Parallel Computing in Ada:
An Overview and Critique

Marcin Paprzycki & Janusz Zalewski
Dept. of Science & Mathematics
University of Texas-PermianBasin
Odessa, TX 79762-0001
(915)552-2258

paprzycki_mQutpb.edu, zalewskil_] @utpb.edu

Abstract. The aim of this paper is to presenf the basic issues related to the use ot
Ada in parallel computing. It is argued that there exists a gap between the most popular
area of parallel computing research, scientific computing, and the interests of Ada
community. A number of new research directions and curricular changes are proposed.
Keywords: Ada, parallel computing, efficiency, performance, experimental studies

1 Introduction

Ada’83 [1] was created as a programming language with a particular purpose. This purpose was very well
summarized by Kok [13]:

»The language Ada was primarily designed for the production of large portions of readable, modular,
portable, and maintainable software for real-time applications” (p. 100)

Bearing this in mind, one can expect that there exist a number of constructs in the language that were
designed to support these goals. When Ada was being designed, only the first glimpses of realistic parallel
computing appeared on the horizon and parallel computers (as we know them now) existed only in minds
of their future creators and in very few university and government laboratories. This explains in part why
no broad range support for parallel computing was introduced into the language definition. It should be
pointed out, however, that since the language was supposed to address the design of software for real-time
systems some of the constructs in the language can support parallel computing. These tools are the concept
of a task (allowing the separation of the threads of execution into independent units) and the mechanism of
rendezvous that supports the communication of these independently executing units and can also work as a
very powerful synchronization mechanism ([13], p. 101)

Since the original Ada 83 [1] was introduced, a large number of changes in computing, in general, have
occurred. The computer architectures have evolved in an extremely rapid fashion, diverging into vector
computers, SIMD (single instruction multiple data) parallel computers, as well as two models of MIMD
(multiple instruction multiple data) computers: shared memory and message passing. For these computers,
the initial area of applications were large computationally intensive mathematical problems. Even today,
computational mathematics (understood very broadly) is the primary area where parallel computers are
used (followed by the use of parallel computers in database applications). Interestingly enough, Ada is not
the language in which the software for these computationally intensive mathematical problems is written:
the two leading languages in this area are Fortran and C — even though their definitions provide absolutely

ACM Ada Letters, Mar/Apr 1997 Page 55 Volume X VI, Number 2

no support tor parallensmm.

In this paper we argue that Ada contains all the appropriate tools for it to be used in the development of
software for parallel computers. This claim is based on our analysis of the reported research and applications,
published in literature before 1996, that is before Ada ’95 standard was approved [2]. We also suggest that
the new direction of research is necessary if Ada is supposed to gain ground in the area of parallel scientific
computing. In Section 2, we summarize the existing research in developing the tools for the support of
parallel computing. Section 3 provides a critical analysis of the identified problems and introduces a possible

solution for a research program to be pursued. It also discusses the connection between the proposed research
and the computer science curricula.

2 Ada Support for Various Models of Parallelism

Our analvsis indicates that in the past there was a substantial amount of research completed in support
of Ada-based parallel computing. This research has been directed toward various models of parallelism.
Starting from basic vector computing, addressing arrays of processors (the SIMD model of computing), the
research ventured into very special forms of parallel computing, such as wavefront processing. There was
research done in the area of loop parallelism (the basic model for shared memory MIMD paradigm) as well
as in hypercube-based parallel computing (message passing MIMD paradigm). There was also some work
done in the extremely important area of performance analysis. Obviously, not all the work will (and can) be
cited here. We believe though, that what is shown is a good representation of the work done and contains a
clear indication of the nature of the problem.

2.1 Vector Computing in Ada

A typical research in the area of Ada-based vector computing is represented by {9, 17, 24). As a definition of
vector computing we can utilize, for instance, the one proposed by Forest and Arnaudo: " A vector machine
is (...) a machine able to execute N identical floating operations in less than N times the single operation
time” ([9] p. $21). Vector computers are aimed at nerforming extremely efficiently operations on long
vectors. Typical examples of computers in this category are: Cray Y-MP, Convex C-220, IBM V-3900.
In each of the papers referenced above, a package (or a collection of packages) was (were) introduced to
provide an efficient support for various operations on vectors. Interestingly enough, authors of the first two
papers recognize the need for very efficient computing and suggest that the body of the package should be
implemented in an assembly language (or interfaced to the Fortran executables that were earlier compiled
by an efficient vectorizing compiler) to take full advantage of the underlying architecture. An extension of
the initially proposed package(s} into matnx-vector operations was also suggested (in all three papers). It
can be observed that some of the influences here come, first of all, from the development of the levels 1 and

9 of BLAS ({Basic Linear Algebraic Subroutines), and secondly, from the work that was being done at that
time on the definition of Fortran 8X.

2.2 Parallel SIMD Computing

SIMD - single instruction multiple data parallel computing model involves a set (typically an array) of pro-
cessors where in each time step all of them execute the same instruction (some of the processors may possibly
execute no instruction at all) on separate data elements ([22], p. 430). Typical computers representing this
approach to parallelism are: ICL DAP, Connection Machines 1 and 2, Maspar 1 and 2. Ada support for this
model of parallelism was discussed in [22]. It presents the development of an Ada interface to the *LISP
language (a proprietary extension of LISP developed at T hinking Machines) to allow efficient usage of the
Connection Machine {(CM) array of processors. The interface 1s designed to provide the user with all the

ACM Ada Letters, Mar/Apr 1987 Page 56 Volume XVil, Number 2

functionality and special features of Ada (like compile-time type checking and the standard data types) as
well as with access to the full *LISP functionality and the processing power of the 65,536 CM processors
([22], p. 431). Interestingly enough, the authors make two observations: first, that Fortran 8X standard has
been found useful in designing support for array operations {p. 431), and second, that the performance 1s
extremely important (p. 433).

2.3 Ada in Wavefront Computing

Wavefront and systolic array processors are special classes of VLSI-circuit implementation of parallel pro-
cessing. Wavefront array processor operations are asynchronous, where data transfer is accomplished by
exchanges between pairs of processing clements. Even though the systolic and wavefront models of paral-
lel computing are not considered mainstream, it was shown that a number of algorithms can be efficiently
represented in this model of computation. The usage of Ada in wavefront computing is discussed in [8].
It is suggested that typical parallel programming languages (including ()ccam) cannot provide appropriate
description of wavefront array processing, while the proper use of Ada tasks allows the description and sim-
ulation of this specific model of parallel computing (p. 267). It is shown how Ada task syntax can properly
handle timing, local synchronization and data transfer in a wavefront array of processors.

2.4 Ada Support for Shared Memory MIMD Parallelism

Loop parallelism is the most tvpical model of parallelism for shared memory MIMD parallel computing. In
this model, a number of processing clements is connecied to a global shared memory. The most typical
examples of computers representing this approach to parallelism are: Sequent, Alliant. BBXN Butterfly.
Implementation of loop parallelism in Ada 1s discussed in [9, 11]. The authors of both papers point out that
the standard task mechanism is too powerful and too awkward for support of the light-weight loop parallelism.
Their objections are additionally grounded in the earlier work [5, 6, 25;. To avoid these problems, Forset
and Arnaudo suggest the cobegin and coloop mechanisms whereas Hind and Schonberg introduce a beacon
task type which provides support for loop parallelism. Hind and Schonberg study also the eificiency issues
of their proposal. It is shown that algorithms utilizing the beacon task outperform algorithms using the
standard Ada task. It is also suggested that the beacon task based loop parallelism should be more efficient
than similar mechanisms in the parallel extensions to C and Fortran.

2.5 Ada Support for Message Passing MIMD Computing

Message passing computers are the second class of parallel MIMD architectures. Here a parallel computer
consists of a number of processing units equipped with local memories that are connected over a network
(no global memory 1s present). Typical examples of such machines are: Intel Hypercube and Paragon, Cray
T3D, N-cube. Usage of Ada in such an environment (represented by a 1024 processor N-cube) is studied
in {7]. Using a hypercube as an example, the development of a run-time system that would support Ada

on any distributed memory multiprocessor is presented. In addition, the detailed discussion related to its
efficient implementation on a hypercube 1s included.

2.6 Efficiency and Performance

In most articles of the above survey the authors suggest that the efliciency of implementation and the
performance characteristics o implemented tools are the important issues that need to be addressed. These
points were raised primarily as related to the parallel scientific computing. There exists additional interest
in performance (outside of the scientific computing area) as represented, for instance, in [10, 18]. Nakao
and Yogi [18] investigate the performance of the task based parallel binary tree traversal. Theyv derive the

ACM Ada Letters, Mar/Apr 19397 Page b7 Volume X Vi, Number 2

theoretical performance profile and suggest a method of determining an optimal number of processors to be
used. The paper by Goforth et al. {10} presents and discusses a large number of benchmarking data and
performance measures for parallel Ada tasking applied to the control of an autonomous telerobotic system.
The experiments were performed on a 16-processor Sequent Balance 8000. The results suggest that even

though the run-time Ada support on the Sequent was less than satistactory (p. 54) encouraging performance
results have been obtained (p. 46-50).

3 Critical Analysis

The summary of research on parallel computing in Ada presented in Section 2 indicates clearly that a broad
range of issues related to the usage of Ada in all of the major models of parallelism have been studied. The
results of this research indicate clearly that Ada either has the appropriate tools available to provide direct
support for all models of parallel computing {typically through the task and the rendezvous mechanisms) or
that appropriate tools can be easily provided by creation of appropriate auxiliary packages and/or interfaces.

At the same time, the basic issues still remain open, which prevents the postulate formulated in 19980 by
Hunter {[12]):

*The only technically rational way of advancing the art of scientific and engineering programming is 1o
sbandon Fortran in favor of modern, block structured language as Algol-68 or Ada”

from having been materialized. There are many possible answers to the question why this is so? In the
remaining part of this section we provide support for one of the answers, by pointing out to specific problems
:n the research summarized above. We also make a number of suggestions that could possibly lead to the

fulfilment of Hunter’s postulate. These suggestions are directed first, toward the research area and, second,
towards the educational curricula.

3.1 Problem Identification

From the definition of the language (in both *83 and '95 versions}, it is clear that Ada was not created with
parallel scientific computing in mind. A quick look into the Ada 9o definition [2] reveals that a number of
extensions to the language were proposed to support the Object-Oriented paradigm, whereas no additional
support was introduced for parallel computing (as opposed to distributed computing). We have also seen
that Ada has (or can easily have) all the right tools and attributes to support development of parallel
scientific computing software. The open question remains: why 18 Ada almost unused to develop parallel

programs? We would like to suggest that the primary problem is related to the efficiency and performance
1S5ues.

Parallel computing is being practiced primarily by the people who have one of the following two goals in
mind (or sometimes both): to solve larger problems (typically in the sense of larger input size), or to solve
problems (of a given size) faster (typically when someone wants to solve a longer sequence of problems of a
given size). In both cases the execution time 1s crucial. These researchers participate in the MFlop race (what
program and on what machine can achieve a larger number of floating point operations per second), which
leads to the creation of relatively small (compared to the industry standards) software artifacts. They have
also developed a number of benchmark suites that are designed to study the performance characteristics of
hardware, compilers and software environments. The issues of software portability and reliability, addressed
through the creation of software libraries and establishing standardized operations (like the BLAS/LAPACK
standards), are considered of slightly lesser importance. It can be conjectured, as it is assumed here, that
the science of parallel computing is so new and the parallel hardware and software development tools are
changing so fast, that the time has not come (yet), to address the issues of building large software systems.

At the same time, the Ada users develop large software systems (very often related to real-time, safety
critical computing) and are primarily interested in the issues related to software reliability and portability.

ACM Ada Letters, Mar/Apr 1987 Page b8 Volume X VI, Number 2

Fven if the software systems produced work in a distributed environment and need to satisfy hard real-time

constrains (which, among others, require fast computation), the pertormance issues as described above are
not recognized as extremely important.

The second point we need to raise, is that even if there exists research about the performance of Ada based
software, it remains mostly unknown to the non-Ada community. There are two basic reasons for this. First,
as shown by the research of Goforth et al. (101 which was published in Ada Letters and the work of Nakao and
Yogi [18] published in the Transactions of the IEICE, these publications are not on the list of journals the
most popular among researchers interested in performance. Second, the performance studies completed by
the Ada researchers do not exactly match the interest of the other research camp. The research by Goforth
et al. was a very typical mainstream Ada application — control of autonomous telerobotic system — which
is rather atypical for parallel seientific computing applications. The subject of the research by Nakao and
Yogi is of relatively low interest for the scientific computing community and, more importantly, was only
partially related to Ada. Since all of their analysis 1s purely theoretical, this work could be easily extended
to any other programming language (replacing the task generation time by the time of initialization of a
slave process, and the rendezvous time by the communication overhead). This being the case, their results
do not introduce any specific information about Ada’s performance.

This problem is also visible from the opposite direction. The work by Kok [13] (containing a very important
critical analysis of Ada’s advantages and disadvantages as a language for parallel computing and discussing
. number of future research direction) remains unknown among the Ada researchers, since it was published

in The International Journal of Supercompuling Applications, the leading journal of the scientific computing
research.

Qummarizing, there exist two independent research camps. They have separate research programs and
interests and publish in journals unrecognized by each other. This seems to suggest that there is almost no
chance for reconciliation. However, without reconciliation the Hunter postulate has only a minimal chance
of completion.

3.2 Proposed Solution — Extensive Efficiency Studies

We would like to suggest that the only way 10 close the gap between the two camps is to establish a common
area of research — study of a varety of issues related to performance and efficiency of Ada. It needs to be
made clear that since one of the goals of the Ada community is to expand the area in which Ada is used,
it will be in some sense their goal to show that Ada is a language In which parallel scientific software can
and should be written. QOur basic assumption is that there exists a certain trade-off between the software
reliability, portability and development ease, on One hand, and the pertormance and efficiency as represented
by the execution time, on the other. As a typical example of such trade-off one can argue that, in Ada, In
every step the ranges of arrays are being checked, which is very important for software reliability, but has
adverse effect on performance [16]. Researchers interested in solving large scientific problems on parallel

computers may be willing to crade some speed for the other gains, but at this moment it is unknown how
much speed 1s in question.

It is clear that due to the objectives of the language, where software reliability and safety is of foremost
importance, the pertormance of Ada implemented algorithms on single-processor computers will be in many
cases lower than performance of the same algorithms implemented in other languages. At the same time,
no substantial research has been done to find out what is really the periormance difference for uniprocessors
and how does it manifest itself for various classes of algorithms (for limited examples of performance data
see [4]). The situation is even less clear how will the picture look like when the performance of parallel
programs is to be studied. Research cited above suggests that the answer to the latter question will depend
on the overhead associated with task generation and the efficiency of the rendezvous mechanism. However,

almost no results estimating these parameters exist (except the work by Hind and Schonberg [11] which 18
quite encouraging for the Ada community).

ACM Ada Letters, Mar/Apr 1937 Page 59 Volume X VI, Number 2

We would like to suggest that a number of steps need to be undertaken to present a clear picture of Ada
performance and to allow a fair comparison with the performance of other programming languages. This can
be achieved by a collection of experimental data. An example of such an experimental work can be found in
4, 19]. It presents a comparative study of a single processor performance of array based sorting algorithms

implemented in Ada and C. More studies like this are needed to provide important metrics, for example to
be used by compiler designers (see also [3, 16]).

As mentioned earlier, there exist a number of benchmarks suites that were designed primarily to study the
performance characteristics of various computers. At the same time, there has been already an indication
that these benchmarks can be used as the basis of comparative studies between various programming lan-
guages. Why not to use these well known benchmarks to study the performance of Ada and to compare

its performance on various machines (single-processor as well as parallel) with software written in other
programming languages?

One of the important wavs in which parallel scientific software is being developed is through the creation
of software libraries. The most interesting project in this area is the collection of mathematical software
available form the Oak Ridge National Laboratory. Similar software libraries need to be created in Ada and
allow an exchange of research done by various researchers and to support software reuse.

Overall, the above discussion goes hand-in-hand with what was suggested by Kok ([13]):

"Though Ada is now available on many uniprocessor systems, there is still little experience with truly mul-
tiprocessor Ada implementations. This experience will grow rapidly in the near future, and it will probably
prove the benefits of high level language features for the developments of new methods that successfully
exploit the possibilities of parallel architectures.” (p. 108)

To achieve this goal, Ada researchers must respond to the needs of people who use parallel computers and
their need to have an extremely efficient code. The only way to convince them that programming in Ada is
worth considering is by showing that they do not lose too much efficiency and at the same time they gain
a lot in the areas of software reliability and reuse. Only through the experimental work and entering the
dialog with the parallel computer users to solve their large problems can the Hunter’s postulate be fulfilled.

3.3 Effects on the Computer Science Curriculum

The proposed amendment to the research agenda of the Ada community would have some effect on the
computer science curriculum. Similar changes have been recently suggested by Lawlis and Adams [15].
Their general recommendation is to return the computer science curricula to the engineering basics. This

leads to the increase of the amount of experimental laboratory work — which is so typical for engineering
curricula [217).

Qur suggestion, which follows the need for experimental benchmarking, referred to earlier in this paper,
is typical for engineering and experimental sciences. We designed a number of laboratories [20, 21] during

which students study efficiency issues of various algorithms and following these experiments make the best
choice of either algorithm or architecture or both.

Following the standard outline of a scientific experiment:
e formulation of a precise hypothesis
o complete specification of the experimental system
e quantitative measurements and use of controls
e analysis of measured data

e report of the procedures and results

ACM Ada Letters, Mar/Apr 1997 Page 60 Volume XVII, Number 2

also leads to the fulfillment of educational goals of providing students with increased: problem-solving abil-
ities, analytical skills and professional judgment — goals specified as extremely important in the educational
process by Lawlis and Adams [15]. In this sense, our proposal goes beyond what has been proposed recently
in [14, 23]) where the educational goal was primarily to introduce students to various aspects of parallel code
development.

4 Summary

An overview of parallel computing in Ada, as reported in the hterature up to 1996, has been presented. This
includes the use of Ada in vector computing, SIMD computations, wavefront computing, and both shared
memory and message passing MIMD computations. This is followed by a critical analysis of the use of Ada
and suggestions for more focused performance studies and respective curriculum changes.

Acknowledgements

This work was supported in part by a grant from the Defense Information Systems Agency, under the

Udergraduate Curriculum and Course Development Program: Software Engineering and the Use of Ada,
Contract F29601-94-K-0046.

References

(1] Ada Reference Manual. International Standard ANSI/MIL-STD-18154, 1983

(2] Ada Reference Manual. Language and Standard Libraries. International Standard ISO/IEC £652:1999,
January 1995 |

(3] Baker J., Analysis of Machine Code Generation, Journal of Computing in Gmall Colleges, Vol. 11, No.
7. pp. 162-175, 1996

(4] Baker J., D. Stacy, Comparison of Sorting Algorithms in Ada and C, Journal of Computing in Small
Colleges, Vol. 10, No. 3. pp. 185-189, 1995

(5 Blum E.k., Programming Parallel Numerical Algorithms in Ada, pp. 297-304; The Relationship Between

Numerical Computation and Programming Languages, 1. L. Reid (Ed.), North-Holland, Amsterdam,
1987

(6, Clarson D.R., Proposal for Adding Discriminants for Ada Task Tvpes, Ada Letters, Vol. & No. 5, 1937
7' Clapp R.M., 'T. Mudge, Ada on a Hypercube, Ada Letters, Vol. 9, No. 2, pp. 118128, 1985

(81 Cogan K.J., Ada for the Description of Wavefront Array Processors, pp. 267-276. Proc. Ada-Europe
International Conference, Dublin, June 12-14, 1990, B. Lynch (Ed.), Cambridge University Press, New
York, 1990

9] Forest F., G. Arnaudo, Parallelism in Ada, Ada User, Vol. 8. Supplement, pp. S21-526, 1987

(10] Goforth A., P. Collard. M. Marquardt, Performance Measurement of Parallel Ada: An Applications
Based Approach, Ada Letters, Vol. 10, No. 3, pp. 38-58, 1990

[11] Hind M., E. Schonberg, Efficient Loop-Level Parallelism in Ada, pp. 166-178, Proc. TRI-Ada 91, San
Jose, CA, Qctober 21-25, 1991, ACM, New York, 19391

ACM Ada Letters, Mar/Apr 1997 Page 61 Volume XVil, Number 2

12)
13

Hunter G., The Fate of Fortran 8X, Comm. of the ACM, Vol. 33, No. 4, April 1990

Kok J., Parallel Programming with Ada, International J. of Supercomputer Applications, Vol. 2, No. 4,
np. 100-108, 1988

' Kortright E.V., Parallel Ada Programmingin Ada Under Different Architecture Paradigms, pp. 108-117,

Proc. 9th Annual ASEET Symposium, Morgantown, WV, 1985

! Lawlis P.K., K. A. Adams, Computing Curricula vs. Industry Needs: a Mismatch, pp. 9-19, Proc. 9th

Annual ASEET Symposium, Morgantown, WV, 1585

! Lee S., Optimizing Sparse Matrix Multiplication, Journal of Computing in Small Colleges, Vol. 11, No.

7. pp. 176-185, 1996

Lyttle R.W., R.H. Perrott, P. Sritharan, Modeling SIMD-Type Parallelism in Ada, J. Pascal, Ada &
NModula-2. Vol. 9, No. 2, pp. 10-16, 1890

' Nakao 7., T. Yogi, A Parallel Algorithm in Ada and Its Performance Profile. Transactions of IEICE,

Vol. 73. No. 4. pp. 528-531, 1990

. Paprzycki M., J. Baker, D. Stacy, Studying Performance of Sorting Algorithms, pp. 165-173, Proc.

Conference on Applied Mathematics, University of Central Oklahoma, Edmond, OK, 19395

- Paprzycki M., R. Wasniowski, 1. Zalewski, Parallel and Distributed Computing Education: a Software

Engineering Approach, pp. 187-204, Proc. 8th CSEE'95 Conference, R. L. Ibrahim (Ed.), Springer-
Verlag, Berlin, 1895

Paprzycki M., J. Zalewski, Shaping the Focus of the Undergraduate Curriculum, SIGCSE Bulletin, 1996
(to appear)

" Park EX., P.B. Anderson, H.D. Dardy, An Ada Interface for Massively Parallel Systems, pp. 430-439,

Proc. 14th COMPSAC, Chicago, October 31 — November 2, 1990, G.J. Knafl (Ed.}, IEEE Computer
Society Press, Los Alamitos, CA, 1990

| VanScoy F., Parallel Computing in Undergreaduate Education, Talk at the 9th Annual ASEET Sym-

posium, Morgantown, WV, 1939

| Volksen G., P. Wehrum, Ada Scientific Computations on Vector Processors, 1. Pascal, Ada & Modula-2,

Vol. &, No. 6, pp. 16-32, 1989

Yemini S., On the Suitability of Ada Multitasking for Expressing Parallel Algorithms, Proc. AdaTEC
Conference on Ada, 1982

ACM Ada Letters, Mar/Apr 1937 Page 62 Volume XVII, Number 2
f

	siam copy.gif
	siam0001 copy.gif
	siam0002 copy.gif
	siam0003 copy.gif
	siam0004 copy.gif
	siam0005 copy.gif
	siam0006 copy.gif
	siam0007 copy.gif

