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Abstract. Substantial body of work has been devoted to skin cancer
recognition in high-resolution medical images. However, nowadays photos
of skin lesions can be taken by mobile phones, where quality of image is
reduced. The aim of this contribution is report on skin cancer recognition
when applying machine learning to “low resolution” images. Experiments
have been performed on the dataset from the ISIC 2018 Challenge.

Keywords: Skin cancer · Machine Learning · Deep Neural Network.

1 Introduction

Number of cases of skin cancer is raising. In 2017, in Poland, 7,000 new cases
among women and 6,453 among men were detected, an increase of 9% compared
to 2016 [37]. Currently, skin cancer diagnosis involves: (a) visual examination,
and (b) skin biopsy. Too often, patients see the doctor in later stages of can-
cer, while early detection could ensure 5-year survival (with certainty of 99%).
Beginning of treatment requires early cancer awareness. One possible solution
would be a simple diagnosis tool, which would automate initial diagnosis.

With progress in image processing it should be possible to facilitate early skin
cancer detection. Organizations, such as the International Skin Imaging Collabo-
ration (ISIC), actively seek solutions by organizing competitions in this area, and
engaging the research community. For instance, the ISIC 2018 Challenge [12,42]
included diagnosis of skin cancer on the basis of image analysis.

This work proposes a diagnosis system for devices with restricted resources,
such as mobile phones. This is achieved by reducing the resolution of photos,
rescaled to size 100× 100. This allows to speed the model training and reduces
the size of the model achieved (e.g. to fit the memory of standard phones).

2 Related work

2.1 Image preprocessing

Before applying machine learning (ML) images have to be suitably prepared.
Numerous image preprocessing techniques have been explored. Farooq et al. [17]
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applied hair removal ([27]) to clean the image. Color space transformation were
used to separate color from luminance. Here, Sarkar et al. [35] proposed trans-
formation to CIEL*a*b, Abbas et al. [1] to CIECAM02, and Kumar et al. [25]
to HSV and to YCbCr color spaces. Sarkar et al. [35] used color space transfor-
mation, together with luminescence channel enhancement, applying CLAHE al-
gorithm. Preprocessing reported in Kumar et al. [25] explored feature extraction
methods, e.g. conversion to grayscale, binary mask, sharpening filter, smooth
filter, adjust histograms, median filter, RGB extraction and Sobel operator.

In computer vision, a region of interest (ROI) is a part of an image identi-
fied for a particular purpose. Abbas et al. [1], used region of interest selection,
and structural feature extraction, with steerable pyramid transform. An ap-
proach presented in [26], used a threshold and statistical region merging (SRM)
to generate a binary mask. Moreover, Karhunen-Loeve transform, histogram
equalization, and contrast enhancement were applied. Sah et al. [34] proposed
image augmentation via rotation, shift, and reflection. The preprocessing step
often involves convolutional neural network (CNN; see, [3]). The role of CNN
is to classify input images based on features extracted in a training process. In
Sedigh et al. [36], dataset augmentation, by image generation, used a generative
adversarial network, to solve the problem of insufficient number of images in
the training set, by creating synthetic samples. Other preprocessing methods in-
cluded grey image scale, noise filtering, principal component analysis, gray level
co-occurrence matrix [4], border detection [38] and color normalization [8,7].

2.2 Classifiers

After extraction of features from preprocessed images, classification ensues.
Typically it involves CNNs, sometimes with transfer learning. Following ap-
proaches have been reported (for details, readers are directed to the references):

– Inception-v3 [41,32,17,16]
– InceptionResNetv2 [40,2,32]
– ResNet152 [19,2,32]
– DenseNet201 [22,32,8]
– MobileNet [21,17]
– AlexNet [24,10]
– VGG16 [44,34]
– Custom architectures [36,23]

2.3 Ensembles

Models described in Section 2.2 were often grouped into an ensemble of mod-
els, aimed at enhancing prediction of its members. Numerous publications sug-
gested using one of the following approaches for building hierarchical classifiers.
The first solution consists of a neural network trained on each model’s output. In
the second one [23,29] voting was used. Sun et al. [39] proposed an approach con-
sisting of a dedicated ensemble for each class predicted by a classifier. Summary
of pertinent models is shown in Table 1.
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Authors Summary
Farooq et al. [17] Inception-v3, MobileNet with transfer learning
Habib et al. [32] CNN with transfer learning
Esteva et al. [16] Inception-v3 with transfer learning
Sarkar et al. [35] ResNet, CNN
Abbas et al. [1] AdaBoost
Kumar et al. [25] neural network, k-Near Neighbours, decision trees
Sah et al. [34] VGG16 with transfer learning
Capdehurat et al. [11] AdaBoost
Ahmad et al. [2] CNN with triplet loss
Lau et al. [26] neural network, auto-associative neural network
Masood et al. [30] SVM with incremental use of unlabeled data
Sedigh et al. [36] custom built CNN
Alquran et al. [4] SVM
Suganya [38] SVM
Barata et al. [8] DenseNet-161 with transfer learning
Dorj et al. [15] AlexNet with transfer learning, ECOC SVM

Table 1: Summary of proposed solutions in the area of skin cancer classification.

2.4 Datasets

There exist multiple datasets for skin cancer classification. They include from
2 to 10 classes. Most of them are small, e.g. DERMQUEST (76 images), PH2
(200), or Dermweb (320). However, Dermnet has 5500 images, while the dataset
for the 2018 ISIC challenge consisted of 10,015 images.

2.5 Results reported in key publications

Results found in relevant publications have been obtained for different datasets.
This makes it difficult to fairly compare prediction quality. Nevertheless, reported
results can be presented collectively (in Table 2) to illustrate key trends.

Publications with best results (above 90% of accuracy) were obtained on
relatively small datasets; e.g. Sarkar et al. ([35]) used a 700 image subset of the
ISIC challenge dataset. Apart from models proposed in [16] and [13], all results
were trained and tested on datasets smaller than the ISIC 2018 dataset. The
dataset from the ISIC Challenge 2018 is described in [13]. Here, the training set
consists of 10,015 images, while test set of 1,512 images (see, also Section 3).
The best reported result, in terms of balanced accuracy, was 88.5%.

2.6 Existing software

Currently multiple software solutions are available, e.g. neural network li-
braries – Tensorflow, Pytorch, and Matlab toolbox. In the preprocessing stage,
OpenCV implementation is often used, and the scikit-image Python package.
Cited references used Tensorflow for neural networks [8,2,34] and Matlab [38,26].
In some works reported in Table 1 a software source was not specified [4,36,30,11].
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Authors Dataset size Accuracy Sensitivity Specificity F1 ROC AUC
Farooq et al. [17] 2637 86 % 89 % 83 % 84 % -
Habib et al. [32] 10,015 - - - 89.01 % 0.987
Esteva et al. [16] 129,450 - - - - 0.910
Sarkar et al. [35] 700 97.86 % - - - -
Abbas et al. [1] 1039 - 89.28 % 93.75 % - 0.986
Kumar et al. [25] N/A 95 % - - - -
Sah et al. [34] 5,500 82 % 83 % 82 % - -
Capdehurat et al. [11] 655 - 90 % 85 % - 0.937
Ahmad et al. [2] 6,144 87.42 % 97.04 % 96.48 % - -
Lau et al. [26] N/A 73 % - - - -
Masood et al. [30] 3,800 94 % - - - -
Sedigh et al. [36] 97 71 % 68 % 74 % 70 % -
Alquran et al. [4] N/A 92.1 % - - - -
Suganya [38] 320 96.8 % 95.4 % 89.3 % - -
Barata et al. [8] 2,000 70 % - - - 0.876
Dorj et al. [15] 3,753 94.2 % 87.83 % 90.74 % - -
Codella et al. [13] 10,015 88.5 % - - - -

Table 2: Best results reported in listed contributions.

3 Dataset description

Results reported here concern multi-class classification, using data available
in Task 3 of the ISIC 2018 Challenge competition [12,42]. This dataset includes
dermatoscopic photos, from different populations, obtained and stored in differ-
ent modalities. The training part of the dataset contains 10,015 images. Available
photos present a representative collection of dermatologically relevant categories
of pigmented skin lesions. Categories present in the dataset include:

1. Melanoma (mel)
2. Melanocytic nevus (nv)
3. Basal cell carcinoma (bcc)
4. Actinic keratosis / Bowen’s disease (akiec)
5. Benign keratosis (bkl)
6. Dermatofibroma (df)
7. Vascular lesion (vasc)

Here, Basal cell carcinoma and melanoma are severe skin cancers. Actinic
keratosis is the most common form of precancer that develops on skin damaged
by ultraviolet rays, and may evolve into Bowen’s disease. Melanocytic nevus
(common mole), is a benign skin lesion that is visually similar to (and difficult
to distinguish from) melanoma. Seborrheic keratosis is a noncancerous skin le-
sion that some people develop as they age. Dermatofibroma is also a benign
skin lesion. Majority of vascular lesions are benign. However, rarely, malignant
variants can materialize. Sample images of each class, are shown in Figure 1.
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Fig. 1: Example of each database class.

Existence of seven different classes makes the problem a multi-class classi-
fication problem. This, limits the number of possible approaches, as not every
“standard classifier” supports multi-class classification.

Another feature of the dataset is extreme class imbalance. The largest cate-
gory is more than 58 times larger than the smallest one, and more than 6 times
larger than the second largest. This imbalance is illustrated in Figure 2. This
lack of balance adversely affects majority of classifiers, as they try to minimize
the global error. Hence, the classifiers treat the minority classes as a “noise”.

In this work, images have been resized to 100 × 100, from the original size
of 450 × 600. In doing so, the images suffered some loss of details and a di-
mensional disturbance. However, would enable using such dataset on machines
with restricted resources, and in a reasonable time. Moreover, the cost of col-
lecting and storing data would be lowered. Finally, it would support the use of
data acquired from devices from different manufacturers, which vary in size and
proportions.

4 Image preprocessing

4.1 Hair removal

In the dataset, some skin lesions are partially covered by body hair, which
can be a problem in the feature extraction and the region of interest segmen-
tation, due to obscuring of essential features of the lesion. in order to eliminate
this problem, a hair removal algorithm was developed, inspired by [27]. This
algorithm was chosen, instead of one proposed in Lee et al. [27], because of is
speed. The method consists of:

1. Grayscale image transformation.
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Fig. 2: Images numerosity in the dataset.

2. Performing blackhat morphological operation.
3. Creating a mask by applying thresholding.
4. Inpainting mask pixels, in the original image, using the region neighborhood.

Here, when creating mask (applying thresholding), threshold value of 10 was
used (every pixel with a value less than 10 was considered a skin pixel, rather
than hair pixel). Pixels were filled starting at the region boundary, with the Fast
Marching Method, to select the next pixel to fill the region. When hair is blonde
and the skin lesion underneath it is dark, a low value of the threshold ensures
that the hair will be removed, although small cavities may occur in the lesion.
These will be fixed by refilling, on the basis of their neighborhood. Result of
each step are shown in Figure 3.

Proposed algorithm successfully removes hair from skin lesion images, espe-
cially thick ones, which have the worst impact on lesion visibility. All of lesion
surface is clearly visible, and none of its regions are hidden behind hair.

4.2 Color preprocessing

The images in the dataset have been acquired from multiple sources and
“differ in appearance”, among others, due to the light conditions. Leveling light
conditions across the dataset improves the stability of classification systems [9].
To address this problem, the Shades of Gray color constancy algorithm [18],
was applied. It is to adjust image colors to look like colors under a “standard
illumination”. The applied approach consists of two phases:

1. Color estimation of the illuminant in the RGB color space.
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(a) Original image (b) Grayscale image (c) Blackhat result

(d) Mask (e) Hairless image

Fig. 3: Illustration of main steps of the hair detection and removal.

2. Transformation of image using the estimated light source.

Beneath, equation 1 was used to estimate the color of a standard light source.(∫
Ic(x)p dx∫

dx

) 1
p

= Kec. (1)

where:

– Ic stands for c-th image channel of an image I,
– x = (i, j) is the point describing the position of a pixel,
– K is a normalization constant, which guarantees that e = [eR eG eB ]

T vector
is a unit vector,

– p is a parameter of the Minkowski norm.

In the implementation, Minkowski norm with p = 6 was chosen, as it has
delivered the best results in [9,18]. After calculating the e vector, the image can
be transformed according to equation 2, which is applied to each pixel. I∗R

I∗G
I∗B

 =


1√
3eR

0 0

0 1√
3eG

0

0 0 1√
3eB


IR
IG
IB

 (2)

Example results of performing color constancy algorithm on four images of
melanocytic nevus skin cancer class are presented in Figure 4.

In Figure 4, initially, skin color varied greatly between images. After the
transformation, there is almost no difference in perception of similar colors; mod-
ified images look “similar”, independently of the original light conditions.
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Fig. 4: Color constancy applied to melanocytic nevus images. First row contains
original images, second row contains images after transformation.

4.3 Histogram equalization

Even after two steps of preprocessing, not every skin lesion had a clear bor-
der, or clearly visible details. Hence, the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm was applied. The CLAHE differs from classic
histogram equalization algorithms in two key aspects:

– It operates on neighborhood regions, instead of the full image.
– It limits the intensification, by trimming the histogram at the preset value

and redistributing that part of the histogram uniformly across all bins.

Equalizing histogram in regions, instead of the full image, tends to work
better on images with regions that are considerably darker, or lighter, than
the rest of the image, as it provides better enhancement of contrast. However,
working on regions could over-amplify the contrast in near-constant regions,
because the histogram is highly concentrated in such regions. Hence, contrast
limiting is used. It clips the pixels from bins that exceed the limit value and
redistributes that part of the histogram uniformly across other bins.

While original images are encoded in RGB color space, application of CLAHE
requires using a color space with a brightness channel. Applying CLAHE to each
RGB channel can introduce significant loss in color information. Hence, images
were converted to one of the following color spaces:

– HSV
– YCrCb
– CIEL*a*b

Next, CLAHE was applied to the V, Y and L channels, before converting the
image back to the RGB color space. This better preserved the color balance of
the image, as above color spaces have channels that separate color information
from their brightness. The results of applying CLAHE are shown in Figure 5.

Upon examination it is clear that the enhanced images have better contrast,
resulting in better separation between skin lesion and the regular skin area.
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(a) Equalization of HSV’s
Value channel.

(b) Equalization of HSV’s
Value channel after color
constancy.

(c) Equalization of
CIEL*a*b’s L channel.

(d) Equalization of
CIEL*a*b’s L channel
after color constancy.

(e) Equalization of
YCrCb’s Y channel.

(f) Equalization of
YCrCb’s Y channel after
color constancy.

Fig. 5: CLAHE algorithm results for the original image from Figure 4

4.4 Region of interest

In image processing, region of interest (ROI) is defined by a binary mask
(same size as in the original image) with pixels having value 1 if they belong
to ROI, and 0 otherwise. In skin lesions analysis, ROI masks indicate location
(continuous region) of the (primary) skin lesion. For locating ROI, solution pre-
sented in [6,5] was used. It is a deep auto-encoder-decoder, extending the U-net
neural network with bidirectional convolutional LSTM layers, to encode both se-
mantic and high-resolution information. After establishing the mask, the region
of interest was extracted from original images, as depicted in Figure 6.

(a) Original image (b) Binary mask (c) Region of interest

Fig. 6: Region of interest extraction steps.
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5 Feature extraction

Preprocessed images were used as an input to feature extractors, such as
Convolutional Neural Networks (CNN; [31]) and Histogram of Oriented Gradi-
ents (HOG; [14]). This allows comparing quality of features obtained by each of
them, and measuring potential improvement resulting from their use.

5.1 CNNs as feature extractors

Modern feature extractors tend to use not only convolutional layers of var-
ious sizes but also multiple forms of connection – serial and parallel. Some of
these extractors introduce other advanced types of connections, e.g. residual and
bidirectional ones. The following network architectures were considered in this
work:

– ResNet152V2 [19]
– InceptionV3 [41]
– MobileNet [21]
– DenseNet169 [22]
– InceptionResNetV2 [40]
– VGG16 [44]

A common problem in deep learning is the vanishing gradient. It occurs when,
during gradient propagation, in the training process, consecutive multiplications
result in smaller numbers. As a result, the calculated gradient diminishes almost
to zero, stopping weights from improving, or drastically slowing the process.
The ResNet152V2 architecture addresses this problem. It introduces a residual
(“shortcut”) connections between subsequent layers, which skip at least one layer
in the network. Here, a network block, instead of learning an underlying function
G(x), learns the residual F(x) = G(x)− x where x denotes the input of a block.
Such shortcut paths “carry the gradient” throughout the length of a network.

Inception network addresses the problem of extensive networks. Instead of
elongating the network, it makes it “wider”, and introduces parallel layers. The
building block is an inception module. Each block extracts multiple types of
features – globally extracted by 5 × 5 convolution, local features extracted by
3× 3, and local features that distinguish themselves from their neighborhood.

MobileNet takes advantage of depthwise separable convolution. In the first
step, a 2D convolutional filter is applied to each channel, separately. Next, re-
sulting feature maps are stacked, and 1× 1 convolutional filter is applied across
channels. Depthwise separable convolution limits the number parameters and
multiplications. This makes MobileNet faster and less prone to overfitting.

DenseNet, similarly to ResNet, reduces a vanishing gradient problem by con-
catenating outputs of each convolutional block with outputs of a preset number
of previous convolutional blocks inside a dense block. Overall, DenseNet does
not sum output feature maps, but concatenates them.
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InceptionResNet architectures combine best features from Inception networks
and ResNets. It extends regular inception block with a “shortcut connection”
between an input and an output of a block, as in the residual block in ResNets.

VGG16 consists of 16 layers that aim to reduce the number of parameters
by replacing larger convolutional kernels with multiple 3× 3 ones. For example,
a 5 × 5 kernel could be replaced by two 3 × 3 kernels, reducing the number of
parameters from 25 to 18 (28% drop in size).

These architectures are used primarily in two ways. (1) They are trained from
scratch, to extract features present in given dataset. (2) They are used jointly
with transfer learning in which weights are ultimately “frozen”. The networks
with frozen weights are treated as external feature extractors. Typically, Ima-
geNet [33] dataset was used for transfer learning. This approach was proven to
be a good choice in [34], and in multiple ISIC 2018 competition submissions.

5.2 Histogram of oriented gradients

Another popular feature extractor is the histogram of oriented gradients
(HOG) method [14]. Here, it is assumed that local object structure, and ap-
pearance, can be described by the distribution of intensity of oriented gradients.
The algorithm consists of following four steps. (1) Calculation of horizontal and
vertical gradients. To do so, the image is filtered with kernels presented in equa-
tion 3. These kernels extract edges in horizontal and vertical directions. On the
basis of this information gradient is computed.

(
−1 0 1

) −1
0
1

 (3)

(2) The image is divided into cells with preset size. In each cell, histogram
of gradients is calculated. (3) Cells are grouped into larger blocks and gradient
strength is normalized inside the block. The block normalization is done by using
the L2-hys norm, which is equal to the standard L2-norm, followed by clipping
the vector values to the maximum value of 0.2 and renormalizing it. Equation 4
presents the normalization factor f of L2-norm.

f =
v√

∥v∥22 + e2
(4)

where:

– v denotes the vector,
– e stands for a small constant value.

(4) The final feature vector is built by concatenating vectors obtained from
each block. In the presented work, cells of size 4×4 are used, with 8×8 blocks, as
they proved to achieve best results. The visualization of HOG feature descriptors
is shown in Figure 7.

As can be seen, HOG detects a skin lesion on the image that is represented as
a mask with marked feature descriptors. One can see the shape of the considered
skin lesion with the naked eye.
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(a) Original image (b) Hog descriptors

Fig. 7: Visualization of HOG feature descriptors.

6 Classification models

In order to decide which type of skin lesion a given photo contains, basis of
the literature review, the following machine learning models were experimented
with:

– Support Vector Machine,
– Decision Tree,
– Boosting(AdaBoost/XGBoost),
– Random Forrest,
– Fully Connected Artificial Neural Networks,
– Ensemble of experts.

All models were also considered for ensemble learning, described in what follows.

7 Ensemble learning

Ensemble learning is a process of using multiple machine learning models
to improve their individual performance. The ensemble methods usually im-
prove results when there is significant diversity among the member models. The
main advantage of the ensemble is its ability to correct errors of some members
on the basis of “opinions of other members”. Diversity could be introduced in
many ways, e.g. training models on different datasets or subsets of the original
dataset or using different models and/or different hyperparameters. Ensemble
learning is used to combine multiple heterogeneous models, where each performs
full multiclass classification. This approach aims at polishing the already “good
enough” classification of members, instead of training them from scratch. Here,
only lightweight approaches were considered, as the proposed system aims at
being used on machines with restricted resources, similar to that used in [28].
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7.1 Stacking

Stacking [43] involves an additional machine learning model, trained “on top”
of individual model predictions. In our case, the ensemble members are trained
separately, to achieve best accuracy. Next, another model is trained, on predic-
tions of ensemble members to deliver the final prediction.

7.2 Voting

Voting is the simplest way to create an ensemble. It acts solely on labels
and does not attach importance to the source of prediction. As its result, voting
ensemble chooses the label, which gets most votes. The voting process could be
executed in two ways as majority voting or weighted majority voting. In majority
voting all votes of members of an ensemble have the same weight.

In weighted majority voting, each vote is scaled taking into account perceived
“strength” of individual models and “boost” these that perform better. While any
metric can be used to generate weights, in what follows, a balanced accuracy
metric was used.

8 Experimental results

In this section the results of a comprehensive set of experiments are presented
and analysed. We start from the description of the experimental setup.

8.1 Experimental setup

Performance of all models has been evaluated against the original goal met-
ric of the ISIC 2018 Challenge, the balanced accuracy, which is defined as an
average of recalls obtained on each class along with standard accuracy. Recall
performance of classification of each class is represented in the form of con-
fusion matrix. For all these metrics, standard definitions are applied (see, for
instance [20]).

Each reported method has been implemented using Python, with Tensorflow,
OpenCV, scikit-learn and the Python Imaging Library.

Classifiers were tested on two datasets. The first one internally separated
from the competition training dataset. This dataset was split into train (80%)
and test (20%) sets, ensuring that both sets contain representatives of all classes.
The second dataset was the official dataset of competition. Models were first
evaluated on the internal test set and the ones with promising results were then
checked against the official one. In all the experiments, the same hair removal
algorithm has been applied (see, Section 4.1). Detailed parameters of each model
are presented in subsequent sections, related to each experiment.
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8.2 HOG-based feature extraction

The first set of experiments concerned the HOG algorithm, used as a feature
extractor. Before extracting features, the color constancy algorithm was used. To
compensate for the disproportion between the number of images in each class,
simple oversampling has been applied. The images from classes with smaller
sizes have been duplicated, to roughly match the number in the largest class.
Next, random horizontal and vertical rotation were applied. HOG parameters
were selected as described in Section 5.2. The results obtained on the internal
dataset are presented in Table 3.

Model Accuracy Balanced accuracy
ANN 67.09 41.25
Decision Tree 78.44 14.28
AdaBoost 78.44 14.28
XGBoost 81.70 14.28
Random Forest 2.53 14.28
SVM 58.68 34.79

Table 3: Classification results; internal test set; HOG as a feature extractor.

The features generated using HOG contain mostly shape and geometric infor-
mation. This proved to be insufficient for tree-based methods, as they classified
images as belonging to the same category. In contrast, SVM and ANN achieved
far better results. Note that, with limited size of the images, these models man-
aged to outperform some of results submitted to the ISIC 2018 Challenge.

8.3 CNNs as feature extractors for tree-based classifiers

In subsequent experiments, convolutional neural networks were used as fea-
ture extractors. Overall, for tree-based classifiers CNNs were much better fea-
ture extractors than HOG. This is because they are able to extract more com-
plex properties from an image. Their configuration, used in the experiments is
summarized in Table 4. Both boosting algorithms used the same number of es-
timators inside. In each classifier a tree was limited to a depth level equal to 5
and a maximum number of leaf nodes equal to 200.

Model max depth max leaf nodes # estimators lr alpha
Decision Tree 5 200 - - -
AdaBoost 5 200 50 0.005 -
XGBoost 5 200 50 0.5 0.3
Random Forest 5 200 100 - -

Table 4: Configuration of tree-based models.
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Before feature extraction, images have been processed using color constancy
algorithm (best for tree-based methods). Classifiers were evaluated on features
extracted by convolutional parts of ResNet152V2, DenseNet169 and MobileNet
networks. Each CNN was used as an external extractor with weights obtained
from training it on the ImageNet. We decided to use it despite of transfer learning
rules which assume that the distribution of both sets (training and destinating)
should have the same distribution.

Direct comparison of feature extractors is shown in Figure 8 along with the
best result for each classifier presented in Table 5. In Figure 9 confusion matrices
of XGBoost and Random Forest were presented as these models achieved the
best results (balanced accuracy) equal to 55.86% and 52.92%, respectively.

Fig. 8: Comparison of results achieved on the tree based model.

Model Accuracy Balanced accuracy
Decision Tree 53.40 48.89
AdaBoost 67.09 47.93
XGBoost 82.86 55.86
Random Forest 71.12 52.92

Table 5: Best result of tree-based classifiers.
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(a) XGBoost (b) Random Forest

Fig. 9: Confusion matrices of the best tree-based solutions.

As can be seen from confusion matrices, XGBoost achieved high degree of
recognition of images belonging to the vascular lesions and the melanoma classes,
above 65% of recall. Random Forest recognized around 50% of skin lesions be-
longing to the most dangerous classes – melanoma and basal cell carcinoma.
However, these two models made mistakes for other classes, e.g. actinic keratosis
was classified with approximately 30% accuracy. These two classifiers outper-
formed the remaining tree-based ones by up to 7 percentage points. The overall
performance of this class of models, trained with CNN extracted features, was
unquestionably better than the ones using HOG as feature extractor.

8.4 SVM classifier

The SVM classifier has been tested similarly to the tree-based models. The
classification model was run using RBF kernel, with γ = 1

nxvar
, where n denotes

number of features in the training set and xvar stands for variance of elements
in that set. Regularization parameter was set to 1. SVM has been trained on
features provided by ResNet152V2, InceptionV3 and VGG16 networks. Metrics
obtained on the internal test set are shown in Table 6.

Feature extractor Accuracy Balanced accuracy
ResNet152V2 56.48 36.48
IncpetionV3 60.11 50.04
VGG16 74.34 55.09

Table 6: Results of SVM with CNNs.

Convolutional parts of above-mentioned networks were compared in terms
of quality of features they produced. VGG16 appears to produce features that
are best for the SVM. With these features, SVM achieved 55.09% of balanced
accuracy, improving upon result produced on HOG features by more than 37%.
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Fig. 10: Confusion matrix of SVM with VGG16.

In confusion matrix, shown in Figure 10, one can see that SVM has a much
better result in diagnosing basal cell carcinoma, as it recognized 65% of all
instances present in the dataset.

8.5 Comparison of imbalance handling methods

Due to the existing imbalance in the dataset, correct classification becomes
a challenge. Hence, sample weighting and oversampling with random rotations
were used. These methods have been evaluated on a fully connected ANN, built
on the top of the ResNet152V2 feature extractor. Each time, the model has been
trained for 100 epochs with a batch size of 96 images with categorical crossen-
tropy as the loss function. The top-level network consisted of 3 hidden layers,
each having 4096 neurons, with a sigmoid activation function and a dropout set
equal to 0.5. The sample weights for sample sC belonging to a class C were
calculated as follows:

wsC =
n

N · |C|
(5)

where N – number of classes, n – number of samples in the dataset, |C| –
number of samples in class C. In Figure 11 confusion matrices corresponding
to the results in Table 7 are shown. The results obtained with oversampling
show certain improvement in contrast to using sample weights to counter the
imbalance of the training data set. Models trained with oversampling tend to
recognize either more classes, or have better average class recognition.

Table 7 shows that using oversampling is preferred over the application of
sample weights. Results achieved on the augmented dataset allowed to improve
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Imbalance handling ImageNet Random weights
Oversampling 65.29 42.14
Sample weight 62.43 41.29

Table 7: Balanced accuracy of ANN models with different imbalance handling.

the balanced accuracy of the model with transfer learning by 2.86% and of the
one trained from scratch by 0.85%.

As can be seen in Figures 11 and 12 using oversampling increases the lowest
nonzero recall by up to 10 percentage points, while increasing the average value
of this metric for all classes.

8.6 Region of interest

Another experiment was performed using the ROI extraction described in
Section 4.4. Separately, convolutional parts of networks described in Section 5.1
were used as feature extractors. The result of an experiment comparing pre-
processed and full images is presented in Table 8. Here, top-level architecture
consisted of three hidden layers with 4096 neurons, each with a sigmoid activa-
tion function and dropout of 0.5.

Imbalance handling ROI full image
ResNet152V2 26.43 43.86
InceptionV3 36.00 46.57
MobileNet 26.42 40.14
DenseNet169 45.57 43.85
InceptionResNetV2 36.01 41.86
VGG16 14.29 14.29

Table 8: Balanced accuracy of ANN models trained on ROIs and full images.

Extracting ROIs tends to perform worse than networks trained with exactly
the same parameters and applied to full images. As can be seen (in Table 8) only
DenseNet169 improves its predictions when trained on ROIs. This effect is due
to the large number of black pixels introduced into the photo during the region
of interest extraction. Other architectures do not seem to handle this properly
as it likely results in “deactivation” of a big number of neurons.

8.7 Pretrained networks vs learning from scratch

Overall, the dataset consists of insufficient number images for CNN training
from scratch. Even after oversampling with augmentation, the size of the dataset
is equal to 23,450 records. To overcome this problem, pretrained on the ImageNet
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(a) From scratch with sample weight

(b) From scratch with oversampling

Fig. 11: Confusion matrices of networks trained from scratch.
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(a) ImageNet with sample weight (b) ImageNet with oversampling

Fig. 12: Confusion matrices of networks with transfer learning

dataset weights were used. The primary motivation was to utilize low-level fea-
tures that networks learned to recognize. In the learning process of a top-level
dense network has been trained to build upon those features. This is also why
time needed to complete training on the dataset of interest is shortened.

This approach proved to succeed in the original ISIC 2018 competition,
though when applied to bigger images. In the summary of results presented
in the Table 9 models that achieved below 30% of balanced accuracy in at least
one category are omitted. One can see that ResNet152V2 performed extremely
well using the weights trained on the ImageNet. It improved its result by 21.43
percentage points while keeping the training duration the same.

CNN model ImageNet Random weights
ResNet152V2 65.29 43.86
MobileNet 36.60 40.14
DenseNet169 51.56 43.85

Table 9: Balanced accuracy ANN models with respect to the CNN part and
initial weights.

8.8 Histogram equalization

The next set of experiments was aimed at verification of usefulness of his-
togram equalization methods proposed in 4.3. These methods were evaluated to
check, which approach is better to handle different light conditions for images
acquired from multiple sources. Here, impact of histogram equalization on chan-
nels of different color spaces was measured and compared to the result obtained
with the use of the color constancy algorithm. CLAHE algorithm was applied
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to V, Y, L channels of HSV, YCrCb and CIEL*a*b color spaces, respectively,
for both pure RGB images and for those preprocessed with the color constancy
algorithm. The experiment was done with ResNet152V2 as a feature extractor,
with the top-level dense layers with the same architecture as previously. Results
of experiments are summarized in Table 10.

Enhancement Balanced accuracy
color constancy 65.29
HSV color constancy 57.76
YCrCb color constancy 55.12
CIEL*a*b color constancy 57.23
HSV 48.22
YCrCb 46.67
CIEL*a*b 56.42

Table 10: Balanced accuracy of an ANN model trained on images enhanced by
CLAHE.

One can see that the color constancy algorithm achieved the best result as
it normalized colors present in the image and made them more comparable.
Histogram equalization done by CLAHE on regular RGB images works a lit-
tle bit worse. It noticeably increases brightness level but does not impact the
color differences, leaving them “hard to compare”. CLAHE applied to the color
constancy images, as discussed in Section 4.3, can enhance some darker regions
of the skin around the lesion, making it indistinguishable from the lesion and
therefore confusing a classifier.

8.9 Ensemble of experts

In this section, problem of multiclass classification has been replaced with
a group of simpler problems as described in [29]. As a result, an ensemble of
experts is built consisting of models responsible for predicting only one class
from the dataset. Table 11 presents the accuracy and the balanced accuracy of
each expert along with results from the ensemble.

As one can see, higher results achieved by individual expert in its respective
task confirm that simplifying the problem influences the result. Ensemble of
experts classifier achieved over 60% of balanced accuracy on the internal test
set, which makes it the second and the third best solution considered in this
work.

Predictions made by experts were combined together using one of three tech-
niques: expert voting, dense neural network and extreme gradient boosting. Con-
fusion matrices with results from ensembles are shown in Figure 13. It is clearly
visible that combining results of individual experts by the process of voting
brings the best results. It has the highest average recall and the highest minimal
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Expert Accuracy Balanced accuracy
bkl 84.42 84.69
nv 91.67 85.35
df 98.91 74.82
mel 77.35 83.44
vasc 96.01 65.02
bcc 96.01 72.77
akiec 96.20 85.91
ANN 78.26 63.20
XGBoost 84.60 57.72
Voting 82.97 61.50

Table 11: Results of individual experts and the full ensemble.

recall across all models proposed here. The results may be surprising because
this approach is not very popular in the literature as stated in Chapter 2.

8.10 Summary of results for the ISIC 2018 Challenge

In Table 12 a summary of results achieved by each considered model is shown.
Classifiers with balanced accuracy above 55% (on the internal dataset) were
evaluated on the original ISIC 2018 Challenge test set. Italicized text denotes
models trained on RGB images without color constancy.

Extractor Model Internal test set External test set
ResNet152V2 XGBoost 55.86 41.40
ResNet152V2 ANN 65.29 49.60
ResNet152V2 CIELAB ANN 56.52 48.0
ResNet152V2 CIELAB ANN 57.23 42.1
ResNet152V2 HSV ANN 57.76 46.2
ResNet152V2 YCrCb ANN 55.12 39.0
VGG16 SVM 55.09 43.1
ResNet152V2 Expert Voting 61.50 48.9
ResNet152V2 Expert ANN 63.20 46.6
ResNet152V2 Expert XGBoost 57.72 40.1

Table 12: Results summary of top 10 results.

8.11 Results obtained for ensemble learning

In this section, the comparison of results obtained with ensemble learning
applied is presented. As ensemble members, models (reported above) with re-
sults above 42%, have been selected. Both versions of voting along with extreme
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(a) Majority voting

(b) XGBoost

(c) ANN

Fig. 13: Confusion matrices of an ensemble of experts.
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Type External test set
Majority voting 52.8
Weighted majority voting 52.7
ANN stacking 45.3
XGBoost stacking 40.0

Table 13: Results of an ensemble learning with 7 best performing models as its
members.

gradient boosting and artificial neural networks, have been tested. The results
of these experiments are presented in Table 13.

As one can see the final ensemble achieved the highest balanced accuracy,
by applying voting to combine predictions from member models. The use of an
ensemble of models increased the final classification by 3 percentage points.

The results are promising in the context of computational resources available,
as well as size of images. The proposed solution would take 60th place in the
ISIC 2018 Challenge, ahead of 18 other solutions, including 3 using data from
external datasets, thus increasing the number of photos at the training stage.

9 Concluding remarks

The aim of the reported work was to study application of machine learning to
the skin cancer detection problem. In this project the target dataset was highly
unbalanced, which introduced an additional level of difficulty to the problem.

The proposed approach differs significantly from those proposed in the litera-
ture. The difference materializes, primarily, in terms of size of the images, and the
diversity of models used as members in the ensemble learning. The main idea of
the proposed approach was to develop a diagnosis system that can run efficiently
on mobile devices and can be trained without corporate-level computational re-
sources (e.g. large Google/Amazon/Microsoft cloud). The modular architecture
of the proposed system allows it to be easily expanded, as every stage could
be replaced with another approach to its implementation, with possible further
gains in performance.

Presented results show that using smaller images still allows achieving similar
outcomes on comparable technical setup and computational power but reduces
the complexity of the training process. The result of that is a faster learning
stage and quicker predictions that could be used on mobile devices, achieving
almost a real-time prediction. A single training epoch of best performing models
took approximately between 57 to 85 seconds on NVIDIA GeForce GTX 1050
Ti 4GB.

Although the results presented in chapter 8 may seem worse than the best
reported for the ISIC 2018 Challenge, in terms of resources used and learning
time, they turn out to be more usable in everyday life. As a result, they offer hope
for faster universal adaptation and greater availability of high-quality automated
early diagnosis in the future.



9. CONCLUDING REMARKS 25

As for the prospects for future work, the introduction of smaller, more con-
densed feature extractor, training on a larger dataset, with possible use of unla-
beled data could be considered. Due to the proposed size of images, the execution
time of an individual prediction should not rise with training performed on a
bigger dataset, so the aspect of use on mobile devices could be maintained. Along-
side proposed, slight enlargement of an image size aimed at restoring original
image proportions could be considered.
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