
Experimenting with Assamese Handwritten
Character Recognition

Jaisal Singh1[0000−0003−1464−9663], Srinivasan Natesan1[0000−0001−7527−1989],
Marcin Paprzycki2[0000−0002−8069−2152], and Maria

Ganzha2,3[0000−0001−7714−4844]

1 Indian Institute of Technology, Guwahati, Assam, India
jaisal64@gmail.com, natesan@iitg.ac.in

2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
3 Warsaw University of Technology, Warsaw, Poland

Abstract. While Optical Character Recognition has become a popular
tool in business and administration, its use for Assamese character recog-
nition is still in early stages. Therefore, we have experimented with mul-
tiple neural network architectures, applied to this task, to establish gen-
eral understanding of their performance. For the experiments, we have
generated an Assamese script dataset, with over 27k images. To this
dataset, LeNet5, AlexNet, ResNet50, InceptionV3, DenseNet201, and
hybrid LSTM-CNN models have been applied. Next, geometric trans-
formations that included shifting image horizontally and vertically, and
rotating them, were applied, to augment the available dataset. The aug-
mented dataset was used in experiments and accuracy of applied meth-
ods has been studied. Best accuracy, obtained on the test data, reached
96.83%.

Keywords: Character recognition, Assamese language, machine learn-
ing, Convolutional Neural Networks, data augmentation.

1 Introduction

Optical character recognition (OCR) refers to the conversion of machine-printed,
or handwritten, symbols into a machine-encoded text. Lot of work has been
done concerning application of OCR to Western languages. Moreover, progress
has been reported for handwritten Indian scripts, like Devanagari, Gurumukhi,
Bengali, Tamil, Telugu and Malayalam. However, character recognition for the
Assamese language, which is spoken by an estimated 25 million people, is still at
a rather preliminary stage. The aim of this contribution is to follow-up results
reported in [2]. This time (1) a larger dataset was prepared (27,177 in comparison
to 26,707 images), (2) this dataset was further augmented by applying shift and
rotate operations, and (3) additional classes of experiments have been completed
(including two additional neural network architectures), to better understand the
relationship between the data and performance of various (standard) models.



2 J. Singh, et.al.

In this context, content of this contribution has been organized as follows.
In Section 2, we start from brief summary of pertinent state-of-the-art. Inter-
ested readers should consult [2] for more details. Section 3 describes generation
of the dataset, and the preprocessing steps that were applied to it. Architec-
tures of neural network models, used in reported experiments, and details of
the experimental setup are provided in Section 4. Next, Section 5 summarizes
obtained experimental results. Finally, Section 6 summarizes the main findings
and outlines possible future work directions.

2 Related Work

Recognition of handwritten characters poses challenges, among others, due to in-
consistent skew, alignment and individual variability. Furthermore, problems are
aggravated by presence of distortions, e.g., smears, (partially) faded characters,
etc. These challenges manifest themselves, for instance, in digitization of Indian
handwritten scripts (historical documents, in particular). Here, it is worthy not-
ing that many Indian scripts have over 500 different symbols used in their text.
This count is further enhanced by different vowel modifiers, which can be used
with consonants, producing a threefold combinations of consonant-vowels (only
certain vowels and consonants can be joined). Furthermore, scripts like Telugu,
Gujarati, Devanagari and Bangla contain additional complex symbols. These
complex symbols can also use vowel modifiers, resulting in further increase in
the total count of possible symbols that can be encountered within the text that
is being digitized. Somewhat easier to handle are Punjabi and Tamil scripts, due
to relatively small number of possible symbols (about 70 and 150 respectively).

In this context, in [14], Chaudhuri and Pal summarize various attempts to
character recognition. They pointed out that the approaches can be divided into
feature-based and ones that are applied to the images directly.

Among the prominent examples of work, Sukhaswamy et.al. [3] designed
a Multiple Neural Network Associative Memory (MNNAM) architecture, for
recognition of printed Telugu characters. In [4], Ajitha and Rao proposed a
feature (extraction) based approach for recognition of Telugu characters. In [5],
authors reported 96.7% accuracy for recognizing Odia characters, using Hopfield
Neural Network, with zoning. For the Tamil characters, a Convolutional Neural
Network with two convolutional layers, two fully connected layers, and with
ReLu activation function, was applied in [6].

In [7], Indira et al. suggested the use of neural networks for recognition and
classification of typed Hindi characters. The proposed technique achieved recog-
nition rate of 76-95% for different samples. Reported results also showed that,
as the number of samples used for training increases, the recognition accuracy
also improves. In [8], an approach based on Deep Convolutional Neural Network
has been proposed, for offline recognition of handwritten Gurumukhi charac-
ters. Using this approach, an accuracy of 74.66% was achieved. Here, no feature
extraction was used.



Experimenting with Assamese Handwritten Character Recognition 3

Only a few attempts have been made towards Assamese Character recog-
nition. Sarma et al. [9] attempted handwritten recognition with the help of
template matching, the simplest method of character recognition. Since the per-
formance of this method is very sensitive to random noises in the images, 80%
accuracy was reported. Bania et al. [10] applied the zoning concept to compute
diagonal features and the Grey Level Co-occurrence Matrix, to extract texture
features. They also performed word recognition using feature extraction and
text segmentation. The best reported accuracy, was at 90.34%. Finally, in [2]
convolution neural networks have been applied to Asamese handwritten char-
acter recognition. There, the best reported accuracy was at 94.62%. Current
contribution continues research found in this publication.

3 Dataset Used in the Experiments

Assamese script, is a syllabic alphabet, used in Assam and nearby regions for
many languages, such as Sanskrit, Khasi, Jaintia, etc. The current form of the
script has been observed in rock inscriptions dating from the 5th century A.D.
The current script bears many similarities to the Bengali script.

There are few, publicly available (online), datasets of Assamese script images.
Therefore, for the work reported in [2], we have created an Assamese handwrit-
ten dataset by obtaining samples from the faculty and staff of IIT Guwahati
(Dataset1), and used the Tezpur University dataset (Dataset2). Moreover, for the
purpose of this work, we have adapted dataset, created by S. Mandal (Dataset3).
Let us now briefly describe these datasets.

Dataset1: A group of over 200 students, faculty and staff members of IIT Guwa-
hati provided handwritten samples, each containing the 52 Assamese characters
(11 vowels and 41 consonants). This group consisted of persons representing dif-
ferent age, education levels, and both genders, thus leading to a broad variety
of writing styles. A total of 10,994 images belonged to this dataset.

Dataset2: This dataset was created with the help of the, Tezpur University
created, Online Handwritten Assamese Character dataset [11] (available from
the UCI Machine Learning repository [12]]). The original dataset consists of
8235 Assamese characters, collected from 45 different writers. A combined 183
symbols, consisting of 11 vowels, 41 consonants and 131 juktakkhors (conjunct
consonants) have been collected from each person. However, since juktakkhors
were present only within this dataset (not in Dataset1), they have not been used
in the work reported here. Moreover, since in the original dataset, characters are
stored by capturing movement of the pen on a digitizing tablet, they have been
turned into images, to match data collected for the Dataset1.

Dataset3: This dataset was created within the context of work of Mandal [13].
It contains both characters and word samples. For the same reasons as above,
word samples have not been used in our work. This dataset is also similar to the



4 J. Singh, et.al.

Dataset2, as it stores information about movements of the pen on the tablet.
Here, writers consisted of senior high school students from Guwahati, and adults
belonging to 18-25 age group, with a minimum bachelor qualification. Again, pen
movements were turned into 13342 images of vowels and consonants.

When the three datasets were combined, they contained a total of 26,707
images of consonants and vowels. It should be noted that, overall, the combined
dataset was well balanced, with each character appearing almost the same num-
ber of times. Here, let us state that, while the dataset is not openly available
online, any interested party can obtain it from Srinivasan Natesan, at the email
listed above (list of authors of this paper).

3.1 Data preprocessing

Next, the combined dataset was preprocessed, by applying the same steps that
were reported in [2]. Specifically, the following operations have been executed
(interested parties should consult [2] for more details).

– Images form Dataset1 have been binarized using Otsu binarization. Since
images from Dataset2 and Dataset3 have been created (by repeating the
recorded steps) as black-and white, they did not require binarization.

– All images have been normalized to minimize effects of individual handwrit-
ing styles. Specifically, they were cropped and rescaled to a standard 96×96
size image.

– Smoothing, based on 3-point moving average filter method, was applied to
individual strokes for images originating from Dataset2 and Dataset3.

4 Neural network architectures

In the initial work, we have experimented with four neural network architec-
tures: (1) LeNet5, (2) ResNet50, (3) InceptionV3, and (4) DenseNet201. Since
they have been already described, and since their standard versions and imple-
mentations were used, readers are asked to consult [2] for more details. With the
extended dataset that was prepared for this work, we have decided to experiment
with additional neural network architectures, to build a more comprehensive im-
age of relationship between (Assamese) handwritten image recognition and pop-
ular neural network architectures. Let us now, briefly, describe the additional
architectures that have been applied.

4.1 Long Short Term Memory networks

Long Short Term Memory (LSTM) networks are a class of Recurrent Neural
Networks, that can handle not only single points of input, like images, but also
sequences of data, like video. A standard LSTM unit comprises of a cell, an
input gate, an output gate, and a forget gate. The cell can remember values
over random time intervals and the three gates regulate the flow of information



Experimenting with Assamese Handwritten Character Recognition 5

in the cell. LSTM models are known to perform well with predictions based on
time series data.They also have the added benefit of not facing the problem of
vanishing gradient. To apply LSTM to image recognition, it has been combined
with Convolutional Neural Network, to form a LSTM-CNN hybrid (following
ideas described in [15]).

4.2 AlexNet

CNNs have become the preferred choice for image recognition. However, as the
size of datasets began to increase, there arose a need to optimize the training
to cut down the training time. Here, AlexNet, comprising of 8 layers: 5 convolu-
tional layers, and 3 fully-connected layers, solved this problem and won the 2012
ImageNet competition. What makes AlexNet different from its predecessors is:

– Nonlinearity – relu was used as an activation function, instead of tanh,
leading to reduction in the training time (by a factor of six).

– Mulitple GPUs – AlexNet trained the model simultaneously on two GPUs,
thus significantly reducing train times. This is particularly important when
bigger models are to be trained.

– Overlapping pooling – that resulted in reduction of the size of the network.

Finally, AlexNet uses Data augmentation and Dropout layers to reduce the
problem of overfitting and to increase overall model performance.

4.3 Experimental setup

The models were implemented using Python frameworks Keras and Tensorflow.
In all experiments data was split into 80% for training and 20% for testing. Each
result reported here is an average of 5 runs. Unless explicitly stated, experiments
have been performed for different images drawn (randomly) to the training and
the testing datasets.

In all experiments, training rate 0.001 and batch size 64 were used. This point
deserves an explanation. While it is a well-known fact that CNN models can go
through the process of hyper-parameter tuning, and this was done to some extent
in the work reported in [2], this avenue was not pursued here. The reason is that,
with additional data formats (shifted and rotated) the existing solution space for
model tuning becomes very large. Hence we have decided to fix the learning rate
and the batch size (at reasonable values) and to observe the “general behavior”
of the six models under investigation. Further hyper-parameter tuning is one of
directions of possible future research. However, it may not be the most fruitful
and interesting, as we argue in Section 6.

5 Experimental Results and Analysis

5.1 Complete original dataset results

The first set of experiments has been conducted by applying, above described,
six neural network architectures to the “complete original dataset”, consisting of



6 J. Singh, et.al.

Dataset1 + Dataset2 + Dataset3. Obtained results are summarized in Table 1.
In the Table we represent: testing accuracy and information after how many
epochs the training process was stopped, due to the lack of further progress.
Moreover, to simplify the comparison, we copy the results from [2] (Table 1),
available for the four architectures that were considered there. Here, we have to
recognize that some results reported in [2] were obtained for different learning
rates than these reported here (0.0008 for LeNet and ResNet). Moreover, all
results have been obtained for different batch sizes (128 for ResNet, and 48 for
the remaining three architectures). However, as stated above, our goal was to
obtain the general idea on accuracy of different architectures, and to establish
the “general baseline” as to what performance can be expected from application
of modern neural networks directly to the problem (without feature extraction).

Table 1. Accuracy of models applied to the complete original dataset

Model Test Accuracy Stop epochs Earlier results

LSTM-CNN 74.62 100
LeNet05 85.79 70 86.25
AlexNet 93.04 60

InceptionV3 92.18 50 94.09
ResNet50 92.82 70 93.55

DenseNet201 93.08 50 94.26

A number of observations can be made. First, the performance of the LSTM-
CNN hybrid is a clear outlier. This model does not work for the considered task
(even after substantially longer training – 100 epochs). Similarly to the results
reported in [2], LeNet5 is also not competitive (its accuracy is approximately 7%
worse than that of the remaining models).

The performance of the four “competitive” models is very close to each other.
The difference between AlexNet, Inception, ResNet and DenseNet is less than
1%. Since they were all trained using the same learning rate and batch size, it
can be conjectured that after individual hyper-parameter tuning it is possible
that their performance could be improved.

Finally, obtained results are slightly worse than those reported in [2]. The
difference is also of order of 1% for all models. However, it should be kept in
mind that the “old” results were obtained after some hyper-parameter tuning
(and on a different, slightly smaller, dataset).

Overall, somewhat contradictory to the naive expectations, extending the size
of the dataset did not result in immediate performance improvement. Therefore,
we have decided to further explore how the dataset can be augmented to make
the models generalize (and perform) better.



Experimenting with Assamese Handwritten Character Recognition 7

5.2 Dataset with shifted images

In the second phase of our work we have decided to augmented the existing
dataset with images shifted in eight directions: Top, Bottom, Left, Right, Top
Left, Top Right, Bottom Left and Bottom Right, by 2 pixels. This resulted in
creation of eight new datasets, with a total of 8 × 27, 177 = 190, 239 images.
These image sets have been mixed with the original ones (each direction of shift
separately) and then randomly split into 80-20 datasets for training and testing.
Due to the extremely poor performance for the original dataset, in this round
of experiments, we have skipped the LSTM-CNN model and experimented only
with the remaining five architectures. The same learning rate (0.001) and batch
size (64) were used. Taking advantage of the fact that the models have been
already trained on the original dataset, we used standard transfer learning to
reduce the training time for the shifted images. Obtained results are summarized
in Table 2. Each result is an average of 5 runs for different data splits.

Table 2. Accuracy for shifted datasets

Model Shift Shift Shift Shift Top Top Bottom Bottom
Left Right Top Bottom Right Left Right Left

LeNet05 79.22 79.31 79.68 78.41 80.89 79.97 79.71 79.88
AlexNet 94.44 94.58 94.65 94.55 94.69 94.85 94.71 94.77

InceptionV3 95.53 95.45 95.52 95.57 95.75 95.61 95.65 95.57
ResNet50 95.85 95.78 95.88 95.81 96.18 95.99 95.98 95.91

DenseNet201 95.52 95.73 95.88 95.81 95.98 95.91 95.94 95.95

Comparing results presented in Table 1 and Table 2 it is easy to observe that
LeNet remains the least accurate of the 5 models. In all remaining cases, aug-
menting dataset by shifted images results in overall performance improvement.
In the Table, we have marked, in bold, the best results for each shift-direction
augmentation. This brings an interesting observation. AlexNet, which was one
of “overall winners”, reported in Table 1, is outperformed by ResNet and/or
DenseNet.

Moreover, out of the four better performing models, for all directions of image
shift, the performance difference remains of the order of 1%. Combining this with
the fact that, in this series of experiments, AlexNet was outperformed by ResNet
and/or DenseNet, it becomes even clearer that further hyper-parameter tuning
may result in change of order of best performers. However, it can be also stated
that these four models are very much comparable in their performance.

5.3 Dataset with rotated images

Seeing that augmentation of data with shifted images helped, we have tried use
augmentation with images that are rotated by one and by two degrees in both
clockwise and counterclockwise direction. This brought four new datasets with



8 J. Singh, et.al.

a total of 4 × 27, 177 = 108, 708 images. Rotated images have been (separately)
mixed with the original dataset and randomly split into 80-20 ratio for training
and testing. Again, for each dataset, 5 experiments have been run, applying
transfer learning to reduce training time. Average accuracy is reported in Table 3.

Table 3. Accuracy for rotated datasets

Model Clockwise Counter Clockwise Counter
1 degree 1 degrees 2 degrees 2 degrees

LeNet05 78.44 77.78 78.47 78.64
AlexNet 94.24 94.19 94.55 94.61

InceptionV3 94.25 94.41 94.67 94.77
ResNet50 95.18 95.22 96.01 96.22

DenseNet201 95.24 95.28 95.75 95.85

Here, the general pattern of results, reported above, repeats, though with
some differences. Again, LeNet is not competitive. Hence, it was not be consid-
ered in what follows. Among the remaining four models. ResNet and DenseNet
are the “winners”. However, the performance difference between all four models
remains of order 1%. Interestingly, DenseNet outperforms ResNet for datasets
with images rotated by one degree, while the reverse can be observed for images
rotated by two degrees. We do not have an explanation for this behavior.

5.4 Experiments with different train and test datasets

In this set of experiments we have studied interplay between various data sub-
sets, used for training and testing. All dataset categories, listed next, start with
the dataset created by combining Dataset1 + Dataset2 + Dataset3. This raw
dataset, consists of original images without normalisation, or smoothing (where
it would have been applicable), so it includes all extra empty spaces around
the symbols and rough images resulting from drawing letters on the basis of
pen movements, i.e. images are exactly the way they were “produced” (before
any preprocessing was applied). The normalized dataset consists of raw images
that have been normalized (see, Section 3.1). The no smoothing dataset con-
sists of images that have been normalized, but not smoothed. The processed
dataset refers to the dataset that has been fully prepossessed, i.e. normalised
and smoothed. The shifted dataset consists of all eight sets, in which images
have been shifted. The rotated dataset includes four sets of images that have
been rotated. In Table 4 presented are results obtained when treating separately
raw, normalized, no smoothing and processed datasets, for the four remaining
models. As previously, the same learning rate, batch size and 80-20 split were
applied and each result is an average of 5 runs.

As can be seen, when raw dataset is used for both training and testing,
performance of all models is lacking. Interestingly, but somewhat expectedly,



Experimenting with Assamese Handwritten Character Recognition 9

Table 4. Accuracy for basic separate datasets

Train Test AlexNet Inception ResNet DenseNet
dataset dataset

raw raw 53.82 55.84 55.18 57.92
raw processed 68.82 66.42 64.88 66.71

processed raw 62.64 61.49 62.79 65.18
processed no smoothing 94.08 93.58 93.58 94.25

when models are trained on raw dataset, but applied to processed dataset (for
testing), the performance improves by 10-15%. Here the ability to “capture”
features of the “more general” dataset pays dividends when the model is applied
to the less general (made more uniform by preprocessing) one. This can be
seen further when processed dataset is used for training and applied to the raw
dataset. This reduces the performance by 2-5%, depending on the model. Finally,
the last line in the Table shows that smoothing has much weaker effect on the
performance than normalization. Obviously, this can be related to the fact that
not all images had to be smoothed (see, Section 3.1). When processed dataset
is used for training and applied to the dataset that was normalized but not
smoothed, the performance is similar to the one reported in Table 1. Here, as
in all cases reported thus far, the performance of the four models is very close
to each other. Hence, again, it can be expected that individual hyper-parameter
tuning may influence the fact that AlexNet and DenseNet slightly outperformed
the remaining two models.

The final group of experiments involved processed, shifted and rotated data-
sets, mixed with each other in various combinations and used for training and
testing (as denoted in Table 5). The remaining aspects of the experimental setup
have not been changed. Obtained results are summarized in Table 5.

Table 5. Accuracy for combined datasets

Train Test AlexNet Inception ResNet DenseNet
dataset dataset

processed+shifted processed 95.49 94.93 94.79 95.55
processed processed+shifted 93.78 93.04 93.03 93.79

processed+rotated processed 95.98 95.18 95.28 96.08
processed processed+rotated 93.58 94.78 93.09 93.15
processed processed 96.78 95.35 95.68 96.71

+shifted+rotated
processed processed 96.47 95.78 95.87 96.83

+shifted+rotated +shifted+rotated

As can be expected, the best results have been obtained for the largest
datasets, consisting of all individual datasets combined together and then split
80-20 for training and testing (depicted in the last line in the Table). The only



10 J. Singh, et.al.

exception is AlexNet, which obtained its best performance when processed +
shifted + rotated data was used for training and applied to data that was pro-
cessed (without the remaining two datasets included). Overall, the best perfor-
mance was obtained by the DenseNet (which reached 96.83% accuracy). How-
ever, again, all results obtained by the four considered models are within 1%
from each other, for each dataset that was experimented with (i.e. for each line
in the Table).

6 Concluding Remarks

The aim of this work was to experimentally explore performance of neural net-
work architectures applied directly (without feature extraction) to the recogni-
tion of Assamese characters (vowels and consonants). The main lessons learned
can be summarized as follows: (1) LSTM-CNN hybrid and LeNet models are
not competitive for this task; (2) without hyper-parameter tuning, using generic
learning rate and batch size, the remaining four CNN’s (AlexNet, Inception,
DenseNet and ResNet) perform very closely to each other (for all experiments
that performance difference was of order of 1%); (3) augmenting the dataset by
shifted and/or rotated images (and thus increasing the size of the dataset) has
definite positive effect on performance; (4) conservative baseline for accuracy of
image recognition, without feature extraction, can be placed at around 95%.

Obviously, further work can be pursued including, among others, the fol-
lowing directions: (a) tuning hyper-parameters for each of the four best models,
(b) building meta-classifiers, or (c) further augmenting the training dataset, pos-
sibly by applying GANNs to generate synthetic datasets.

However, above presented data brings about a more general reflection. When
machine learning is applied to “well prepared”, large datasets, performance of
95% or more has been reported. However, as can be seen in Table 4, when
raw images are used in training and testing, the performance drops to about
57%. This means that, from practical point of vies, this “performance” is almost
useless. In other words, if a similar method was to be applied to digitization of
historical manuscripts, about 40% of characters would be misrepresented.

This also brings the question of recognition words within a text, which is an
even more more complex endeavour. Specifically, this would involve pipelines,
where words may or may not be split into individual characters and words/cha-
racters would have to be automatically preprocessed. Next, depending on the
selected approach, an appropriate classifier would have to be trained. This can
be relatively easily completed in the case of structured documents (see, for in-
stance [1]), but is much more complex for unstructured text.

Overall, it can be stated that, while the recognition of prepossessed scripts
representing symbols in majority of languages is already well understood, the
main research directions concern (i) recognition of characters represented as raw
images, and (ii) recognition of words originating form unstructured handwritten
documents.



Experimenting with Assamese Handwritten Character Recognition 11

References

1. A.Denisiuk, M.Ganzha, M.Paprzycki, K.Wasielewska-Michniewska, Feature Ex-
traction for Polish Language Named Entities Recognition in Intelligent Office Assis-
tant, Proceedings of the 55th Hawaii International Conference on System Sciences
(in press)

2. D. Mangal, M. Yadav, S. Natesan, M. Paprzycki, M. Ganzha, Assamese Character
Recognition using Convolutional Neural Networks, Proceedings of 2nd International
Conference on Artificial Intelligence: Advances and Applications, Algorithms for
Intelligent Systems, 2022, https://doi.org/10.1007/978-981-16-6332-1 70 (in press)

3. M.B. Sukhaswamy, P. Seetharamulu and A.K. Pujari, Recognition of Telugu Char-
acters Using Neural Network, Int. J. of Neural Systems, 6(3), 317-357, 1995.

4. P.V.S. Rao and T.M. Ajitha, Â Telugu Script Recognition – A Feature Based
Approach, Proc. of Third Int. Conf. on DAR, 1, 1995

5. O.P. Jena, S.K. Pradhan, P.K. Biswal, and A.K. Tripathy, Odia Characters and
Numerals Recognition using Hopfield Neural Network Based on Zoning Feature,
International Journal of Recent Technology and Engineering, Vol.8, 2019

6. A. A. Prakash and S. Preethi, Isolated Offline Tamil Handwritten Character Recog-
nition Using Deep Convolutional Neural Network, International Conference on In-
telligent Computing and Communication for Smart World (I2C2SW), Erode, India,
pp. 278-281, 2018

7. B. Indira, M.Shalini, M. V. Ramana Muthy, M. S. Shaik, Classification and recog-
nition of Printed Hindi Characters Using ANN, Int.Journal Image, Graphics &
Signal Processing, 6, 15-21, 2012

8. U. Jindal, S. Gupta, V. Jain, M. Paprzycki, Offline Handwritten Gurumukhi Char-
acter Recognition System Using Deep Learning, Advances in Bioinformatics, Mul-
timedia, and Electronics Circuits and Signals,vol. 1064, Springer, pp.121-133, 2020

9. P. Sarma, C. K. Chourasia and M. Barman, Handwritten Assamese Character
Recognition, IEEE 5th International Conference for Convergence in Technology
(I2CT), Bombay, India, pp. 1-6, 2019

10. R.K. Bania, R. Khan, Handwritten Assamese Character Recognition using Texture
and Diagonal Orientation features with Artificial Neural Network, International
Journal of Applied Engineering Research, 13 (10), 7797-7805, 2018

11. U. Baruah and S. M. Hazarika, A Dataset of Online Handwritten Assamese Char-
acters, Journal of Information Processing Systems, 11 (3), pp.325-341, 2015; DOI:
10.3745/JIPS.02.0008

12. D. Dua and C. Graff, UCI Machine Learning Repository [http://archive.ics.uci.
edu/ml], Irvine, CA: University of California, School of Information and Computer
Science, 2019

13. S. Mandal, Noval Approaches for Basic Unit Modeling in Online Handwritting
Recognition, PhD Thesis, Department of Electronics and Electrical Engineering,
Indian Institute of Technology, Guwahati, India, 2019

14. U. Pal, B.B. Chaudhuri, Indian script character recognition: a survey, Pattern
Recognition, vol. 37, Issue 9, 2004, pp. 1887-1899,ISSN 0031-3203, https://doi.org/
10.1016/j.patcog.2004.02.003

15. J. Zhang, Y. Li, J. Tian and T. Li, LSTM-CNN Hybrid Model for Text Classifica-
tion, 2018 IEEE 3rd Advanced Information Technology, Electronic and Automa-
tion Control Conference (IAEAC), 2018, pp. 1675-1680, doi: 10.1109/IAEAC.2018.
8577620


