is approximately 40%. For blocking, when used in matrix-matrix

multiplication, the performance gain over the plain method is approximately 99%.

e’

N JI JKI JK-AXPY | I-GEMV BLO_CKEB |
100 3.90 4.06 497 629 |
150 2.77 2.81 3.40 657 |
200 | 279 2.82 3.40 663 |
250 | 278 2.81 341 650 |

m—

Table 3. Matrix-matrix multiplication, DEC 5000/200, performance in M Flops

As one could expect application of optimized AXPY does not lead to major
performance gains. Optimized GEMV leads (for large matrices) to the performance
gains of approximately 22%. When an optimized blocked code is applied the

performance gain over the plain code reaches 133%.

5. CONCLUSIONS

In this paper we have discussed the possible performance gains when basic
optimizing techniques are applied to simple linear algebraic operations. It is shown that
such techniques lead to substantial gains not only on supercomputers. It is shown, that

the biggest performance gain {even more than 100%) can be obtained when blocking is

combined with optimal matrix-vector and vector-vector operations.

10.

172

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, 1.,
Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.,

LAPACK Users’ Guide, SIAM, Philadelphia, 1993

Anderson, E., Dongarra, I, Evaluating Block Algorithm Variants in LAPACK, in:
Dongasra,)., Messina, P., Sorensen, D.C., Voigt, R.G., (eds.) Parallel Processing for
Scientific Computing, SIAM, Philadelphia, 1989

Dayde, M.L, Duff, I.S,, Level 3 BLAS in LU Factorization on Cray-2, ETA-10P and
IBM 3090-200/VF, The International Journal of Supercomputer Applications, 3 (2),
1989, 40-70

Dongarra, J.J,, Du Croz, J., Duff, 1., Hammarling, S., "A Set of Level 3 Basic Linear
Algebra Subprograms,” Technical Report ANL-MCS-TM57, Argonne National

Laboratory, 1988

Dongarra, J.J., Du Croz, J., Hammarling, S., Hanson, R.J., An Extended Set of
FORTRAN Basic Linear Algebra Subprograms, ACM Trans. on Mathematical

Software, 14 (1), 1988, 1-17

Dongarra, I1.J., Gustavson, F.G., and Karp, A., Implementing Linear Algebra ,
Algorithms for Dense Matrices on a Vector Pipeline Machine, SLAM Review, 26,

1984, 91-112

Dongarra, J. J., Mayes, P., Radicati, G., The IBM RISC System/6000 and linear
algebra operations, SuperComputer, 8 (4), 1991, 15-30

Gallivan, K., Jalby, W., Meier, U., Sameh, A., Impact of Hierarchical Memory
Systems on Linear Algebra Algorithm Design, The International Journal of

Supercomputer Applications, 2 (1), 1988, 12-46

Gallivan, K., Plemmons, J.R., Sameh, H.A., Parallel Algorithms for Dense Linear
Algebra Computations, SIAM Review, 32 (1), 1990, 54-135

Lawson, C.L., Hanson, R.J., Kincaid, D.R., and Krogh, F.T., Basic Linear Algebra
Subprograms for FORTRAN Usage, ACM Trans. on Mathematical Software, 5 (3),

1979, 306-323

	siam copy.gif
	siam0001 copy.gif
	siam0002 copy.gif
	siam0003 copy.gif
	siam0004 copy.gif
	siam0005 copy.gif
	siam0006 copy.gif
	siam0007 copy.gif
	siam0008 copy.gif
	siam0009 copy.gif
	siam0010 copy.gif
	siam0011 copy.gif

