
Assamese Character Recognition using
Convolutional Neural Networks

Mihir Yadav1[0000−0002−3991−0760], Divyansh Mangal1[0000−0002−7400−1327],
Srinivasan Natesan1[0000−0001−7527−1989], Marcin

Paprzycki2[0000−0002−8069−2152], and Maria Ganzha3[0000−0001−7714−4844]

1 Indian Institute of Technology, Guwahati, Assam, India
m.yadav.mihir@gmail.com, natesan@iitg.ac.in

2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
3 Warsaw University of Technology, Warsaw, Poland

Abstract. In this article, we study recognition of handwritten Assamese
alphabet when Convolutional Neural Networks (CNN) are applied. First,
we generate a dataset, consisting of the 52 characters, with over 12k im-
ages in total. To this dataset we apply LeNet-5, ResNet-50, InceptionV3,
and DenseNet-201 models. Transfer learning is used for faster training.
Best accuracy of over 94.62% is obtained on the test data. This is, cur-
rently, state of the art performance in Assamese character recognition.

Keywords: Character Recognition, Assamese language, Deep Learning,
Convolutional Neural Networks, Transfer Learning.

1 Introduction

Optical character recognition (OCR) is the oldest subdomain of pattern recog-
nition. It refers to the conversion of machine-printed, or handwritten, symbols
into a machine-encoded text.

A lot of work has been devoted to OCR in Western scripts, and languages
like Chinese, Japanese, etc. (see, [11]). Over the past two decades, significant
progress has been made also in Indian scripts, like Devanagari [2], Gurumukhi [7],
Bengali [1], Tamil, Telugu or Malayalam [9]. However, character recognition
for Assamese, the major North-eastern language of India, spoken by over 14
million people, as their native language, is still lacking. Specifically, only a few
attempts have been made towards handwritten Assamese Character recognition.
Sarma et.al. [10] used template matching, and reached up to 80% accuracy. Bania
et al. [3] applied a feed forward back propagation Neural Network (NN). The
maximum reported accuracy was 90.34%. In the context of their work, the major
limitation of NNs is their inability to capture spatial features in an image. This
limitation can be overcome by using the CNN, which eliminated the need for
manual feature extraction, as they learn features during training, directly from
the images. However, to the best of our knowledge, CNNs haven’t been applied
on Assamese characters yet. Doing this became the goal of our work.



2 M. Yadav, et.al.

Since, there is no standard Assamese Character image dataset available on
the Internet, we have collected handwritten character samples and generated
a dataset containing more than 12k images, which can also facilitate further
research in this domain 4

The rest of the contribution is organized as follows. Section 2 describes
dataset generation, preprocessing steps applied, architecture of the developed
CNN models, and the relevant deep learning concepts. Section 3 summarizes the
obtained experimental results. Section 4 outlines the future work directions.

2 Proposed Methodology

In this section, we outline how CNNs have been applied on the handwritten
Assamese characters, to assess their potential in this context.

2.1 Datasets used in experiments

According to the best of of knowledge, there is no “standard” image dataset of
Assamese language handwritten characters, available on the Internet. Hence,
we decided to generate our own. Specifically, we have created two datasets
(DATASET 1 and DATASET 2), which, when combined, contain total of 12,863
images. The combined dataset is almost balanced, as each character appears in
almost equal number of images.

Fig. 1. Sample of a scanned page, from DATASET 1

DATASET 1 has been generated by collecting handwritten samples, each
containing the 52 Assamese characters (11 vowels and 41 consonants), provided
by a group of over 200 students, faculty and staffs members of IIT Guwahati. This

4 This dataset is available from: Srinivasan Natesan at natesan@iitg.ac.in



Assamese Character Recognition using Convolutional Neural Networks 3

group comprised of persons representing several age groups, education levels, and
both genders. Specifically, participants were given 2 sheets, divided into boxes,
and were asked to write the characters, in the order in which they appear in
the Assamese alphabet. Next, these sheets were scanned (see, Figure 1) and
individual characters’ images cropped out, preserving the order in which they
were written. As a result, a total of 10,994 images have been generated.

DATASET 2 was formed using the Tezpur University – Online Handwrit-
ten Assamese Character (TU-OHAC) dataset 5, generated by Baruah and Haz-
arika [4]. This dataset, collected from over 45 writers, has characters represented
as writer’s pen movement, on a digitizing tablet. A stroke is defined as a collec-
tion of (x, y) coordinates recorded between a single PEN DOWN and a PEN UP.
To generate the image, all strokes have been plotted. Prior to plotting, prepro-
cessing is performed as described in Section 2.2. In addition to the 52 characters,
the TU-OHAC dataset contains extra conjunct consonants, which we ignored to
unify both datasets. Hence, DATASET 2 contains 1869 images of 52 characters.

2.2 Dataset preprocessing

Otsu Binarization. Binarization is a very important noise filtering technique
applied during the preprocessing step in OCR related problems. Here, all pix-
els, classified as background are colored white and the remaining ones are col-
ored black. Since images in DATASET 2 are obtained by plotting graphs (not
photographed or scanned) binarization is not needed there. Binarization meth-
ods can be divided into 3 categories: threshold-based, clustering-based and hy-
brid [13]. Threshold methods are further divided into global threshold and locally
adaptive. Otsu Binarization is a global threshold method. Here, instead of ar-
bitrarily deciding the value of the threshold for the entire image, an optimal
value of threshold is calculated. Before performing Otsu Binarization, image
is converted to gray-scale. Given the histogram P (i) of the input image, this
technique evaluates an optimal threshold t, to be used to segmented pixels into
two clusters. Process iterates over possible threshold values and finds the one
that minimizes the weighted sum of the intra-class variance of the two clusters
(σ2

w(t)), which is calculated as follows:

σ2
w(t) = q1(t)σ2

1(t) + q2(t)σ2
2(t), (1)

where

q1(t) =

t∑
i=1

P (i), q2(t) =

255∑
i=t+1

P (i),

µ1(t) =

t∑
i=1

iP (i)

q1(t)
, µ2(t) =

255∑
i=t+1

iP (i)

q2(t)

σ2
1(t) =

t∑
i=1

[i− µ1(t)]2
P (i)

q1(t)
, σ2

2(t) =

255∑
i=t+1

[i− µ2(t)]2
P (i)

q2(t)
.

5 Available from the UCI Machine Learning repository [5]



4 M. Yadav, et.al.

Here µ1 and µ2 denote the means, while σ2
1 and σ2

2 are the variances within
the clusters. To perform Otsu Binarization, we have used the OpenCV library
function cv.threshold and passed cv.THRESH OTSU as the flag.

Outlier Elimination. While writing/drawing the characters, writers mis-
takenly scribbled some random dots near the corners of the boxes. To remove
them, we employed a simple technique, taking motivation from the statistical
interquartile range method. We evaluate the median x and y coordinates and
remove the farthest 2% of the points, measured from this median. Then, we crop
out the desired area, which varies from the minimum to the maximum x and y
coordinates, of the leftover 98% of the points.

Normalization. Writers were asked to write the characters inside a square
box. Since different people write in different orientations, the relative positions
of the characters were different. Furthermore, font-size of the characters written
by different persons also varied significantly. Hence, the values of x and y were
normalized, to ensure that the character’s plot occupies the complete area, and
is not skewed in a particular direction. The latter point will be addressed in the
future research, to bring more flexibility to the trained models.

For DATASET 2, the (x, y) coordinates are immediately available. For im-
ages in DATASET 1, coordinates were extracted using thresholding. Next, the
maximum and minimum values of x and y coordinates were calculated and used
to re-scale all coordinate values to the interval [0,M]. The following expression
describes this process:

x(i) =

(
x(i)− xmin

xmax − xmin

)
∗M, y(i) =

(
y(i)− ymin

ymax − ymin

)
∗M, ∀1 ≤ i ≤ N. (2)

Here N, M are the number of points and size of final image, respectively.
Image smoothing. DATASET 1 is developed by scanning the characters

written on paper. However, each image in DATASET 2 results from plotting
a finite number of points (300 to 500). Here, the curve obtained by joining
these points may fail to depict the actual shape, resulting in sharp edges and
irregularities in the plotted curve. Therefore, we applied smoothing to images in
DATASET 2. Specifically, a 3-point moving average filter method, was used to
smooth individual strokes, for 1 < i < N :

x(i) =
x(i− 1) + x(i) + x(i+ 1)

3
, y(i) =

y(i− 1) + y(i) + y(i+ 1)

3
(3)

where N is the number of points and we iterate over i in an increasing order.

2.3 Generating final image dataset

Preprocessing is done directly on the images of DATASET 1 and on the (x, y)
coordinates of the text files in DATASET 2. With the help of a Python script,
we shall plot these coordinates (using Matplotlib) to obtain the character images
for DATASET 2. The axes and labels are removed and the figure is resized to
96× 96 pixels. The process is summarized in Figure 2.



Assamese Character Recognition using Convolutional Neural Networks 5

Fig. 2. Preprocessing applied step-by-step on the character label ’A’ (DATASET 1)

2.4 CNN Model Architecture

Here, architecture refers to the number of layers, size of the filters, and types
of activation and pooling function used. In this work we have experimented
with four CNN models: LeNet-5, ResNet-50, InceptionV3 and DenseNet-201,
and analysed their performance on the, above described, dataset. The underly-
ing learning rule was the same in all cases, i.e. backpropagation using gradient
descent. The activation function was ReLu (Rectified Linear Unit) and the pool-
ing strategy was MaxPooling. Let us now describe in more details each CNN
architecture.

LeNet-5 Default LeNet 5 contains 2 sets of convolutional layers, followed
by pooling layers [8]. We increased this count to four. Number of filters, used
in each layer, was also increased. Finally, we added a dropout layer, and a fully
connected layer, which uses Softmax as the activation function. It generates
output between 0 and 1, the class with maximum value of the output is selected
as the predicted class.

ResNet-50 The main hindrance of training very deep neural networks was
the vanishing gradient problem. This may be conceptualized as the rapid di-
minishing of the gradient of the loss function, during back propagation, due to
successive multiplication. To overcome this issue, ResNet employs skip connec-
tion, which adds the output from the earlier layers to later layers, thus allowing
a shortcut path for the gradient to follow. ResNet-50 comprises of 5 stages, each
with a convolution and identity block. Convolution and identity blocks have 3
convolutional layers each.

InceptionV3 Original incarnation (InceptionV1) of this architecture was
called GoogleNet. The central idea behind GoogleNet was the inception module,
which performs convolution on an input with multiple sizes of filters, concate-
nating the resulting outputs, and sending them to the next layer. This network
consists of such modules “stacked upon each other”, with occasional max-pooling
layers with stride 2, to halve the resolution of the grid. InceptionV3 architecture
has several innovations over the initial GoogleNet, like convolution factorization,
auxiliary classifiers and grid size reduction (see [12] for further details).



6 M. Yadav, et.al.

DenseNet-201 This is a very recent architecture, introduced in 2018. It
connects each layer to every other layer, in a feed forward fashion. For each layer,
feature maps of all preceding layers are used as inputs. It concatenates them,
instead of summing them up. They alleviate the vanishing gradient problem, and
strengthen feature propagation. Through feature reuse, they are easy to train
and highly parameter efficient. Their overall structure contains ”dense blocks”
connected by convolutional and pooling layers (see [6]).

The total number of trainable parameters of ResNet, DenseNet and Incep-
tionV3 models is of the order of a million. The complexity of their architecture
makes it difficult to make changes to the network. Scaling up may cause large
parts of computational gains to be lost. Therefore, we have decided to not to
tweak their internal structure, as we did for Lenet-5 and use the default imple-
mentation that Keras provides. However, this is also one of interesting research
directions that we plan to explore in the future.

2.5 Transfer Learning

Training a Deep CNN, like ResNet, with random initialization of model weights,
is highly computationally expensive. It may even be practically infeasible, due to
the limited size of our dataset. So, in such cases, it is suggested that the concept
of transfer learning may be applied. Here, one uses a pre-developed model as a
starting point, for another task, to improve the performance of the second task.

Typically, transfer learning is used by two approaches, develop model ap-
proach and pre-trained approach [2]. Pre-trained approach has two main meth-
ods, namely, fine tuning and fixed feature extractor. In the latter, all the layers
of the pre-trained model are frozen except the last fully connected layer. In this
context, we have decided to use fine tuning pre-trained approach, wherein in-
stead of random initialization, weights are initialized with a network pre-trained
on the ImageNet dataset, comprising of 1.2 million images belonging to over
1000 different categories. Thus, some fundamental features are already learned
and weights are adjusted. We now feed our dataset to the entire model (no layer
is freezed here) and start training it further. Note, however, that this is also one
of points worthy further exploration.

3 Experimental results and analysis

The models were implemented using Python frameworks Tensorflow and Keras.
They were trained on 70% of data, validated on 20%, and then tested on the
remaining 10% of the dataset. The split was done in a balanced way, ensuring
that the number of instances of each character image is proportionally the same
in each part. The number of epochs was set to 100. The checkpoint callback has
been used while training, which after each epoch, checks the validation accuracy
of the model, and saves the weights corresponding to the model that gives the
highest validation accuracy, into an external hdf5 file. This highest validation
accuracy is displayed in Table 1. After the training is complete, the model is



Assamese Character Recognition using Convolutional Neural Networks 7

saved in the external hdf5 file, and is run on the test data and the test accuracy
is evaluated by applying it to the selected 10% of the original dataset.

All models except LeNet used transfer learning for weight initialization. The
models have been run on several combinations of hyperparameters, namely,
learning rate and batch size and, the best performing combination was selected
for each model. Observed in all cases stability of results, with the increasing num-
ber of epochs shows that models have reached saturation and can be reasonably
expected that they are at their “peak performance”.

Table 1 summarizes the results obtained by various architectures. As noted,
these results are the best results obtained when running experiments. Figure
3 shows the obtained validation accuracy curves. Overall, DenseNet shows the
best performance in terms of accuracy. This was expected, as DenseNet is the
most recent architecture that incorporates all the beneficial aspects of ResNet
and GoogleNet, while introducing some additional useful concepts, like feature
reuse. Based on analysis of literature we can state that the 94.62% accuracy can
be seen as state of the art in Assamese character recognition.

Table 1. Validation and test accuracies

Architecture Learning Rate Batch Size Val acc(%) Test acc(%)

LeNet 5 0.0008 48 88.82 86.25
ResNet 50 0.0008 128 94.88 93.55
InceptionV3 0.001 48 94.73 94.09
DenseNet 201 0.001 48 95.37 94.62

Fig. 3. Validation Accuracy plot



8 M. Yadav, et.al.

4 Concluding remarks

The aim of this contribution was to present preliminary results of our research
into recognition of handwritten Assamese characters. Specifically, based on liter-
ature survey, we have applied four different CNNs to the problem. Before doing
so, we had to create a dataset to train our models, as no Assamese character
dataset could be found online. The best obtained result, ∼94% accuracy, can
be seen as the benchmark result for the future improvements. We have also
indicated research areas that we plan to pursue in the future.

References

1. M. Al Rabbani Alif, S. Ahmed and M. A. Hasan, ”Isolated Bangla handwritten
character recognition with convolutional neural network,” International Conference
on Computer and Information Technology, Dhaka, Bangladesh,pp. 1-6, 2017; DOI:
10.1109/ICCITECHN.2017.8281823.

2. N. Aneja and S. Aneja, ”Transfer Learning using CNN for Handwritten Devana-
gari Character Recognition,” International Conference on Advances in Information
Technology, Chikmagalur, India, pp. 293-296, 2019

3. R. K. Bania and R. Khan. ”Handwritten Assamese Character Recognition using
Texture and Diagonal Orientation features with Artificial Neural Network”. Inter-
national Journal of Applied Engineering Research. 13, 2018; DOI: 10.1007/978-
981-15-0339-9 11.

4. U. Baruah and S. M. Hazarika, ”A Dataset of Online Handwritten Assamese Char-
acters,” Journal of Information Processing Systems, vol. 11, no., pp.325-341, 2015;
DOI: 10.3745/JIPS.02.0008.

5. D. Dua and C. Graff, UCI Machine Learning Repository Irvine, CA: University of
California, School of Information and Computer Science, 2019.

6. G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ”Densely Connected
Convolutional Networks,” CVPR , Honolulu, HI, USA, pp. 2261-2269, 2017

7. U. Jindal, S. Gupta, V. Jain and M. Paprzycki ”Offline Handwritten Gurumukhi
Character Recognition System Using Deep Learning”,Advances in Intelligent Sys-
tems and Computing, vol 1064., 2020.

8. Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ”Gradient-based learning applied to
document recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,
Nov. 1998; DOI: 10.1109/5.726791.

9. P. P. Nair, A. James and C. Saravanan, ”Malayalam handwritten character recog-
nition using convolutional neural network,” International Conference on. Inventive
Communication and Computational Technologies, Coimbatore, 2017.

10. P. Sarma, C. K. Chourasia and M. Barman, ”Handwritten Assamese Character
Recognition,” IEEE Conference for Intelligent Technologies, Bombay, India, 2019;
DOI: 10.1109/ICAIT47043.2019.8987286.

11. H. Singh, R.K. Sharma and V.P Singh, ”Online handwriting recognition systems
for Indic and non-Indic scripts: a review” Artif Intell Rev 54, 1525–1579, 2021.

12. C. Szegedy, V. Vanhoucke, Sergey Ioffe, J. Shlens and Z. Wojna, ”Rethinking the
Inception Architecture for Computer Vision”, Conference on Computer Vision and
Pattern Recognition (CVPR) 2016.

13. J. Wen, S. Li, J. Sun, ”A new binarization method for non-uniform illuminated
document images, Pattern Recognition” 10.1016/j.patcog.2012.11.027, 2013, Vol-
ume 46, Issue 6, pp. 1670-1690,


