
Comparing performance of classifiers applied to
disaster detection in Twitter tweets –

preliminary considerations

Maryan Plakhtiy1, Maria Ganzha1[0000−0001−7714−4844], and Marcin
Paprzycki2[0000−0002−8069−2152]

1 Warsaw University of Technology, Warsaw, Poland
M.Ganzha@mini.pw.edu.pl

2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

Abstract. Nowadays, disaster “detection”, based on Twitter tweets,
has become an interesting research challenge. As such it has even found
its way to a Kaggle competition. In this work, we explore (and com-
pare) multiple classifiers, applied to the data set from that challenge.
Moreover, we explore usefulness of different preprocessing approaches.
We experimentally establish the most successful pairs, consisting of a
preprocessor and a classifier. We also report on initial steps undertaken
towards combining results from multiple classifiers into a meta-level one.

Keywords: Tweet analysis · text preprocessing · classifiers · perfor-
mance comparison · meta-classifiers.

1 Introduction

Currently, social media like Facebook, Twitter, Instagram, and others, are one
of the most followed sources of news. Almost all news agencies, organizations,
political parties, etc., post their information/news/advertisements there, as they
are the most visited web sites. However, each of these news outlets has its own
purpose and/or target audience. For example, Facebook is known to be a polit-
ical discussion arena, Instagram is used by bloggers and businesses, to advertise
their products. Finally, Twitter, because of its short messages, has become one
of the fastest, and widely used, news/events “spreaders”. Thus it became one of
the most important sources of communication in the case of an emergency. Par-
ticularly, this is the case, when almost every person has a smartphone, which lets
them “immediately” announce an observed emergency. As a result, a growing
number of news agencies, emergency organizations, local government branches,
and others, became interested in monitoring Twitter for emergency announce-
ments. This is to help them to act faster and, possibly, save lives.

In this context, a very interesting question arises: how to distinguish an ac-
tual emergency-announcing tweet, from a “fake news tweet”, clickbait, or a non-
related tweet. While relatively easy for humans, making this distinction is quite



2 M. Plakhtiy, et al.

challenging for computers. Therefore, event detection, on the basis of tweets’
content, is a popular research area. While the most popular seems to be the
sentiment analysis, ongoing research involves also fake news detection, text clas-
sification, or disaster detection. To stimulate work, related to the latter one, a
competition was created on the Kaggle site [10]. Unfortunately, before the sub-
mission deadline, a leakage of correct predictions occurred, and the competition
had to be canceled. Nevertheless, this work is based on the data set originating
from this competition, and its aim is to apply (and compare performance of)
well-known classifiers, to analyse content of tweets, to detect disasters. Moreover,
interactions between data preprocessing that can be applied to the tweets and
the classifiers is investigated. Interestingly, there is not much work that would
delve into this topic. Finally, preliminary results, related to combining “sugges-
tions” from multiple classifiers, and creating a meta-classifier, are presented.

In this context, we proceed as follows. In Section 2 we summarize most per-
tinent related work. Next, in Section 3, we describe the Kaggle data set and
present summary of basic statistical analysis that was applied to it. We follow,
in Section 4, with the description of data preprocessing that have been experi-
mented with. Moreover, in Section 5, the experimental setup is outlined. Material
presented up to this moment provides the foundation and allows to report, in
Section 6, the experimental results obtained when different classifiers have been
paired with different preprocessors and applied to the prepared data. Finally, in
Section 7, initial results concerning combining multiple classifiers are introduced.

2 Related work

Let us now summarize the state-of-the-art of classifiers that can be (and have
been) used in context of disaster detection (or other forms of tweet content
analysis). We focus our attention on most recent, successful approaches that
may be worthy further examination.

In [13], authors summarized effective techniques for data analysis in the con-
text of Twitter data. They also suggested that Logistic Regression [25] is best
suited for the disaster management applications. Obtained results supported this
claim. In a somewhat similar research, reported in [2], authors analysed dam-
ages caused by the disaster (e.g. how many people were injured, homes destroyed,
etc.). They have created a Tweedr (Twitter for Disaster Response) application,
which consisted of: classification, clustering, and extraction. Among used clas-
sifiers, the Logistic Regression was proven to be the most effective, with the
∼ 88% accuracy for the disaster detection. However, the data set used for tests,
was really small and skewed (by over abundance of “positive examples”).

In [24], authors leveraged a Hybrid CNN-LSTM classifier architecture, for
the Fire Burst Detection. Unfortunately, they did not provide details of achieved
accuracy, only claim that this approach was successful. Hybrid CNN-LSTM was
chosen, based on the [1], where LSTM, LSTM-Dropout, and Hybrid CNN-LSTM,
were used for the Fake News Identification on Twitter. Here, 82.29% accuracy
was achieved with the LSTM, 73.78% with the LSTM-Dropout, and 80.38%



Performance of classifiers applied to disaster detection 3

with the Hybryd CNN-LSTM (on the PHEME data set [28]), which consisted
of ∼ 5, 800 tweets. These classifiers are promising, since they do not need the
context, and the considered data set involves different types of disasters.

In [26], authors proposed a Hierarchical Attention Networks (HAN), for the
document classification, which outperformed other considered classifiers. They
compared several popular methods, testing them on six classification tasks, and
stated that HAN was the best in each case. Note that authors worked with
complete documents, whereas in Twitter, an entry is limited to 140 characters.
Another paper supporting use of the attention mechanism is [27], where authors
address the hyperpartisan (highly polarized and extremely biased) news detec-
tion problem. Authors compared different classifiers on a data set consisting of
million articles, and claimed that the Bidirectioanal LSTM model, with self at-
tention (Bi-LSTM-ATTN), performed best. Similarly to [26], they worked with
large documents. However, they reduced them to 392 tokens (during prepro-
cessing), removing stopwords, and selecting a 40000 token vocabulary. In this
setup (using Bi-LSTM-ATTN), they obtained 93,68% accuracy for the hyper-
partisan news detection, while other models reached accuracy of approximately
89.77-91.74%.

One of interesting approaches, to the problem at hand, is the Bidirectional
Encoder Representations from Transformers (BERT; [5, 8]), which obtained state-
of-the-art results in a wide array of Natural Language Processing (NLP) tasks.
In [14], BERT was used for classification of tweets related to disaster manage-
ment. There, performance of BERT-default, and its modifications, was compared
to the baseline classifier, when applied to the combination of CrisisLex [3] and
CrisisNLP [4] data sets, consisting jointly of 75800 labeled tweets. Overall, all
BERT classifier outperformed the baseline one, and BERT-default had the best
recall score (∼ 64.0% accuracy).

Separately, work reported in [7, 23], where authors combine suggestions from
multiple sources to deliver improved results, may be worthy considerations. In
this context note that different classifiers independently determine, if a given
tweet is (or is not) reporting an actual disaster. Hence the question: can sugges-
tions from multiple classifiers be combined (e.g. using a simple neural network),
resulting in a better accuracy of classification?

In the mentioned researches, data preprocessing is applied in each case, but is
not comprehensively considered. Therefore, besides testing known classifiers, we
have decided to study effects of preprocessing on the performance of the prepro-
cessor+classifier pairs. This is one of important contributions of this paper. The
list of preprocessing methods that have been tried, can be found in Section 4.

Overall, based on considered literature, it was decided to test six “stan-
dard classifiers”: Logistic Regression, Ridge, SVC, SGD, Decision Tree and Ran-
dom Forest, and eleven NN-based classifiers: LSTM, Bi-LSTM, LSTM-Dropout,
CNN-LSTM, Fast Text, RNN, RCNN, CNN, GRU, HAN, and BERT. Classifiers
were tested using Count [19] and Tfidf [22] vectorizers. Ten NN-based classifiers
(excluding BERT) were tested using Keras Embeddings [11] and, independently,
Global Vectors for Word Representation (GloVe [16]) Embeddings. To combine



4 M. Plakhtiy, et al.

results from multiple classifiers, a standard backpropagation neural network was
used.

3 Data set and its preliminary analysis

Let us now describe the data set used in our work. As noted, it originates from
the Kaggle competition: Real or Not? NLP with Disaster Tweets. Predict which
Tweets are about real disasters and which ones are not [10]. The complete data
set contains 10,876 tweets that were hand classified into: (1) True, i.e. notifying
about actual disasters, and (2) False. This data set was (within Kaggle) divided
into two files: train.csv, and test.csv. The train.csv contains 7613 rows, and 5
columns: id, keyword, location, text, target. The first 10 rows from the train.csv
file are presented in Table 1.

Table 1. First rows from the train.csv file.

id keyword location text target

1 NaN NaN Our Deeds are the Reason of this #earthquake M... 1
4 NaN NaN Forest fire near La Ronge Sask. Canada 1
5 NaN NaN All residents asked to ’shelter in place’ are ... 1
6 NaN NaN 13,000 people receive #wildfires evacuation or... 1
7 NaN NaN Just got sent this photo from Ruby #Alaska as ... 1
8 NaN NaN #RockyFire Update =¿ California Hwy. 20 closed... 1
10 NaN NaN #flood #disaster Heavy rain causes flash flood... 1
13 NaN NaN I’m on top of the hill and I can see a fire in... 1
14 NaN NaN There’s an emergency evacuation happening now ... 1
15 NaN NaN I’m afraid that the tornado is coming to our a... 1

Here, the individual columns have the following meaning:

– id - does not contain any relevant information, so it will not be used;
– keyword - contains keywords, or NaN if the tweet does not include a keyword;
– location - contains location, or NaN if the tweet does not include location;
– text - contains text of the tweet,
– target - contains correct prediction for the tweet; 1 means that the tweet

notifies about a disaster, and 0 if the tweet does not announce an emergency.

File test.csv contains test data that was to be used within the competition.
This file contains 3263 rows and 4 columns: id, keyword, location and text, with
the same meaning as above. Obviously, it does not include the target column.

Following the link to the Kaggle Leaderboard [9], it is easy to notice a number
of submissions that have a perfect score. This is because of the data leakage, i.e.
correct predictions for the “test tweets” appeared on the Internet. Hence, it can



Performance of classifiers applied to disaster detection 5

be reasonably claimed that some participants used this data to submit their
“predictions”. Moreover, it is not possible to establish, which results that are
not 100% accurate, have been obtained by training actual classifiers. This is
because it is easy to envision that some participants could have “produced”
results “close to perfect”, but not “stupidly perfect”. Obviously, due to the
leak, Kaggle cancelled this competition. Nevertheless, analyzing the Leaderboard
it can be stipulated that the first “realistic result” is 0.86607 submitted by
the ”right right team” team. However, for obvious reasons, this claim is only a
“reasonable speculation”.

Overall, in what follows, all classifiers were trained using data from the
train.csv file. Moreover, performance is reported in terms of the actual Kag-
gle score, calculated by applying the trained classifiers to the test.csv file. In
this way, keeping in mind all, above mentioned, limitations of this approach, a
baseline performance can be formulated.

3.1 Statistical analysis of the data set.

A Python program, inspired by [6], was developed to analyze key characteristics
of the data set. We report these aspects of data that are known (from the liter-
ature; see, Section 2) to, potentially, influence the performance of the classifiers.
To start on the most general level, in Table 2, class distributions for the train
data set and the test data set are presented. It is easily seen that there are more
“non disaster tweets” than “disaster tweets”, in both data sets. However, their
ratio (number of non disaster tweets divided by number of disaster tweets) is
almost the same.

Table 2. Basic statistics of the train and test data sets

Distribution Train data set (7613 - 100%) Test data set (3263 - 100%)
Type Disaster Non Disaster Ratio Disaster Non Disaster Ratio

Class 3243 (42,6%) 4370 (57,4%) 0,7421 1402 (43,0%) 1861 (57,0%) 0,7534
Keyword 3201 (42,0%) 4351 (57,1%) 0.7357 1386 (42,5%) 1851 (56,7%) 0,7488
Location 2177 (28,6%) 2903 (38,1%) 0,7499 936 (28,7%) 1222 (37,5%) 0,7660

Each data set, has a keyword column. In Table 2, it is shown how many
tweets of each class have a keyword data (not all tweets were provided with
keywords). It can be noticed that trends, for both data sets, match trends of
class distribution. It thus can be concluded that there is no visible correlation
between tweet keyword data and its class. Overall, data from the keyword column
will be used in the training process.

Also, in Table 2, it is visible that a large number of tweets do not have the
location data. However, the general trend is very similar to the class distribution
(ratio of non disaster tweets to disaster tweets). Hence, it can be concluded that



6 M. Plakhtiy, et al.

there is no immediate correlation between location data and tweets’ class. This
hypothesis was experimentally confirmed.

Data from Table 2 supports the conjecture that train and test data sets
originated from the same data set (see, also [17]). This conjecture has been
further experimentally verified and thus, in the remaining parts of this Section,
we depict properties only for the train data set.

Let us start form the distribution of the number of characters in the disaster
and non-disaster tweets, which is depicted in Figure 1.

Fig. 1. Characters distribution for disaster and non-disaster tweets.

It can be seen that disaster tweets and the non-disaster tweets have quite
similar character distributions. But, it is also fair to notice that, in general, non
disaster tweets have more characters than the disaster tweets. This fact, however,
has not been used explicitly in model training.

Next, let us compare distributions of numbers of words in disaster and non-
disaster tweets (presented in Figure 2).

Here, it can be easily seen that the number of words distributions have similar
shapes. Moreover, note that the scale for both graphs is the same. It should be
kept in mind that the fact that non disaster tweets have slightly “taller bars” is
caused by the fact that there are more tweets in this class.

Thus far we have not found substantial statistical differences between dis-
aster and non disaster tweets. Situation is quite similar when the word length
distribution is considered (see, Figure 3). While the scales of both figures are
slightly different, the overall shape of the distribution is very much alike.

Let us now consider the top 10 stopwords found in disaster and non-disaster
tweets. They have been captured in Figure 3.1.



Performance of classifiers applied to disaster detection 7

Fig. 2. Word number distribution for disaster and non-disaster tweets.

Fig. 3. Word length distribution for disaster and non-disaster tweets.



8 M. Plakhtiy, et al.

Fig. 4. Top 10 stopwords in disaster and non-disaster tweets.

In both cases, the stopword is the most popular one. The fact that it seems
to be more popular in non disaster tweets is “normal”, because there are more
tweets of this class. In the non disaster class, the next most popular stopwords
are: i, you, my. Interestingly, these stopwords are not present in the disaster
tweets class. There, the most popular stopwords (other than ‘the) are: in, of,
on, for, at. These are descriptive stopwords that can be connected with the
description of the details of the disaster. Therefore, stopwords may be useful in
recognizing the nature of a tweet (and should not be removed).

As the last statistical comparison, let us consider punctuation symbols in
both tweet classes (as illustrated in Figure 5).

It can be seen that both classes of tweets have the same order of top 3
punctuation signs (’-’, ’—’, ’:’). Hence, punctuation symbols do not differentiate
between classes (and can be removed during the preprocessing phase of data
preparation).

Finally, after analysing occurrences of the top 10 hashtags in the data set, it
was noticed that there is a fairly small number of hashtags embedded in tweets,
as compared to the total number of tweets. For example, in the train data set
the top hashtag #news occurred less than 60 times, while the top not disaster
tweet hashtag #nowplaying occurred around 20 times (in total). Thus, it can
be conjectures that hastags will not bring much value to the classifier training.
Therefore, it was decided to explicitly tag tweets that include a hashtag, but the
hashtag itself will not be considered as a “different word” (e.g. #news and news
will be treated as the same word).



Performance of classifiers applied to disaster detection 9

Fig. 5. Punctuation characters in distribution for disaster and non-disaster tweets.

4 Data preprocessing

Data preprocessing is a standard initial step of all data analytics/machine learn-
ing procedures. While the NLTK [15] is a popular natural language processing li-
brary, it had to be slightly augmented to deal with the tweets. Specifically, there
are 17 configurable parameters in the TweetPreprocessing.preprocess method,
created for the purpose of preprocessing. Therefore, 217 different preprocessors
can be created. Hence, it would be extremely time consuming to check the per-
formance of all possible preprocessors, especially since the majority of them will
perform poorly. This latter statement has been (partially) experimentally veri-
fied. Thus, it was decided to select, and “freeze” a set of operations performed by
all of them, and thus substantially reduce the total number of possible prepro-
cessors. Operations that have been selected to be used in all preprocessors were:
(1) make all words lower letter, (2) remove slang words, (3) remove links, (4) re-
move Twitter users, (5) remove hashtags, (6) remove numbers. These operations
were selected experimentally (it was found that they “always” improved the
performance of classifiers). The last frozen parameter was (7) to not to perform
stemming. This was an unexpected discovery, as stemming is one of key prepro-
cessing techniques in NLP. After extensive experimentation with the remaining
10 parameters, 10 preprocessors have been selected. They are summarized in
Table 3 (names of parameters are self-explanatory).

Note that six operations add flags to the string (e.g. Hash Flag and Link
Flag set to “T” mean that “My #string has a link https://mylink.com” will
be transformed into “My #string has a link https://mylink.com < hashtag >
< link >”). Here, it was found that the content of these items might not be



10 M. Plakhtiy, et al.

Table 3. Selected Preprocessing Algorithms

ID Link User Hash Number Keyword Location Remove Remove Remove Split
Flag Flag Flag Flag Flag Flag Punct Stpwrds NotAlpha Words

PA01 T T T T F F T T T T

PA02 F T T F F F T T T T

PA03 T T T T T T T T T T

PA04 T T T F F F T T T T

PA05 F F F F F F T T T T

PA06 T T T T F F F F F T

PA07 T T T T F F F F F F

PA08 F F F F F F F F F F

PA09 F F F F F F T F F F

PA10 T T T T F F T F F F

important. For example, the link itself, usually has no useful information. How-
ever, the fact that the tweet contains a link, user, hashtag, numbers, or loca-
tion, might be important. Note that the Global Vectors for word Representation
(GloVe, [16]) has similar flags included. It has vector representations for Link,
User, Hash and Number flags. While analysis reported in Section 3.1, suggested
that keyword and location columns are not likely to be useful, these flags have
been included for the testing purposes.

Preprocessors PA01, PA02, PA03, PA04 and PA05 were selected to test how
the presence of Link, User, Hash, Number, Keyword and Location flags, influences
performance of classifiers. Here, the remaining parameters are set to T.

Preprocessors PA06, PA07, PA10, and PA01, have similar configuration for
the “flag presence parameters”, but different configurations of the remaining
parameters. The four parameters Link Flag, User Flag, Hash Flag and Number
Flag) are set to T to match the vector representations in GloVe. These pre-
processors test how Split Word, Remove Punctuation, Remove Stopwords, and
Remove Not Alpha parameters influence the performance of classifiers.

Finally, preprocessors PA08 and PA09, and PA05, have the “flag presence
parameters” turned to F. They test how Split Word, Remove Punctuation, Re-
move Stopwords, and Remove Not Alpha parameters influence the performance
of classifiers.

5 Experimental setup

Based on literature review, summarized in Section 2, 17 classifiers were selected:
Logistic Regression, Ridge, SVC, SGD, Decision Tree and Random Forest, from
the scikit-learn [20]; LSTM, Bi-LSTM, LSTM-Dropout, CNN-LSTM, Fast Text,
RNN, RCNN, CNN, GRU, HAN and BERT utilizing Keras [12].

Apart from pairing classifiers with preprocessors, classifiers were tested for
different parameter configurations, within each pair. Six Sklearn based classi-



Performance of classifiers applied to disaster detection 11

fiers were tested with the Count ([19]) and Tfidf ([22]) vectorizers, with differ-
ent ngrammar ranges ([1,1], [1,2], [1,3]). The 10 NN-based classifiers (excluding
BERT) were tested with Keras and GloVe Embeddings, with different hyper
parameters. Experiments with BERT were conducted separately because it is
a pre-trained classifier, requiring an embedding mechanism different from other
NN-based classifiers. It should be noted that additional experiments have been
performed to further explore possibility of building a “perfect classifier”, but
they were found to be much worse that these reported here.

We proceeded with exactly the same data split as in the Kaggle competition.
The original data set (10,876 tweets) was split into standard 70-30% and 10-fold
cross-validation was used. Specifically, for the cross-validation we split the train
data into 90/10% (6447/716 tweets). Here, experiments were executed using
StratifiedKFold [21] with 10 splits, and the seed equal to 7.

6 Experimental results

Let us now report and discuss obtained results. Note that the complete set of
results, for all classifiers and preprocessors that have been experimented with,
can be found at [18]. This is provided since the actual volume of generated data
is such, that it cannot be properly depicted in the article itself.

6.1 Base classifiers and preprocessors

Let us start from considering combining preprocessing algorithms, with Ridge,
Linear Regression, Logistic Regression, Random Forest, Decision Tree, SVC and
SGD classifiers. They were tested with ten different preprocessing algorithms
using Tfidf and Count vectorizers, with different grammar ranges ([1, 1], [1, 2],
[1, 3]). Overall, 360 (6 classsffiers * 10 preprocessing algorithms * 2 Vectorizers * 3
ngrammars) tests cases have been completed, exploring all possible combinations
of classifier and preprocessor pairs. In Table 4 best results obtained for each of
the six classifiers are presented.

Table 4. Best results for classifiers not based on neural networks.

Classifier Vectorizer [grammar range] Algorithm ID Score

Ridge Tf-idf [1, 2] PA08, PA09 0.80444
Logistic Regression Count [1, 2] PA04 0.80245

SVC Count [1, 1] PA03 0.80251
SGD Tf-idf [1, 3] PA08 0.80156

Random Forest Tf-idf [1, 1] PA02 0.78881
Decision Tree Count [1, 2] PA05 0.76332

As can be seen, the Ridge classifier performed the best. Moreover the same
result was obtained in combination with two different preprocessors (PA8 and



12 M. Plakhtiy, et al.

PA9). Reaching beyond results presented in Table 4, when considering all ex-
perimental results, no specific preprocessing algorithm has been found to be
a “definite champion”. Hence, a “relative strength” of preprocessors was cal-
culated. For each preprocessor, for each classifier, the best three results were
considered. If a given preprocessor was the best for a given classifier, it received
3 points, the second place scored 2 points, while the third place 1 point (see,
Table 5).

Table 5. Preprocessing algorithms relative score

Algorithm Positions Points Score

PA09 3 + 1 + 1 + 3 8
PA04 3 + 2 + 2 + 1 8
PA02 1 + 2 + 3 + 2 8
PA08 3 + 3 6
PA03 1 + 3 4
PA01 2 + 1 3

Using the proposed scoring method (while keeping in mind its limitations),
the best scores were achieved for PA09, PA04 and PA02 preprocessors. How-
ever, it is the PA09 that can be considered a winner, as it earned two “first
places”. The second best was PA04 (one first place, when combined with the
Logistic Regression classifier). This preprocessor adds link, user, hash flags and
removes punctuation and stopwords. The third best was PA02, which is very
similar to PA04, except the PA04 adds link flag but PA02 does not.

To complete the picture, let us now present the 15 best preprocessor+classifier
pairs (in Table 6).

From results presented thus far it can be concluded that the three “lead-
ers among non-NN-based classifiers” were: Ridge, SVC, and Logistic Regression.
They performed best, but their best results were obtained when they were paired
with different preprocessing algorithms. Henceforth, there is no preprocessor that
could be said that it performs best with every classifier. This may indicate that,
in general, for different problems, different classifiers require different preproces-
sors to reach full potential.

6.2 Preprocessors and Neural Network based classifiers

Let us now report on the results of the tests that combined preprocessors and
the ten different NN-based classifiers: LSTM, LSTM-Dropout, Bi-LSTM, LSTM-
CNN, Fast Text, RCNN, CNN, RNN, GRU and HAN. All these classifiers were
tested with Keras and GloVe embeddings, with different hyper-parameters. Note
that results of BERT classifier are reported separately, because BERT requires
an embedding mechanism different from other NN-based classifiers.



Performance of classifiers applied to disaster detection 13

Table 6. Top 15 preprocessor+classifier pairs

Classifier Algorithm ID Score

Ridge PA08 0.80444
Ridge PA09 0.80444
SVC PA03 0.80251

Logistic Regression PA04 0.80245
SVC PA04 0.80233
Ridge PA02 0.80211

Logistic Regression PA04 0.80211
Ridge PA09 0.80196
Ridge PA08 0.80196
SVC PA10 0.80165
SVC PA07 0.80162
SGD PA08 0.80156
Ridge PA02 0.80153

Logistic Regression PA02 0.80153
SVC PA06 0.80147

Let us start with the NN-based classifiers utilizing Keras embeddings. In
Table 7 presented are top pairs scores of classifier + preprocessor.

Table 7. Top scores for the neural network based classifiers and Keras embeddings

Model Preprocessor Score

LSTM PA09 0.79684
LSTM DROPOUT PA01 0.79782

BI LSTM PA04 0.79746
LSTM CNN PA04 0.79384
FASTTEXT PA07 0.80374

RCNN PA10 0.79418
CNN PA07 0.79994
RNN PA01 0.79859
GRU PA06 0.80055
HAN PA06 0.80172

It can be easily noticed that the average scores in Table 7 are quite similar to
each other. Moreover, as in the case of non-NN approaches, different classifiers
performed best when paired with different preprocessors. As a matter of fact,
not a single preprocessor occurs in this table more than two times. Again, there
is no pair of preprocessor and NN-based classifier, which stands out significantly
among others. However, the best average score was achieved with the PA07
preprocessor and the Fast Text NN-based classifier.



14 M. Plakhtiy, et al.

Let us now consider NN-based classifiers utilizing GloVe [16] embeddings. In
Table 8 top pairs of classifiers and preprocessors are presented.

Table 8. Top average scores for the neural network based classifiers and GloVe em-
beddings

Model Preprocessor Score

LSTM PA04 0.80996
LSTM DROPOUT PA02 0.81257

BI LSTM PA04 0.81039
LSTM CNN PA04 0.80610
FASTTEXT PA04 0.81229

RCNN PA09 0.80478
CNN PA10 0.80622
RNN PA02 0.80788
GRU PA04 0.81444
HAN PA06 0.80975

In general, it can be seen that average scores, in Table 8, are higher than these
in Table 7. This suggests that using GloVe embeddings increased the performance
of considered classifiers. Also, it can be seen that the PA04 preprocessor was
at the top for 5 out of 10 models. Moreover, the GRU classifier, paired with
the PA04 preprocessor, had the top average score. It is safe to state that the
PA04 preprocessor stands out as the best pair for classifiers, which use the GloVe
embeddings. One of possible reason, why this preprocessor was “the best”, might
be that it adds three flags to the tweets (user, link, and hashtag, which also
have representation in GloVe). Moreover it removes “noise”, such as stopwords,
punctuation, and non-alphabetic words. In this way it it may be the best match
with the GloVe embeddings used in this series of experiments. However, this is
just a stipulation, which has not been further verified and as such, needs to be
taken with a grain of salt.

6.3 Preprocessors and BERT classifier

In this section, experiments with the BERT-Large model, from the TensorFlow
Models repository, on GitHub [8], are discussed. Here, BERT uses L = 24 hidden
layers of size of H = 1024, and A = 16 attention heads. BERT was tested with
the ten preprocessors, and without the preprocessing phase. The average scores
are presented in Table 9.

It can be easily noticed that the average scores obtained by BERT classifier
are much higher than the average scores obtained with all other tested classifiers.
The best average score is achieved when BERT was combined with the PA08
preprocessor. It should be noted that the best individual score, achieved for any
experiment, was 84,064% accuracy. This result would have landed at the 79th



Performance of classifiers applied to disaster detection 15

Table 9. BERT averages scores for different preprocessors

Model Preprocessor Score

BERT None 0.82991
BERT PA01 0.82109
BERT PA02 0.82216
BERT PA03 0.82182
BERT PA04 0.82155
BERT PA05 0.81649
BERT PA06 0.83154
BERT PA07 0.83252
BERT PA08 0.83469
BERT PA09 0.82832
BERT PA10 0.82581

place, out of 3402 submissions, in the Kaggle Leaderboard (if scores, which are
better than 98%, were excluded, as potentially fraudulent). While, the average
score is much better in capturing the overall strength of the approach, it is also
obvious that the scores reported for the competition were the best ones actually
achieved in any single run. Therefore, it can be stated that the 79th place,
claimed above, is somewhat realistic. This is also the best score we managed to
obtain my using any single classifier (with its best sidekick preprocessor).

7 Combining predictions form multiple classifiers

Let us now consider the possibility of “combining suggestions” from multi-
ple classifiers (paired with their best preprocessors). The goal, here, is to de-
liver results that would be more accurate than these from any single classi-
fier+preprocessor pair. Specifically, the top six classifiers were taken from those
listed in Table 4. Moreover, top ten NN-based classifiers, based on the Keras em-
beddings, were taken from those listed in Table 7, as well as top ten NN-based
classifiers, based on GloVe embeddings, from Table 8. Finally, the best BERT
pair from Table 9 was selected. As a result, 27 pairs of classifier+preprocessor
were selected. For clarity, they are listed in Table 10.

Table 10: Top 27 Pairs of Classifier and Preprocessor

Model/Classifier Preprocessor
BERT PA08

LSTM-GloVe PA04
LSTM DROPOUT-GloVe PA02

BI LSTM-GloVe PA04
LSTM CNN-GloVe PA04
FASTTEXT-GloVe PA04



16 M. Plakhtiy, et al.

Continuation of Table 10
Classifier Preprocessor

RCNN-GloVe PA09
CNN-GloVe PA10
RNN-GloVe PA02
GRU-GloVe PA04
HAN-GloVe PA06

LSTM PA09
LSTM DROPOUT PA01

BI LSTM PA04
LSTM CNN PA04
FASTTEXT PA07

RCNN PA10
CNN PA07
RNN PA01
GRU PA06
HAN PA06

RIDGE PA08
SVC PA03

LOGISTIC REGRESSION PA04
SGD PA08

DECISION TREE PA05
RANDOM FOREST PA02

Each classifier+preprocessor pair, from Table 10, was trained using 70% of
the (original Kaggle) train data set, and validated against the remaining 30%.
Note that, for each of the 27 individual classifiers, the same data split (exactly
the same data used in both the training and the validation sets) was used, during
the training phase.

Each of the trained classifiers produced its own predictions, for the tweets
in the validations set, resulting in 27 independent lists of “suggestions”. These 27
suggestion vectors were transformed into input for the neural network: [v1, v2..., vn],
where vi – is the list of 27 predictions per tweet; i = 1 . . . n; n – is the num-
ber of tweets in the validation set (30% of the train data set). Here, a stan-
dard backpropagation neural network, with 27 input neurons, 14 neurons in the
hidden layer and a single output neuron, was used. After training the neural
network on this input (with the same split 70%/30%), the average results did
only barely beat the score of the best standalone BERT+ preprocessor pair.
Specifically, BERT classifier (combined with PA08 preprocessor), had the best
recorded accuracy of 0.83604. This has to be compared with the best single result
of the meta-classifier, which was better by 0.004. This improvement would not
have boost the score in the Kaggle competition. The average score of the best
BERT+preprocessor pair was 0,83469, while the improvement (of the average
score) of the meta-classifier was 0.00071. Overall, it can be concluded that com-



Performance of classifiers applied to disaster detection 17

bining predictions from multiple classifiers has potential, but requires further
investigation.

8 Concluding remarks

Let us now summarize the main conclusions for the research discussed within
the scope of this paper.

– Based on literature analysis, and comprehensive experimentation, ten pre-
processors have been selected. All of them had (the same) 7 out of 17 possi-
ble tweet preprocessing parameters/operations “frozen”. Frozen parameters
have “always” improved the performance of classifiers.
Preprocessors PA01, PA02, PA03, PA04 and PA05, tested how the pres-
ence of Link, User, Hash, Number, Keyword and Location flags, influences
performance of classifiers. The remaining parameters were set to T.
Preprocessors PA06, PA07, PA10, and PA01, have similar configuration for
the “flag presence parameters”, but different configurations of the remain-
ing parameters. Parameters Link Flag, User Flag, Hash Flag and Number
Flag) were set to T. among others, to match the vector representations
in GloVe. These preprocessors test how Split Word, Remove Punctuation,
Remove Stopwords, and Remove Not Alpha parameters influence the perfor-
mance of classifiers.
Finally, preprocessors PA08 and PA09, and PA05, have the “flag presence
parameters” turned to F. They test how Split Word, Remove Punctuation,
Remove Stopwords, and Remove Not Alpha parameters influence the perfor-
mance of classifiers in this context.

– Six “base” classifiers, using different vectorizers and ngrammars, combined
with selected preprocessors, were tested. It was discovered that the best aver-
age of 10-fold cross validation accuracy of 0.80444 was achieved by the Ridge
classifier, utilizing Tfidf vectorizer with [1, 2] ngrammar range, independently
with two preprocessors: PA08 and PA09 (table 6). These two preprocessors
are almost the same, except that PA08 does not remove punctuation from
tweets, while PA09 does. Overall, the top three classifiers were Ridge, SVC
and Logistic Regression. Moreover, the worst results were achieved by the
Decission Tree and Random Forest classifiers (regardless of the applied pre-
processing). Top three preprocessors were PA09, PA04 and PA02, as they
obtained the same relative score (Table 5). However, it cannot be said that
one of them is the best one overall, and that every classifier performs the
best with it.

– Ten NN-based classifiers, using Keras embedddings, were combined with
selected preprocessors and tested. It was found out that Fast Text NN-based
classifier, combined with PA07 preprocessor, had the best average score of
0.80374 (Table 7). Average scores of all classifiers were “close to each other”.
However, they were achieved when combined with different preprocessors.
Hence, again, no preprocessor was found to perform best with all NN-based
classifiers.



18 M. Plakhtiy, et al.

– The same ten NN-based classifiers, combined with sepected preprocessors
and using GloVe embeddings were tested. All NN-based classifiers with
GloVe embeddings produced better scores than same classifiers with Keras
embeddings. The top average score of 0.81444 was achieved by GRU NN-
based classifier combined with PA04 preprocessor (Table 8). Again, all clas-
sifiers obtained similar results. However, in this case, the PA04 preprocessor
produced 5 top averages results out of 10 NN-based classifiers, and was a
clear “winner”.

– BERT classifier had the best average score among all classifiers. The best
average score 0.83469 was achieved with the PA08 preprocessor (Table 9).
The best single score with BERT classifier was achieved with the same pre-
processor, and was 0.84064. This score would result in reaching 79th place,
out of 3402 submissions, in the Kaggle Leaderboard (excluding scores better
than 98% that can be assumed to be compromised).

– Finally, the 27 pairs of best classifiers + preprocessors (from Table 10) were
combined, using a simple neural network, into a meta-classifier. This ap-
proach did overcome best single BERT model accuracy by maximum of
0.004.

The single most interesting research direction, following from the above-
reported results, could be to further investigate possibility of combining pre-
dictions of multiple classifiers, to achieve better overall accuracy.

References

1. Ajao, O., Bhowmik, D., Zargari, S.: Fake news identification on twitter with hybrid
cnn and rnn models. in proceedings of the international conference on social media
& society. SMSociety (2018), https://arxiv.org/ftp/arxiv/papers/1806/1806.
11316.pdf, dOI: 10.1145/3217804.3217917

2. Ashktorab, Z., Brown, C., Nandi, M., Mellon, C.: Tweedr: Mining twitter to inform
disaster response. Proceedings of the 11th International ISCRAM Conference –
University Park (May 2014), http://amulyayadav.com/spring19/pdf/asht.pdf

3. CrisisLex: Crisislex data set. https://github.com/sajao/CrisisLex/tree/

master/data/CrisisLexT26
4. CrisisNLP: Crisisnlp data set. https://crisisnlp.qcri.org/
5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-

rectional transformers for language understanding (May 2019), https://arxiv.

org/pdf/1810.04805.pdf, arXiv: 1810.04805
6. ES, S.: Basic eda, cleaning and glove. https://www.kaggle.com/shahules/

basic-eda-cleaning-and-glove
7. Ganzha, M., Paprzycki, M., Stadnik, J.: Combining information from multiple

search engines - preliminary comparison. Information Sciences 180(10), 1908–1923
(2010), dOI: 10.1016/j.ins.2010.01.010

8. Google: Bert github. https://github.com/google-research/bert
9. Kaggle: Kaggle competition leaderboard. https://www.kaggle.com/c/

nlp-getting-started/leaderboard
10. Kaggle: Kaggle competition: Real or not? nlp with disaster tweets. predict which

tweets are about real disasters and which ones are not. https://www.kaggle.com/
c/nlp-getting-started/overview



Performance of classifiers applied to disaster detection 19

11. Keras: Keras embedding layer. https://keras.io/api/layers/core_layers/

embedding/

12. Keras: Keras library. https://keras.io/
13. Kursuncu, U., Gaur, M., Usha Lokala, K.T., Sheth, A., Budak Arpinar, I.: Predic-

tive analysis on twitter: Techniques and applications. Kno.e.sis Center, Wright
State University (Jun 2018), https://arxiv.org/pdf/1806.02377.pdf, arXiv:
1806.02377

14. Ma, G.: Tweets classification with bert in the field of disaster management. Depart-
ment of Civil Engineering, Stanford University (2019), https://web.stanford.

edu/class/archive/cs/cs224n/cs224n.1194/reports/custom/15785631.pdf

15. NLTK: Nltk library. https://www.nltk.org/
16. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-

sentation. https://nlp.stanford.edu/projects/glove/
17. Plakhtiy, M.: Applying machine learning to disaster detection in twitter tweets.

https://drive.google.com/file/d/1k2BGDn3t76rQjQIMA2GaRIzSFLXwnEIf/

view?usp=sharing

18. Plakhtiy, M.: Results on google drive. https://docs.google.com/spreadsheets/
d/1eP0DdEMxzNLT6ecfdN5Kf5ctK1BSYNgoq1YHylSVDLc/edit?usp=sharing

19. SkLearn: Count vectorizer. https://scikit-learn.org/stable/modules/

generated/sklearn.feature_extraction.text.CountVectorizer.html

20. SkLearn: Scikit-learn library user guide. https://scikit-learn.org/stable/

user_guide.html

21. SkLearn: Stratifiedkfold. https://scikit-learn.org/stable/modules/

generated/sklearn.model_selection.StratifiedKFold.html

22. SkLearn: Tfidf vectorizer. https://scikit-learn.org/stable/modules/

generated/sklearn.feature_extraction.text.TfidfVectorizer.html

23. Stadnik, J., Ganzha, M., Paprzycki, M.: Are many heads better than one – on
combining information from multiple internet sources. Intelligent Distributed Com-
puting, Systems and Applications pp. 177–186 (2008), http://www.ibspan.waw.
pl/~paprzyck/mp/cvr/research/agent_papers/IDC_consensus_2008.pdf, dOI:
10.1007/978-3-540-85257-5 18

24. Thanos, K.G., Polydouri, A., Danelakis, A., Kyriazanos, D., Thomopoulos, S.C.:
Combined deep learning and traditional nlp approaches for fire burst detection
based on twitter posts. IntechOpen (April 2019), https://doi.org/10.5772/

intechopen.85075, dOI: 10.5772/intechopen.85075
25. Wikipedia: Logistic regression. https://en.wikipedia.org/wiki/Logistic_

regression

26. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical
attention networks for document classification. Carnegie Mellon University,
Microsoft Research, Redmond (Jun 2016), https://www.cs.cmu.edu/~./hovy/

papers/16HLT-hierarchical-attention-networks.pdf

27. Zhang, C., Rajendran, A., Abdul-Mageed, M.: Hyperpartisan news detection with
attention-based bi-lstms. Natural Language Processing Lab, The University of
British Columbia (2019), https://www.aclweb.org/anthology/S19-2188.pdf

28. Zubiaga, A., Hoi, G.W.S., Liakata, M., Procter, R.: Pheme data set. https:

//figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/

4010619


